Knowledge (XXG)

Density (polytope)

Source 📝

67:, even one without symmetries, by choosing any point interior to the polyhedron as its center. For these polyhedra, the density will be 1. More generally, for any non-self-intersecting (acoptic) polyhedron, the density can be computed as 1 by a similar calculation that chooses a ray from an interior point that only passes through facets of the polyhedron, adds one when this ray passes from the interior to the exterior of the polyhedron, and subtracts one when this ray passes from the exterior to the interior of the polyhedron. However, this assignment of signs to crossings does not generally apply to star polyhedra, as they do not have a well-defined interior and exterior. 762: 211: 403: 233: 143: 870: 159: 808: 377: 174: 620: 355: 196: 613: 20: 59:
of the polytope and not through any lower dimensional features, and counting how many facets it passes through. For polyhedra for which this count does not depend on the choice of the ray, and for which the central point is not itself on any facet, the density is given by this count of crossed
761: 645:
generalized the formula for star polyhedra with different kinds of face, some of which may fold backwards over others. The resulting value for density corresponds to the number of times the associated spherical polyhedron covers the sphere.
747: 601:
The regular star polyhedra exist in two dual pairs, with each figure having the same density as its dual: one pair (small stellated dodecahedron—great dodecahedron) has a density of 3, while the other (
402: 807: 376: 232: 142: 539: 210: 173: 354: 889:), which have densities between 4, 6, 20, 66, 76, and 191. They come in dual pairs, with the exception of the self-dual density-6 and density-66 figures. 158: 1051: 985: 922: 651: 937:
17. The angle defect of a polyhedron; 20. Curvature of surfaces; 21. Gaussian curvature; 27.3.1 Curvature for Polyhedra pp. 32-51
991: 874: 48: 602: 579: 131:. It can be visually determined by counting the minimum number of edge crossings of a ray from the center to infinity. 195: 85:
is the number of times that the polygonal boundary winds around its center. For convex polygons, and more generally
869: 452: 976: 55:
of the polyhedron. It can be determined by passing a ray from the center to infinity, passing only through the
631:, {3,5/2} has a density of 7 as demonstrated in this transparent and cross-sectional view on the right. 483: 996:
Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences
308: 149: 90: 24: 413: 387: 383: 312: 1095: 1019: 886: 814: 583: 436: 277: 269: 104:
of all the vertices divided by 360°. This will be an integer for all unicursal paths in a plane.
52: 1068: 1047: 1043: 1011: 981: 918: 910: 752: 628: 545: 64: 1003: 619: 291:, leaving an angle defect of π/2. 8×π/2=4π. So the density of the cube is 1. 164: 56: 1031: 1027: 768: 257: 216: 179: 40: 107:
The density of a compound polygon is the sum of the densities of the component polygons.
300: 97: 86: 73:
can similarly define density as the number of coverings of faces over any given point.
70: 44: 1089: 858: 854: 578:
This implies a density of 7. The unmodified Euler's polyhedron formula fails for the
463: 428: 304: 1071: 1038:
Wenninger, Magnus J. (1979), "An introduction to the notion of polyhedral density",
