Knowledge

Descriptive complexity theory

Source đź“ť

116:. Usually the input is either a string (of bits or over an alphabet) and the elements of the logical structure represent positions of the string, or the input is a graph and the elements of the logical structure represent its vertices. The length of the input will be measured by the size of the respective structure. Whatever the structure is, we can assume that there are relations that can be tested, for example " 759:
such that the first-order quantifiers are universal and the quantifier-free part of the formula is in Krom form, which means that the first-order formula is a conjunction of disjunctions, and in each "disjunction" there are at most two variables. Every second-order Krom formula is equivalent to an
870:
Unlike most other characterisations of complexity classes, Fagin's theorem and its generalisation do not presuppose a total ordering on the structures. This is because existential second-order logic is itself sufficiently expressive to refer to the possible total orders on a structure using
50:. This connection between complexity and the logic of finite structures allows results to be transferred easily from one area to the other, facilitating new proof methods and providing additional evidence that the main complexity classes are somehow "natural" and not tied to the specific 192:
th letter of the string is 1." These relations are the predicates for the first-order logic system. We also have constants, which are special elements of the respective structure, for example if we want to check reachability in a graph, we will have to choose two constants
2353: 2198: 1286: 1100:. They are usually written in upper-case and with a natural number as exponent to indicate the order. Higher-order logic is the set of first-order formulae where we add quantification over higher-order variables; hence we will use the terms defined in the 787:
FO is the extension of first-order logic by a least fixed-point operator, which expresses the fixed-point of a monotone expression. This augments first-order logic with the ability to express recursion. The Immerman–Vardi theorem, shown independently by
1999: 848:
Ronald Fagin's 1974 proof that the complexity class NP was characterised exactly by those classes of structures axiomatizable in existential second-order logic was the starting point of descriptive complexity theory.
909:
Second-order logic can be extended by a transitive closure operator in the same way as first-order logic, resulting in SO. The TC operator can now also take second-order variables as argument. SO characterises
1758: 204:
In descriptive complexity theory we often assume that there is a total order over the elements and that we can check equality between elements. This lets us consider elements as numbers: the element
1658: 2217: 2084: 1187: 859:. More precisely, we have the following generalisation of Fagin's theorem: The set of formulae in prenex normal form where existential and universal quantifiers of second order alternate 1343: 1377: 1571: 655: 894:, FO, is the extension of first-order logic with a partial fixed-point operator, which expresses the fixed-point of a formula if there is one and returns 'false' otherwise. 456: 371: 717:
First-order logic gains substantially in expressive power when it is augmented with an operator that computes the transitive closure of a binary relation. The resulting
1488: 1428: 1182: 313: 1028: 675: 272: 149: 2058: 2031: 695: 488: 403: 242: 1131: 186: 1871: 1514: 1098: 994: 2078: 1845: 1825: 1798: 1778: 1468: 1448: 1397: 1306: 1151: 1068: 1048: 968: 852:
Since the complement of an existential formula is a universal formula, it follows immediately that co-NP is characterized by universal second-order logic.
1888: 498:
If we restrict ourselves to ordered structures with a successor relation and basic arithmetical predicates, then we get the following characterisations:
701:. First-order logic in a signature with arithmetical predicates characterises the restriction of the AC family of circuits to those constructible in 3026: 112:
When we use the logic formalism to describe a computational problem, the input is a finite structure, and the elements of that structure are the
2523: 806:
states that FO=FO on all structures if and only if FO=FO; hence if and only if P=PSPACE. This result has been extended to other fixpoints.
1663: 2719: 2981: 2860: 2571: 2405: 46:, the union of all complexity classes in the polynomial hierarchy, is precisely the class of languages expressible by statements of 510: 3021: 23: 2348:{\displaystyle {\mathsf {HO}}_{j}^{i}={\color {Blue}{\mathsf {NTIME}}}(\exp _{2}^{i-2}(n^{O(1)})^{\Sigma _{j}^{\mathsf {P}}})} 1576: 3031: 914:. Since ordering can be referenced in second-order logic, this characterisation does not presuppose ordered structures. 2193:{\displaystyle \exists {\mathsf {SO}}={\mathsf {HO}}_{0}^{2}={\mathsf {NTIME}}(n^{O(1)})={\color {Blue}{\mathsf {NP}}}} 1281:{\displaystyle \phi =\exists {\overline {X_{1}^{i}}}\forall {\overline {X_{2}^{i}}}\dots Q{\overline {X_{j}^{i}}}\psi } 803: 2442:
Fagin, Ron (1974). "Generalized first-order spectra and polynomial-time recognizable sets". In Karp, Richard (ed.).
