Knowledge (XXG)

Angular defect

Source 📝

904: 897: 858:
of vertices of a polyhedron by totaling the angles of all the faces, and adding the total defect. This total will have one complete circle for every vertex in the polyhedron. Care has to be taken to use the correct Euler characteristic for the polyhedron.
215:, the defect at a vertex equals 2π minus the sum of all the angles at the vertex (all the faces at the vertex are included). If a polyhedron is convex, then the defect of each vertex is always positive. If the sum of the angles exceeds a full 830:
to a sphere (i.e. topologically equivalent to a sphere, so that it may be deformed into a sphere by stretching without tearing), the "total defect", i.e. the sum of the defects of all of the vertices, is two full circles (or 720° or
850:
to the Euler characteristic. Here the Gaussian curvature is concentrated at the vertices: on the faces and edges the Gaussian curvature is zero and the integral of Gaussian curvature at a vertex is equal to the defect there.
104:
angles add up to 360°). However, on a convex polyhedron the angles at a vertex add up to less than 360°, on a spherical triangle the interior angles always add up to more than 180° (the exterior angles add up to
924:
is convex and the defects at each vertex are each positive. Now consider the same cube where the square pyramid goes into the cube: this is concave, but the defects remain the same and so are all positive.
768: 659: 550: 441: 250:
meet at each vertex) is 36°, or π/5 radians, or 1/10 of a circle. Each of the angles measures 108°; three of these meet at each vertex, so the defect is 360° − (108° + 108° + 108°) = 36°.
814: 705: 596: 487: 376: 330: 878:
It is tempting to think that every non-convex polyhedron must have some vertices whose defect is negative, but this need not be the case. Two counterexamples to this are the
178: 201: 149: 866:, according to which a metric space that is locally Euclidean except for a finite number of points of positive angular defect, adding to 4 863: 1032: 883: 879: 97: 724: 615: 506: 395: 109:
than 360°), and the angles in a hyperbolic triangle always add up to less than 180° (the exterior angles add up to
843: 125: 921: 17: 774: 665: 556: 447: 336: 903: 293: 896: 839: 152: 121: 82: 70: 1027: 847: 231: 117: 89: 1000: 956: 157: 826:
Descartes's theorem on the "total defect" of a polyhedron states that if the polyhedron is
183: 131: 227: 216: 52: 222:
The concept of defect extends to higher dimensions as the amount by which the sum of the
219:, as occurs in some vertices of many non-convex polyhedra, then the defect is negative. 984: 979: 917: 254: 223: 1021: 933: 827: 932:(negative curvature), whereas positive defect indicates that the vertex resembles a 1003: 929: 711: 243: 56: 602: 280: 382: 212: 1008: 838:
A generalization says the number of circles in the total defect equals the
51:
to add up to the expected amount of 360° or 180°, when such angles in the
870:, can be realized in a unique way as the surface of a convex polyhedron. 247: 28: 116:
In modern terms, the defect at a vertex is a discrete version of the
96:
In the Euclidean plane, angles about a point add up to 360°, while
912:
A counterexample which does not intersect itself is provided by a
48: 913: 493: 886:, which have twelve convex points each with positive defects. 985:
Euler's Gem: The Polyhedron Formula and the Birth of Topology
928:
Negative defect indicates that the vertex resembles a