273: 182: 116: 947: 642: 612: 857:, some of whose faces pass through the center, the density cannot be defined. 19: 882: 751:
This allowed Coxeter et al. to determine the densities of the majority of the
239: 101: 1015: 1076: 556: 201: 1007: 219: 32: 994:; Longuet-Higgins, M. S.; Miller, J. C. P. (1954), "Uniform polyhedra", 1023: 288: 47:
from two dimensions to higher dimensions, representing the number of
914: 934: 868: 18: 961:
Coxeter, 1954 (Section 6, Density and Table 7, Uniform polyhedra)
365: 284: 27:{9/4} winds around its centre 4 times, so it has a density of 4. 742:{\displaystyle \sum _{i}d_{vi}v_{i}-e+\sum _{i}d_{fi}f_{i}=2D} 16:
Number of windings of a polytope around its center of symmetry
925:(206–214, Density of regular honeycombs in hyperbolic space) 775:, {8/2}×{}, shown here with offset vertices for clarity. 755:, which have one vertex type, and multiple face types. 654: 486: 607: 861:polyhedra also do not have well-defined densities. 280:(summed over all its vertices) divided by 4π. 741: 533: 89:(not self-intersecting), the density is 1, by the 96:The density of a polygon can also be called its 272:concentrated at the vertices and defined by an 276:. The density of a polyhedron is equal to the 268:A polyhedron can be considered a surface with 63:The same calculation can be performed for any 8: 360:Density of topological sphere polyhedron is 246:}, has density 5, similar to regular {12/5}. 935:Geometry and the Imagination in Minneapolis 189:}, has density 2, similar to regular {7/2}. 548:, {3, 5/2}, has 20 triangular faces ( 952:, CUP hbk (1997), pbk. (1999). (Page 258) 724: 711: 701: 682: 669: 659: 653: 513: 491: 485: 605:–great icosahedron) has a density of 7. 898: 757: 350: 138: 980:, (3rd edition, 1973), Dover edition, 43:is a generalization of the concept of 907:The Beauty of Geometry: Twelve Essays 148:A single-crossing polygon, like this 7: 71:Tessellations with overlapping faces 534:{\displaystyle d_{v}v-e+d_{f}f=2D} 14: 555: = 1), 30 edges and 12 408:Density of a genus 5 toroidal is 299:The density of a polyhedron with 806: 760: 618: 611: 401: 375: 353: 231: 209: 194: 172: 157: 141: 570:2·12 − 30 + 1·20 = 14 = 2 875:great grand stellated 120-cell 477:of the polyhedron as a whole: 1: 51:of the polyhedron around the 909:(1999), Dover Publications, 603:great stellated dodecahedron 580:small stellated dodecahedron 287:has 8 vertices, each with 3 23:The boundary of the regular 582:{5/2, 5} and its dual 435:as a way to modify Euler's 394:, like this hexagonal form: 1112: 881:There are 10 regular star 887:Schläfli–Hess 4-polytopes 626: 586:{5, 5/2}, for which 1042:, CUP Archive, pp.  566: = 2), giving 849:Nonorientable polyhedra 260:have the same density. 1008:10.1098/rsta.1954.0003 878: 743: 638:General star polyhedra 535: 453:regular star polyhedra 424:Regular star polyhedra 28: 872: 744: 536: 451:= 2) to work for the 256:A polyhedron and its 111:Regular star polygons 22: 652: 484: 462:is the density of a 309:Euler Characteristic 204:{7/3} has density 3. 150:equilateral pentagon 91:Jordan curve theorem 83:density of a polygon 974:Coxeter, H. S. M.; 865:Regular 4-polytopes 771:, wrapped twice is 388:toroidal polyhedron 319:, its density is 1- 1069:Weisstein, Eric W. 905:Coxeter, H. S. M; 879: 815:pentagrammic prism 767:The density of an 739: 706: 664: 584:great dodecahedron 531: 437:polyhedron formula 418:v=72, e=168, f=88. 