509:, the languages recognized by polynomial-size circuits of bounded depth, which equals the languages recognized by a 2610: 891: 825:
form, which means that it is a big AND of OR, and in each "OR" every variable except possibly one are negated.
718: 89: 2663: 888:, can be characterised by augmenting first-order logic with a more expressive partial fixed-point operator. 818: 799:
As of 2022, it is still open whether there is a natural logic characterising PTIME on unordered structures.
772: 756: 1827:
th is equivalent to a formula in prenex normal form, where we first write quantification over variable of
2697: 1311: 821:
such that the first-order quantifiers are all universal and the quantifier-free part of the formula is in
97: 93: 1348: 1526: 814:
In the presence of a successor function, PTIME can also be characterised by second-order Horn formulae.
66: 634: 2210: 856: 2702: 113: 27: 408: 2866: 2725: 2499: 2472: 2390:. Leibniz International Proceedings in Informatics (LIPIcs). Vol. 138. pp. 31:1–31:15. 947: 939: 706: 620: 599: 574: 528: 517: 326: 85: 62: 47: 3005: 2759: 2202: 73: 631:
hierarchy. Indeed, there is a natural translation from FO's symbols to nodes of circuits, with
2987: 2977: 2948: 2907: 2856: 2794: 2755: 2715: 2627: 2577: 2567: 2542: 2491: 2401: 1473: 1402: 1156: 943: 733: 585: 539: 502: 277: 835:
Those formulae can be transformed to prenex formulas in existential second-order Horn logic.
2938: 2897: 2848: 2784: 2707: 2692:
Vardi, Moshe Y. (1982). "The complexity of relational query languages (Extended Abstract)".
2672: 2619: 2532: 2481: 2391: 1007: 935: 660: 251: 119: 51: 31: 2036: 2004: 748:
On structures that have a successor function, NL can also be characterised by second-order
680: 461: 376: 215: 2081: 1110: 1101: 923: 722: 705:. First-order logic in a signature with only the order relation corresponds to the set of 702: 628: 595: 567: 563: 550: 532: 162: 81: 65:
expressible in it. The queries – when restricted to finite structures – correspond to the
43: 39: 1850: 1493: 1077: 973: 556:
Universal second-order logic (excluding existential second-order quantification) yields
2743: 2206: 2063: 1830: 1810: 1783: 1763: 1453: 1433: 1382: 1291: 1136: 1053: 1033: 953: 829: 737: 543: 521: 58: 2902: 2885: 2677: 2658: 2385: 3015: 2870: 2789: 2772: 789: 726: 2694:
Proceedings of the fourteenth annual ACM symposium on Theory of computing - STOC '82
2503: 2747: 2729: 1994:{\displaystyle {\mathsf {HO}}_{0}^{i}={\mathsf {NTIME}}(\exp _{2}^{i-2}(n^{O(1)}))} 749: 77: 323:
is 1. (We can replace addition and multiplication by ternary relations such that
2845:[1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science 2396: 822: 793: 2754:
Journal of the ACM archive, Volume 44, Issue 1 (January 1997), Pages: 30-56,
2751: 2943: 2926: 2537: 2518: 1882: 927: 755:
SO-Krom is the set of boolean queries definable with second-order formulae in
603: 2991: 2952: 2911: 2840: 2798: 2631: 2581: 2546: 2495: 2852: 1520: 2711: 2486: 2467: 970:
th order and non-deterministic algorithms the time of which is bounded by
623:, first-order logic with arbitrary predicates can be shown to be equal to 84:
is precisely the set of languages expressible by sentences of existential
589: 274:. Thanks to this we also may have the primitive predicate "bit", where 2971: 2841:"Fixpoint extensions of first-order logic and datalog-like languages" 2605: 2561: 911: 898: 885: 578: 101: 2623: 2468:"Fixpoint logics, relational machines, and computational complexity" 817:
SO-Horn is the set of boolean queries definable with SO formulae in
729:
to show that NL is closed under complement (i. e. that NL = co-NL).
2752:
Fixpoint logics, relational machines, and computational complexity
2214: 1071: 776: 763:
SO-Krom characterises NL on structures with a successor function.
557: 35: 2773:"Capturing complexity classes by fragments of second-order logic" 1753:{\displaystyle \exp _{2}^{i+1}(x)=2^{2^{2^{2^{\dots ^{2^{x}}}}}}} 950:
with higher-order quantifiers. There is a relation between the
104:. Many other classes were later characterized in such a manner. 2466:
Abiteboul, Serge; Vardi, Moshe Y.; Vianu, Victor (1997-01-15).