777: 727: 668: 618: 559: 509: 450: 398: 339: 296: 186: 160: 134: 808: 762: 699: 653: 590: 544: 481: 435: 370: 324: 195: 172: 143: 842:of the polyhedron. This is a special case of the 253:The same procedure can be followed for the other 763:{\displaystyle {\pi \over 5}\ \ (36^{\circ })} 654:{\displaystyle {\pi \over 3}\ \ (60^{\circ })} 545:{\displaystyle {\pi \over 2}\ \ (90^{\circ })} 436:{\displaystyle {2\pi \over 3}\ (120^{\circ })} 242:The defect of any of the vertices of a regular 18:Descartes' theorem on total angular defect 835:radians). The polyhedron need not be convex. 8: 100:in a triangle add up to 180° (equivalently, 62:Classically the defect arises in two ways: 854:This can be used to calculate the number 797: 776: 751: 728: 726: 688: 667: 642: 619: 617: 579: 558: 533: 510: 508: 470: 449: 424: 399: 397: 359: 338: 313: 295: 185: 159: 133: 888: 259: 77:and the excess also arises in two ways: 949: 862:A converse to this theorem is given by 809:{\displaystyle 4\pi \ \ (720^{\circ })} 700:{\displaystyle 4\pi \ \ (720^{\circ })} 591:{\displaystyle 4\pi \ \ (720^{\circ })} 482:{\displaystyle 4\pi \ \ (720^{\circ })} 371:{\displaystyle 4\pi \ \ (720^{\circ })} 66:the defect of a vertex of a polyhedron; 874:Positive defects on non-convex figures 325:{\displaystyle \pi \ \ (180^{\circ })} 7: 961:Progymnasmata de solidorum elementis 988:, Princeton (2008), Pages 220–225. 846:which relates the integral of the 55:would. The opposite notion is the 25: 936:or minimum (positive curvature). 916:where one face is replaced by a 902: 895: 890:Polyhedra with positive defects 269:Polygons meeting at each vertex 864:Alexandrov's uniqueness theorem 180:, so the sum of the defects is 803: 790: 757: 744: 694: 681: 648: 635: 585: 572: 539: 526: 476: 463: 430: 417: 365: 352: 319: 306: 234:falls short of a full circle. 1: 128:gives the total curvature as 884:great stellated dodecahedron 880:small stellated dodecahedron 47:) means the failure of some 288:Three equilateral triangles 1049: 610:Five equilateral triangles 390:Four equilateral triangles 122:concentrated at that point 120:of the polyhedral surface 922:elongated square pyramid 246:(in which three regular 821: 719:Three regular pentagons 173:{\displaystyle \chi =2} 810: 764: 701: 655: 592: 546: 483: 437: 372: 326: 272:Defect at each vertex 197: 174: 145: 967:, vol. X, pp. 265–276 811: 765: 702: 656: 593: 547: 484: 438: 373: 327: 198: 196:{\displaystyle 4\pi } 175: 146: 144:{\displaystyle 2\pi } 965:Oeuvres de Descartes 844:Gauss–Bonnet theorem 840:Euler characteristic 775: 725: 666: 616: 557: 507: 448: 396: 337: 294: 184: 158: 153:Euler characteristic 132: 126:Gauss–Bonnet theorem 1033:Hyperbolic geometry 891: 822:Descartes's theorem 266:Number of vertices 83:toroidal polyhedron 71:hyperbolic triangle 1001:Weisstein, Eric W. 889: 848:Gaussian curvature 806: 760: 697: 651: 588: 542: 479: 433: 368: 322: 207:Defect of a vertex 193: 170: 141: 90:spherical triangle 910: 909: 819: 818: 789: 786: 743: 740: 736: 680: 677: 634: 631: 627: 571: 568: 525: 522: 518: 462: 459: 416: 412: 351: 348: 305: 302: 16:(Redirected from 1040: 1014: 1013: 1004:"Angular defect" 968: 954: 906: 899: 892: 869: 834: 815: 813: 812: 807: 802: 801: 787: 784: 769: 767: 766: 761: 756: 755: 741: 738: 737: 729: 706: 704: 703: 698: 693: 692: 678: 675: 660: 658: 657: 652: 647: 646: 632: 629: 628: 620: 597: 595: 594: 589: 584: 583: 569: 566: 551: 549: 548: 543: 538: 537: 523: 520: 519: 511: 488: 486: 485: 480: 475: 474: 460: 457: 442: 440: 439: 434: 429: 428: 414: 413: 408: 400: 377: 375: 374: 369: 364: 363: 349: 346: 331: 329: 328: 323: 318: 317: 303: 300: 260: 202: 200: 199: 194: 179: 177: 176: 171: 150: 148: 147: 142: 88:the excess of a 81:the excess of a 69:the defect of a 21: 1048: 1047: 1043: 1042: 1041: 1039: 1038: 1037: 1018: 1017: 999: 998: 995: 976: 971: 957:Descartes, René 955: 951: 947: 942: 876: 867: 832: 824: 793: 773: 772: 747: 723: 722: 684: 664: 663: 638: 614: 613: 575: 555: 554: 529: 505: 504: 466: 446: 445: 420: 401: 394: 393: 355: 335: 334: 309: 292: 291: 255:Platonic solids 240: 