270:Gaussian curvature 222:(compound) 2{(3/2) 167:{5} has density 1. 127:}, the density is 53:center of symmetry 29: 1072:"Polygon density" 1053:978-0-521-22279-2 992:Coxeter, H. S. M. 977:Regular Polytopes 813:The density of a 753:uniform polyhedra 697: 655: 635: 634: 629:great icosahedron 546:great icosahedron 544:For example, the 396:v=24, e=48, f=24. 311:, χ. If its 100:; the sum of the 65:convex polyhedron 1103: 1082: 1081: 1056: 1040:Spherical models 1034: 1002:(916): 401–450, 962: 959: 953: 944: 938: 932: 926: 903: 877:has density 191. 810: 764: 748: 746: 745: 740: 729: 728: 719: 718: 705: 687: 686: 677: 676: 663: 622: 615: 608: 559:vertex figures ( 540: 538: 537: 532: 518: 517: 496: 495: 405: 379: 357: 295:Simple polyhedra 235: 226:} has density 4. 213: 198: 176: 165:Regular pentagon 161: 152:, has density 0. 145: 1111: 1110: 1106: 1105: 1104: 1102: 1101: 1100: 1086: 1085: 1067: 1066: 1063: 1054: 1037: 990: 971: 966: 965: 960: 956: 945: 941: 933: 929: 904: 900: 895: 867: 851: 844: 842: 838: 834: 832: 828: 824: 822: 811: 802: 800: 796: 792: 788: 786: 782: 778: 776: 769:octagonal prism 765: 720: 707: 678: 665: 650: 649: 640: 565: 554: 509: 487: 482: 481: 472: 461: 426: 419: 417: 406: 397: 395: 380: 371: 370:v=8, e=12, f=6. 369: 358: 307:is half of the 297: 283:For example, a 278:total curvature 266: 264:Total curvature 254: 247: 245: 236: 227: 225: 214: 205: 199: 190: 188: 177: 168: 162: 153: 146: 137: 113: 87:simple polygons 79: 41:star polyhedron 17: 12: 11: 5: 1109: 1107: 1099: 1098: 1088: 1087: 1084: 1083: 1062: 1061:External links 1059: 1058: 1057: 1052: 1035: 988: 970: 967: 964: 963: 954: 946:Cromwell, P.; 939: 927: 897: 896: 894: 891: 866: 863: 859:Non-orientable 850: 847: 846: 845: 840: 836: 830: 826: 817:, {5/2}×{} is 812: 805: 803: 798: 794: 790: 784: 780: 766: 759: 738: 735: 732: 727: 723: 717: 714: 710: 704: 700: 696: 693: 690: 685: 681: 675: 672: 668: 662: 658: 639: 636: 633: 632: 627:The nonconvex 624: 623: 616: 576: 575: 563: 552: 542: 541: 530: 527: 524: 521: 516: 512: 508: 505: 502: 499: 494: 490: 473:of a face and 470: 459: 425: 422: 421: 420: 414:Stewart_toroid 407: 400: 398: 381: 374: 372: 359: 352: 349: 348: 305:vertex figures 296: 293: 265: 262: 253: 250: 249: 248: 243: 237: 230: 228: 223: 215: 208: 206: 200: 193: 191: 186: 178: 171: 169: 163: 156: 154: 147: 140: 136: 133: 115:For a regular 112: 109: 98:turning number 78: 75: 45:winding number 15: 13: 10: 9: 6: 4: 3: 2: 1108: 1097: 1094: 1093: 1091: 1079: 1078: 1073: 1070: 1065: 1064: 1060: 1055: 1049: 1045: 1041: 1036: 1033: 1029: 1025: 1021: 1017: 1013: 1009: 1005: 1001: 997: 993: 989: 987: 986:0-486-61480-8 983: 979: 978: 973: 972: 968: 958: 955: 951: 950: 943: 940: 936: 931: 928: 924: 923:0-486-40919-8 920: 916: 912: 908: 902: 899: 892: 890: 888: 884: 876: 871: 864: 862: 860: 856: 855:hemipolyhedra 848: 820: 816: 809: 804: 774: 770: 763: 758: 756: 754: 749: 736: 733: 730: 725: 721: 715: 712: 708: 702: 698: 694: 691: 688: 683: 679: 673: 670: 666: 660: 656: 647: 644: 637: 630: 625: 621: 617: 614: 610: 609: 606: 604: 599: 597: 593: 589: 585: 581: 573: 569: 568: 567: 562: 558: 551: 547: 528: 525: 522: 