624: 535:, the problems solvable in nondeterministic logarithmic space. 506: 516:
First-order logic augmented with symmetric or deterministic
2937:(2). Essex, UK: Elsevier Science Publishers Ltd.: 197–214. 2531:(2). Essex, UK: Elsevier Science Publishers Ltd.: 197–214. 796:, shows that FO characterises PTIME on ordered structures. 2886:"On static logics, dynamic logics, and complexity classes" 884:
The class of all problems computable in polynomial space,
546:, the problems solvable in deterministic polynomial time. 2606:"Nondeterministic Space is Closed under Complementation" 1653:{\displaystyle \exp _{2}^{i+1}(x)=2^{\exp _{2}^{i}(x)}} 1133:
is the set of formulae with variables of order at most
2370: 2368: 1004:
We define higher-order variables. A variable of order
2220: 2087: 2066: 2039: 2007: 1891: 1853: 1833: 1813: 1786: 1766: 1666: 1579: 1529: 1496: 1476: 1456: 1436: 1405: 1385: 1351: 1314: 1294: 1190: 1159: 1139: 1113: 1080: 1056: 1036: 1010: 976: 956: 855:
SO, unrestricted second-order logic, is equal to the
683: 663: 637: 464: 411: 379: 329: 280: 254: 218: 165: 122: 938:
of structures that can be recognized by formulas of
732:
When restricting the transitive closure operator to
72:
The first main result of descriptive complexity was
494:
Overview of characterisations of complexity classes
2659:"Relational queries computable in polynomial time" 2347: 2192: 2072: 2052: 2025: 1993: 1865: 1839: 1819: 1792: 1772: 1752: 1652: 1565: 1508: 1482: 1462: 1442: 1422: 1391: 1371: 1337: 1300: 1280: 1176: 1145: 1125: 1092: 1062: 1042: 1022: 988: 962: 689: 669: 649: 482: 450: 397: 365: 307: 266: 236: 180: 143: 2925:Hella, Lauri; Turull-Torres, JosĂ© MarĂ­a (2006). 2517:Hella, Lauri; Turull-Torres, JosĂ© MarĂ­a (2006). 930:of elementary functions can be characterised by 159:" (in case of the structure being a graph), or " 2080:is a constant. A special case of this is that 1885:of elementary functions. To be more precise, 151:is true if and only if there is an edge from 8: 2927:"Computing queries with higher-order logics" 2696:. New York, NY, USA: ACM. pp. 137–146. 2519:"Computing queries with higher-order logics" 736:, the resulting logic exactly characterises 592:, the problems solvable in exponential time. 581:, the problems solvable in polynomial space. 3006:Neil Immerman's descriptive complexity page 2847:. IEEE Comput. Soc. Press. pp. 71–79. 2384:Grädel, Erich; Schalthöfer, Svenja (2019). 2942: 2901: 2788: 2701: 2676: 2536: 2485: 2395: 2333: 2332: 2327: 2322: 2303: 2281: 2276: 2249: 2248: 2246: 2237: 2232: 2223: 2222: 2219: 2179: 2178: 2176: 2155: 2130: 2129: 2120: 2115: 2106: 2105: 2092: 2091: 2086: 2065: 2044: 2038: 2006: 1970: 1948: 1943: 1918: 1917: 1908: 1903: 1894: 1893: 1890: 1852: 1832: 1812: 1785: 1765: 1734: 1729: 1722: 1717: 1712: 1707: 1676: 1671: 1665: 1630: 1625: 1620: 1589: 1584: 1578: 1539: 1534: 1528: 1495: 1475: 1455: 1435: 1414: 1409: 1404: 1384: 1358: 1352: 1350: 1324: 1318: 1313: 1293: 1264: 1259: 1253: 1236: 1231: 1225: 1211: 1206: 1200: 1189: 1168: 1163: 1158: 1138: 1117: 1112: 1079: 1055: 1035: 1009: 975: 955: 832:on structures with a successor function. 682: 662: 636: 524:, problems solvable in logarithmic space. 463: 410: 378: 328: 279: 253: 217: 164: 121: 942:. Higher-order logic is an extension of 897:Partial fixed-point logic characterises 725:on ordered structures. This was used by 723:non-deterministic logarithmic space (NL) 88:; that is, second-order logic excluding 2364: 760:existential second-order Krom formula. 