224:dihedral angles 209: 182: 181: 156: 155: 130: 129: 98:interior angles 53:Euclidean plane 23: 22: 15: 12: 11: 5: 1046: 1044: 1036: 1035: 1030: 1020: 1019: 1016: 1015: 994: 993:External links 991: 990: 989: 975: 972: 970: 969: 948: 946: 943: 941: 938: 918:square pyramid 908: 907: 900: 875: 872: 823: 820: 817: 816: 805: 800: 796: 792: 783: 780: 770: 759: 754: 750: 746: 735: 732: 720: 717: 714: 708: 707: 696: 691: 687: 683: 674: 671: 661: 650: 645: 641: 637: 626: 623: 611: 608: 605: 599: 598: 587: 582: 578: 574: 565: 562: 552: 541: 536: 532: 528: 517: 514: 502: 499: 496: 490: 489: 478: 473: 469: 465: 456: 453: 443: 432: 427: 423: 419: 411: 407: 404: 391: 388: 385: 379: 378: 367: 362: 358: 354: 345: 342: 332: 321: 316: 312: 308: 299: 289: 286: 283: 277: 276: 273: 270: 267: 264: 239: 236: 208: 205: 192: 189: 169: 166: 163: 140: 137: 94: 93: 86: 75: 74: 67: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1045: 1034: 1031: 1029: 1026: 1025: 1023: 1011: 1010: 1005: 1002: 997: 996: 992: 987: 986: 981: 978: 977: 973: 966: 962: 958: 953: 950: 944: 939: 937: 935: 934:local maximum 931: 926: 923: 919: 915: 905: 901: 898: 894: 893: 887: 885: 881: 873: 871: 865: 860: 857: 852: 849: 845: 841: 836: 829: 798: 794: 781: 778: 771: 752: 748: 733: 730: 721: 718: 715: 713: 710: 709: 689: 685: 672: 669: 662: 643: 639: 624: 621: 612: 609: 606: 604: 601: 600: 580: 576: 563: 560: 553: 534: 530: 515: 512: 503: 501:Three squares 500: 497: 495: 492: 491: 471: 467: 454: 451: 444: 425: 421: 409: 405: 402: 392: 389: 386: 384: 381: 380: 360: 356: 343: 340: 333: 314: 310: 297: 290: 287: 284: 282: 279: 278: 275:Total defect 274: 271: 268: 265: 262: 261: 258: 256: 251: 249: 245: 237: 235: 233: 229: 225: 220: 218: 214: 206: 204: 190: 187: 167: 164: 161: 154: 138: 135: 127: 123: 119: 114: 112: 108: 103: 99: 91: 87: 84: 80: 79: 78: 72: 68: 65: 64: 63: 60: 58: 54: 50: 46: 42: 38: 34: 30: 19: 1007: 983: 980:Richeson, D. 974:Bibliography 964: 960: 952: 930:saddle point 927: 911: 877: 861: 855: 853: 837: 828:homeomorphic 825: 712:dodecahedron 252: 244:dodecahedron 241: 221: 210: 115: 113:than 360°). 110: 106: 101: 95: 76: 61: 44: 40: 36: 32: 26: 603:icosahedron 281:tetrahedron 1022:Categories 940:References 383:octahedron 213:polyhedron 151:times the 124:, and the 45:deficiency 1028:Polyhedra 1009:MathWorld 799:∘ 782:π 753:∘ 731:π 690:∘ 673:π 644:∘ 622:π 581:∘ 564:π 535:∘ 513:π 472:∘ 455:π 426:∘ 406:π 361:∘ 344:π 315:∘ 298:π 248:pentagons 191:π 162:χ 139:π 118:curvature 882:and the 238:Examples 102:exterior 29:geometry 920:: this 226:of the 41:deficit 33:angular 31:, the ( 788:  785:  742:  739:  679:  676:  633:  630:  570:  567:  524:  521:  461:  458:  415:  350:  347:  304:  301:  263:Shape 211:For a 57:excess 49:angles 37:defect 963:, in 945:Notes 230:at a 228:cells 914:cube 494:cube 232:peak 217:turn 111:more 107:less 39:(or 795:720 686:720 577:720 468:720 422:120 357:720 311:180 43:or 27:In 1024:: 1006:. 982:; 959:, 749:36 716:20 640:60 607:12 531:90 257:: 203:. 59:. 35:) 1012:. 868:π 856:V 833:π 831:4 804:) 791:( 779:4 758:) 745:( 734:5 695:) 682:( 670:4 649:) 636:( 625:3 586:) 573:( 561:4 540:) 527:( 516:2 498:8 477:) 464:( 452:4 431:) 418:( 410:3 403:2 387:6 366:) 353:( 341:4 320:) 307:( 285:4 188:4 168:2 165:= 136:2 92:; 85:. 73:; 20:)

Index

Descartes' theorem on total angular defect
geometry
angles
Euclidean plane
excess
hyperbolic triangle
toroidal polyhedron
spherical triangle
interior angles
curvature
concentrated at that point
Gauss–Bonnet theorem
Euler characteristic
polyhedron
turn
dihedral angles
cells
peak
dodecahedron
pentagons
Platonic solids
tetrahedron
octahedron
cube
icosahedron
dodecahedron
homeomorphic
Euler characteristic
Gauss–Bonnet theorem
Gaussian curvature

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.