519: 514: 510: 506: 503: 500: 497: 492: 488: 480: 479: 478: 476: 469: 465: 464:vertex figure 458: 454: 450: 446: 442: 438: 434: 430: 429:Arthur Cayley 423: 415: 411: 404: 399: 393: 389: 385: 382:Density of a 378: 373: 367: 363: 356: 351: 346: 342: 338: 334: 330: 326: 325: 324: 322: 318: 314: 310: 306: 302: 294: 292: 290: 286: 281: 279: 275: 271: 263: 261: 259: 251: 241: 234: 229: 221: 218: 212: 207: 203: 197: 192: 184: 181: 175: 170: 166: 160: 155: 151: 144: 139: 134: 132: 130: 126: 122: 118: 110: 108: 105: 103: 99: 94: 92: 88: 84: 76: 74: 72: 68: 66: 61: 58: 54: 50: 46: 42: 38: 34: 26: 21: 1075: 1039: 999: 995: 975: 957: 948: 942: 930: 906: 901: 885:(called the 880: 852: 818: 772: 750: 648: 641: 600: 595: 591: 587: 577: 571: 560: 557:pentagrammic 549: 543: 474: 467: 456: 448: 444: 440: 432: 427: 412:, like this 409: 391: 361: 344: 340: 336: 332: 328: 320: 316: 301:simple faces 298: 282: 274:angle defect 267: 255: 183:tetradecagon 128: 124: 120: 117:star polygon 114: 106: 95: 82: 80: 69: 62: 36: 30: 883:4-polytopes 823:v=10, e=15, 643:Edmund Hess 102:turn angles 969:References 777:v=16, e=24 240:dodecagram 1096:Polytopes 1077:MathWorld 1016:0080-4614 949:Polyhedra 833:=2 {5/2}, 829:=5 {4}, f 783:=8 {4}, f 699:∑ 689:− 657:∑ 501:− 364:, like a 327:χ = 252:Polyhedra 238:Isotoxal 202:Heptagram 25:enneagram 1090:Category 915:99-35678 787:=2 {8/2} 455:, where 443:− 331:− 242:, {(6/5) 220:hexagram 217:Isotoxal 185:, {(7/2) 180:Isotoxal 135:Examples 77:Polygons 60:facets. 49:windings 33:geometry 1044:132–134 1032:0062446 433:density 289:squares 37:density 1050:  1030:  1022:  1014:  984:  921:  913:  789:with d 598:= −6. 343:= 2(1- 244:α 224:α 187:α 57:facets 35:, the 1024:91532 1020:JSTOR 893:Notes 839:=1, d 797:=2, d 793:=1, d 431:used 384:genus 313:genus 39:of a 1048:ISBN 1012:ISSN 982:ISBN 919:ISBN 911:LCCN 873:The 853:For 392:zero 366:cube 303:and 285:cube 258:dual 81:The 1004:doi 1000:246 843:=2. 801:=1. 390:is 362:one 339:= 2 323:. 315:is 31:In 1092:: 1074:. 1046:, 1028:MR 1026:, 1018:, 1010:, 998:, 917:, 841:f2 837:f1 795:f2 791:f1 594:+ 590:− 466:, 447:+ 410:-4 386:1 347:). 335:+ 93:. 1080:. 1006:: 835:d 831:2 827:1 825:f 821:. 819:2 799:v 785:2 781:1 779:f 773:2 737:D 734:2 731:= 726:i 722:f 716:i 713:f 709:d 703:i 695:+ 692:e 684:i 680:v 674:i 671:v 667:d 661:i 596:F 592:E 588:V 574:. 572:D 564:v 561:d 553:f 550:d 529:D 526:2 523:= 520:f 515:f 511:d 507:+ 504:e 498:v 493:v 489:d 475:D 471:f 468:d 460:v 457:d 449:F 445:E 441:V 439:( 416:: 368:. 345:g 341:D 337:F 333:E 329:V 321:g 317:g 129:q 125:q 123:/ 121:p 119:{

Index


enneagram
geometry
star polyhedron
winding number
windings
center of symmetry
facets
convex polyhedron
Tessellations with overlapping faces
simple polygons
Jordan curve theorem
turning number
turn angles
star polygon
A single-crossing polygon, like this equilateral pentagon, has density 0.
equilateral pentagon
Regular pentagon {5} has density 1.
Regular pentagon
Isotoxal tetradecagon, {(7/2)α}, has density 2, similar to regular {7/2}.
Isotoxal
tetradecagon
Heptagram {7/3} has density 3.
Heptagram
Isotoxal hexagram (compound) 2{(3/2)α} has density 4.
Isotoxal
hexagram
Isotoxal dodecagram, {(6/5)α}, has density 5, similar to regular {12/5}.
dodecagram
dual

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.