2334: 2262: 2259: 2256: 2253: 2250: 2227: 2224: 2183: 2180: 2143: 2140: 2137: 2134: 2131: 2110: 2107: 2096: 2093: 1931: 1928: 1925: 1922: 1919: 1898: 1895: 1184:is the subset of formulae of the form 867:th level of the polynomial hierarchy. 549:Existential second-order logic yields 2643: 2641: 2247: 2177: 1847:th order and then a formula of order 1450:alternations of quantifiers of order 1104:article without defining them again. 7: 2437: 2435: 2433: 2423: 2421: 2419: 2417: 1338:{\displaystyle Q{\overline {X^{i}}}} 2884:Harel, D.; Peleg, D. (1984-01-01). 1519:Using the standard notation of the 1399:with the same quantification. So HO 1372:{\displaystyle {\overline {X^{i}}}} 783:First-order least fixed-point logic 771:On ordered structures, first-order 2324: 2088: 1566:{\displaystyle \exp _{2}^{0}(x)=x} 1477: 1222: 1197: 644: 638: 598:, the complexity class defined by 319:th bit of the binary expansion of 69:of traditional complexity theory. 14: 2839:Abiteboul, S.; Vianu, V. (1989). 1490:, followed by a formula of order 1379:is a tuple of variable of order 839:Non-deterministic polynomial time 650:{\displaystyle \forall ,\exists } 734:deterministic transitive closure 511:concurrent random access machine 3027:Computational complexity theory 24:computational complexity theory 2342: 2319: 2313: 2307: 2296: 2269: 2170: 2165: 2159: 2148: 2020: 2008: 1988: 1985: 1980: 1974: 1963: 1936: 1877:Relation to complexity classes 1697: 1691: 1645: 1639: 1610: 1604: 1554: 1548: 445: 427: 360: 342: 302: 290: 231: 219: 175: 169: 138: 126: 1: 2903:10.1016/S0019-9958(84)80023-6 2678:10.1016/s0019-9958(86)80029-8 880:Partial fixed point is PSPACE 80:in 1974. It established that 2931:Theoretical Computer Science 2790:10.1016/0304-3975(92)90149-A 2777:Theoretical Computer Science 2771:Grädel, Erich (1992-07-13). 2560:Robert., McNaughton (1971). 2524:Theoretical Computer Science 2387:Choiceless Logarithmic Space 1430:is the set of formulae with 1364: 1330: 1270: 1242: 1217: 905:Transitive closure is PSPACE 703:alternating logarithmic time 577:(commutative or not) yields 451:{\displaystyle times(x,y,z)} 16:Branch of mathematical logic 2397:10.4230/LIPICS.MFCS.2019.31 568:the polynomial hierarchy PH 366:{\displaystyle plus(x,y,z)} 188:is true if and only if the 3048: 1050:and represents any set of 810:Second-order Horn formulae 744:Second-order Krom formulae 584:Second-order logic with a 573:Second-order logic with a 2944:10.1016/j.tcs.2006.01.009 2611:SIAM Journal on Computing 2538:10.1016/j.tcs.2006.01.009 2444:Complexity of Computation 1881:HO is equal to the class 892:Partial fixed-point logic 721:is known to characterise 627:, the first class in the 538:First-order logic with a 527:First-order logic with a 212:if and only if there are 1483:{\displaystyle \exists } 1423:{\displaystyle _{j}^{i}} 1177:{\displaystyle _{j}^{i}} 996:levels of exponentials. 871:second-order variables. 719:transitive closure logic 713:Transitive closure logic 615:FO without any operators 308:{\displaystyle bit(x,k)} 90:universal quantification 2970:Immerman, Neil (1999). 2890:Information and Control 2853:10.1109/lics.1989.39160 2664:Information and Control 2657:Immerman, Neil (1986). 2647:Immerman 1999, p. 153–4 2604:Immerman, Neil (1988). 1807:Every formula of order 901:on ordered structures. 863:times characterise the 857:Polynomial hierarchy PH 843: 828:This class is equal to 819:disjunctive normal form 804:Abiteboul–Vianu theorem 773:least fixed-point logic 757:conjunctive normal form 740:on ordered structures. 458:is true if and only if 373:is true if and only if 3022:Descriptive complexity 2973:Descriptive complexity 2349: 2194: 2074: 2054: 2027: 1995: 1867: 1841: 1821: 1794: 1774: 1754: 1654: 1567: 1510: 1484: 1464: 1444: 1424: 1393: 1373: 1339: 1302: 1282: 1178: 1147: 1127: 1094: 1064: 1044: 1024: 1023:{\displaystyle i>1} 990: 964: 691: 671: 670:{\displaystyle \land } 651: 484: 452: 399: 367: 309: 268: 267:{\displaystyle y<x} 238: 208:represents the number 182: 145: 144:{\displaystyle E(x,y)} 67:computational problems 42:in them. For example, 38:needed to express the 20:Descriptive complexity 3008:, including a diagram 2829:Immerman 1999, p. 181 2820:Immerman 1999, p. 121 2811:Immerman 1999, p. 115 2712:10.1145/800070.802186 2563:Counter-free automata 2487:10.1145/256292.256295 2456:Immerman 1999, p. 243 2427:Immerman 1999, p. 242 2350: 2195: 2075: 2055: 2053:{\displaystyle n^{c}} 2028: 2026:{\displaystyle (i-2)} 2001:, meaning a tower of 1996: 1868: 1842: 1822: 1795: 1775: 1755: 1655: 1568: 1511: 1485: 1465: 1445: 1425: 1394: 1374: 1340: 1303: 1283: 1179: 1148: 1128: 1095: 1074:of elements of order 1065: 1045: 1025: 991: 965: 692: 690:{\displaystyle \lor } 672: 652: 566:logic corresponds to 485: 483:{\displaystyle x*y=z} 453: 400: 398:{\displaystyle x+y=z} 368: 310: 269: 239: 237:{\displaystyle (n-1)} 183: 146: 54:used to define them. 2594:Immerman 1999, p. 22 2374:Immerman 1999, p. 86 2218: 2211:polynomial hierarchy 2085: 2064: 2037: 2005: 1889: 1851: 1831: 1811: 1784: 1764: 1664: 1577: 1527: 1494: 1474: 1454: 1434: 1403: 1383: 1349: 1312: 1308:is a quantifier and 1292: 1188: 1157: 1137: 1126:{\displaystyle ^{i}} 1111: 1078: 1054: 1034: 1008: 974: 954: 918:Elementary functions 681: 661: 635: 462: 409: 377: 327: 315:is true if only the 278: 252: 216: 181:{\displaystyle P(n)} 163: 120: 3032:Finite model theory 2339: 2292: 2242: 2201:, which is exactly 2125: 1959: 1913: 1866:{\displaystyle i-1} 1687: 1635: 1600: 1544: 1509:{\displaystyle i-1} 1419: 1269: 1241: 1216: 1173: 1093:{\displaystyle i-1} 989:{\displaystyle i-1} 707:star-free languages 610:Sub-polynomial time 114:domain of discourse 57:Specifically, each 30:that characterizes 28:finite model theory 2473:Journal of the ACM 2345: 2323: 2272: 2267: 2221: 2190: 2188: 2104: 2070: 2050: 2023: 1991: 1939: 1892: 1863: 1837: 1817: 1790: 1770: 1750: 1667: 1650: 1621: 1580: 1563: 1530: 1506: 1480: 1460: 1440: 1420: 1406: 1389: 1369: 1335: 1298: 1278: 1255: 1227: 1202: 1174: 1160: 1143: 1123: 1090: 1060: 1040: 1020: 986: 960: 948:second-order logic 940:higher-order logic 687: 667: 647: 621:circuit complexity 600:higher-order logic 575:transitive closure 529:transitive closure 518:transitive closure 505:defines the class 480: 448: 395: 363: 305: 264: 234: 178: 141: 86:second-order logic 61:produces a set of 48:second-order logic 32:complexity classes 2742:Serge Abiteboul, 2446:. pp. 43–73. 2073:{\displaystyle c} 1840:{\displaystyle i} 1820:{\displaystyle i} 1793:{\displaystyle 2} 1773:{\displaystyle i} 1470:, beginning with 1463:{\displaystyle i} 1443:{\displaystyle j} 1392:{\displaystyle i} 1367: 1333: 1301:{\displaystyle Q} 1273: 1245: 1220: 1146:{\displaystyle i} 1063:{\displaystyle k} 1043:{\displaystyle k} 963:{\displaystyle i} 944:first-order logic 738:logarithmic space 586:least fixed point 540:least fixed point 513:in constant time. 503:First-order logic 52:abstract machines 3039: 2995: 2957: 2956: 2946: 2922: 2916: 2915: 2905: 2881: 2875: 2874: 2836: 2830: 2827: 2821: 2818: 2812: 2809: 2803: 2802: 2792: 2768: 2762: 2740: 2734: 2733: 2705: 2689: 2683: 2682: 2680: 2654: 2648: 2645: 2636: 2635: 2601: 2595: 2592: 2586: 2585: 2566:. M.I.T. Press. 2557: 2551: 2550: 2540: 2514: 2508: 2507: 2489: 2463: 2457: 2454: 2448: 2447: 2439: 2428: 2425: 2412: 2411: 2399: 2381: 2375: 2372: 2354: 2352: 2351: 2346: 2341: 2340: 2338: 2337: 2331: 2317: 2316: 2291: 2280: 2268: 2266: 2265: 2241: 2236: 2231: 2230: 2199: 2197: 2196: 2191: 2189: 2187: 2186: 2169: 2168: 2147: 2146: 2124: 2119: 2114: 2113: 2100: 2099: 2079: 2077: 2076: 2071: 2059: 2057: 2056: 2051: 2049: 2048: 2033:2s, ending with 2032: 2030: 2029: 2024: 2000: 1998: 1997: 1992: 1984: 1983: 1958: 1947: 1935: 1934: 1912: 1907: 1902: 1901: 1873:in normal form. 1872: 1870: 1869: 1864: 1846: 1844: 1843: 1838: 1826: 1824: 1823: 1818: 1799: 1797: 1796: 1791: 1779: 1777: 1776: 1771: 1759: 1757: 1756: 1751: 1749: 1748: 1747: 1746: 1745: 1744: 1743: 1742: 1741: 1740: 1739: 1738: 1686: 1675: 1659: 1657: 1656: 1651: 1649: 1648: 1634: 1629: 1599: 1588: 1572: 1570: 1569: 1564: 1543: 1538: 1515: 1513: 1512: 1507: 1489: 1487: 1486: 1481: 1469: 1467: 1466: 1461: 1449: 1447: 1446: 1441: 1429: 1427: 1426: 1421: 1418: 1413: 1398: 1396: 1395: 1390: 1378: 1376: 1375: 1370: 1368: 1363: 1362: 1353: 1344: 1342: 1341: 1336: 1334: 1329: 1328: 1319: 1307: 1305: 1304: 1299: 1287: 1285: 1284: 1279: 1274: 1268: 1263: 1254: 1246: 1240: 1235: 1226: 1221: 1215: 1210: 1201: 1183: 1181: 1180: 1175: 1172: 1167: 1152: 1150: 1149: 1144: 1132: 1130: 1129: 1124: 1122: 1121: 1099: 1097: 1096: 1091: 1069: 1067: 1066: 1061: 1049: 1047: 1046: 1041: 1029: 1027: 1026: 1021: 995: 993: 992: 987: 969: 967: 966: 961: 936:complexity class 700: 696: 694: 693: 688: 676: 674: 673: 668: 656: 654: 653: 648: 531:operator yields 520:operators yield 489: 487: 486: 481: 457: 455: 454: 449: 404: 402: 401: 396: 372: 370: 369: 364: 322: 318: 314: 312: 311: 306: 273: 271: 270: 265: 247: 243: 241: 240: 235: 211: 207: 191: 187: 185: 184: 179: 158: 154: 150: 148: 147: 142: 3047: 3046: 3042: 3041: 3040: 3038: 3037: 3036: 3012: 3011: 3002: 2984: 2969: 2966: 2961: 2960: 2924: 2923: 2919: 2883: 2882: 2878: 2863: 2838: 2837: 2833: 2828: 2824: 2819: 2815: 2810: 2806: 2770: 2769: 2765: 2741: 2737: 2722: 2703:10.1.1.331.6045 2691: 2690: 2686: 2671:(1–3): 86–104. 2656: 2655: 2651: 2646: 2639: 2624:10.1137/0217058 2603: 2602: 2598: 2593: 2589: 2574: 2559: 2558: 2554: 2516: 2515: 2511: 2465: 2464: 2460: 2455: 2451: 2441: 2440: 2431: 2426: 2415: 2408: 2383: 2382: 2378: 2373: 2366: 2361: 2318: 2299: 2216: 2215: 2207:oracle machines 2203:Fagin's theorem 2151: 2083: 2082: 2062: 2061: 2040: 2035: 2034: 2003: 2002: 1966: 1887: 1886: 1879: 1849: 1848: 1829: 1828: 1809: 1808: 1805: 1782: 1781: 1762: 1761: 1730: 1726: 1718: 1713: 1708: 1703: 1662: 1661: 1616: 1575: 1574: 1525: 1524: 1492: 1491: 1472: 1471: 1452: 1451: 1432: 1431: 1401: 1400: 1381: 1380: 1354: 1347: 1346: 1320: 1310: 1309: 1290: 1289: 1186: 1185: 1155: 1154: 1135: 1134: 1114: 1109: 1108: 1076: 1075: 1052: 1051: 1032: 1031: 1006: 1005: 1002: 972: 971: 952: 951: 924:time complexity 920: 907: 882: 877: 846: 844:Fagin's theorem 841: 812: 785: 769: 767:Polynomial time 746: 715: 698: 679: 678: 659: 658: 633: 632: 617: 612: 588:operator gives 542:operator gives 496: 460: 459: 407: 406: 375: 374: 325: 324: 320: 316: 276: 275: 250: 249: 245: 214: 213: 209: 205: 189: 161: 160: 156: 152: 118: 117: 110: 74:Fagin's theorem 34:by the type of 22:is a branch of 17: 12: 11: 5: 3045: 3043: 3035: 3034: 3029: 3024: 3014: 3013: 3010: 3009: 3001: 3000:External links 2998: 2997: 2996: 2982: 2965: 2962: 2959: 2958: 2917: 2876: 2861: 2831: 2822: 2813: 2804: 2763: 2744:Moshe Y. Vardi 2735: 2721:978-0897910705 2720: 2684: 2649: 2637: 2618:(5): 935–938. 2596: 2587: 2572: 2552: 2509: 2458: 2449: 2429: 2413: 2406: 2376: 2363: 2362: 2360: 2357: 2344: 2336: 2330: 2326: 2321: 2315: 2312: 2309: 2306: 2302: 2298: 2295: 2290: 2287: 2284: 2279: 2275: 2271: 2264: 2261: 2258: 2255: 2252: 2245: 2240: 2235: 2229: 2226: 2185: 2182: 2175: 2172: 2167: 2164: 2161: 2158: 2154: 2150: 2145: 2142: 2139: 2136: 2133: 2128: 2123: 2118: 2112: 2109: 2103: 2098: 2095: 2090: 2069: 2047: 2043: 2022: 2019: 2016: 2013: 2010: 1990: 1987: 1982: 1979: 1976: 1973: 1969: 1965: 1962: 1957: 1954: 1951: 1946: 1942: 1938: 1933: 1930: 1927: 1924: 1921: 1916: 1911: 1906: 1900: 1897: 1878: 1875: 1862: 1859: 1856: 1836: 1816: 1804: 1801: 1789: 1769: 1737: 1733: 1728: 1725: 1721: 1716: 1711: 1706: 1702: 1699: 1696: 1693: 1690: 1685: 1682: 1679: 1674: 1670: 1647: 1644: 1641: 1638: 1633: 1628: 1624: 1619: 1615: 1612: 1609: 1606: 1603: 1598: 1595: 1592: 1587: 1583: 1562: 1559: 1556: 1553: 1550: 1547: 1542: 1537: 1533: 1505: 1502: 1499: 1479: 1459: 1439: 1417: 1412: 1408: 1388: 1366: 1361: 1357: 1332: 1327: 1323: 1317: 1297: 1277: 1272: 1267: 1262: 1258: 1252: 1249: 1244: 1239: 1234: 1230: 1224: 1219: 1214: 1209: 1205: 1199: 1196: 1193: 1171: 1166: 1162: 1142: 1120: 1116: 1089: 1086: 1083: 1059: 1039: 1019: 1016: 1013: 1001: 998: 985: 982: 979: 959: 919: 916: 906: 903: 881: 878: 876: 873: 845: 842: 840: 837: 811: 808: 784: 781: 768: 765: 745: 742: 714: 711: 686: 666: 646: 643: 640: 616: 613: 611: 608: 607: 606: 602:, is equal to 593: 582: 571: 561: 554: 547: 536: 525: 514: 495: 492: 479: 476: 473: 470: 467: 447: 444: 441: 438: 435: 432: 429: 426: 423: 420: 417: 414: 394: 391: 388: 385: 382: 362: 359: 356: 353: 350: 347: 344: 341: 338: 335: 332: 304: 301: 298: 295: 292: 289: 286: 283: 263: 260: 257: 233: 230: 227: 224: 221: 177: 174: 171: 168: 140: 137: 134: 131: 128: 125: 109: 106: 59:logical system 15: 13: 10: 9: 6: 4: 3: 2: 3044: 3033: 3030: 3028: 3025: 3023: 3020: 3019: 3017: 3007: 3004: 3003: 2999: 2993: 2989: 2985: 2983:0-387-98600-6 2979: 2975: 2974: 2968: 2967: 2963: 2954: 2950: 2945: 2940: 2936: 2932: 2928: 2921: 2918: 2913: 2909: 2904: 2899: 2896:(1): 86–102. 2895: 2891: 2887: 2880: 2877: 2872: 2868: 2864: 2862:0-8186-1954-6 2858: 2854: 2850: 2846: 2842: 2835: 2832: 2826: 2823: 2817: 2814: 2808: 2805: 2800: 2796: 2791: 2786: 2782: 2778: 2774: 2767: 2764: 2761: 2757: 2753: 2749: 2745: 2739: 2736: 2731: 2727: 2723: 2717: 2713: 2709: 2704: 2699: 2695: 2688: 2685: 2679: 2674: 2670: 2666: 2665: 2660: 2653: 2650: 2644: 2642: 2638: 2633: 2629: 2625: 2621: 2617: 2613: 2612: 2607: 2600: 2597: 2591: 2588: 2583: 2579: 2575: 2573:0-262-13076-9 2569: 2565: 2564: 2556: 2553: 2548: 2544: 2539: 2534: 2530: 2526: 2525: 2520: 2513: 2510: 2505: 2501: 2497: 2493: 2488: 2483: 2479: 2475: 2474: 2469: 2462: 2459: 2453: 2450: 2445: 2438: 2436: 2434: 2430: 2424: 2422: 2420: 2418: 2414: 2409: 2407:9783959771177 2403: 2398: 2393: 2389: 2388: 2380: 2377: 2371: 2369: 2365: 2358: 2356: 2355: 2328: 2310: 2304: 2300: 2293: 2288: 2285: 2282: 2277: 2273: 2243: 2238: 2233: 2212: 2208: 2204: 2200: 2173: 2162: 2156: 2152: 2126: 2121: 2116: 2101: 2067: 2045: 2041: 2017: 2014: 2011: 1977: 1971: 1967: 1960: 1955: 1952: 1949: 1944: 1940: 1914: 1909: 1904: 1884: 1876: 1874: 1860: 1857: 1854: 1834: 1814: 1802: 1800: 1787: 1767: 1735: 1731: 1727: 1723: 1719: 1714: 1709: 1704: 1700: 1694: 1688: 1683: 1680: 1677: 1672: 1668: 1642: 1636: 1631: 1626: 1622: 1617: 1613: 1607: 1601: 1596: 1593: 1590: 1585: 1581: 1560: 1557: 1551: 1545: 1540: 1535: 1531: 1522: 1517: 1503: 1500: 1497: 1457: 1437: 1415: 1410: 1407: 1386: 1359: 1355: 1325: 1321: 1315: 1295: 1275: 1265: 1260: 1256: 1250: 1247: 1237: 1232: 1228: 1212: 1207: 1203: 1194: 1191: 1169: 1164: 1161: 1140: 1118: 1115: 1105: 1103: 1087: 1084: 1081: 1073: 1057: 1037: 1030:has an arity 1017: 1014: 1011: 999: 997: 983: 980: 977: 957: 949: 945: 941: 937: 933: 929: 925: 917: 915: 913: 904: 902: 900: 895: 893: 889: 887: 879: 874: 872: 868: 866: 862: 858: 853: 850: 838: 836: 833: 831: 826: 824: 820: 815: 809: 807: 805: 800: 797: 795: 791: 782: 780: 778: 774: 766: 764: 761: 758: 753: 751: 750:Krom formulae 743: 741: 739: 735: 730: 728: 724: 720: 712: 710: 708: 704: 684: 664: 641: 630: 626: 622: 614: 609: 605: 601: 597: 594: 591: 587: 583: 580: 576: 572: 569: 565: 562: 559: 555: 552: 548: 545: 541: 537: 534: 530: 526: 523: 519: 515: 512: 508: 504: 501: 500: 499: 493: 491: 477: 474: 471: 468: 465: 442: 439: 436: 433: 430: 424: 421: 418: 415: 412: 392: 389: 386: 383: 380: 357: 354: 351: 348: 345: 339: 336: 333: 330: 299: 296: 293: 287: 284: 281: 261: 258: 255: 228: 225: 222: 202: 200: 196: 172: 166: 135: 132: 129: 123: 115: 107: 105: 103: 99: 95: 91: 87: 83: 79: 75: 70: 68: 64: 60: 55: 53: 49: 45: 41: 37: 33: 29: 25: 21: 2976:. Springer. 2972: 2934: 2930: 2920: 2893: 2889: 2879: 2844: 2834: 2825: 2816: 2807: 2783:(1): 35–57. 2780: 2776: 2766: 2748:Victor Vianu 2738: 2693: 2687: 2668: 2662: 2652: 2615: 2609: 2599: 2590: 2562: 2555: 2528: 2522: 2512: 2480:(1): 30–56. 2477: 2471: 2461: 2452: 2443: 2386: 2379: 1880: 1806: 1518: 1106: 1003: 931: 921: 908: 896: 890: 883: 869: 864: 860: 854: 851: 847: 834: 827: 816: 813: 801: 798: 786: 770: 762: 754: 747: 731: 716: 618: 564:Second-order 497: 203: 201:(terminal). 198: 197:(start) and 194: 111: 78:Ronald Fagin 71: 56: 19: 18: 1803:Normal form 1345:means that 108:The setting 76:, shown by 3016:Categories 2964:References 1883:ELEMENTARY 1000:Definition 928:ELEMENTARY 604:ELEMENTARY 2992:901297152 2953:0304-3975 2912:0019-9958 2871:206437693 2799:0304-3975 2760:0004-5411 2698:CiteSeerX 2632:0097-5397 2582:651199926 2547:0304-3975 2496:0004-5411 2325:Σ 2294:⁡ 2286:− 2089:∃ 2015:− 1961:⁡ 1953:− 1858:− 1724:… 1689:⁡ 1637:⁡ 1602:⁡ 1546:⁡ 1521:tetration 1501:− 1478:∃ 1365:¯ 1331:¯ 1276:ψ 1271:¯ 1248:… 1243:¯ 1223:∀ 1218:¯ 1198:∃ 1192:ϕ 1085:− 981:− 875:Beyond NP 775:captures 685:∨ 665:∧ 645:∃ 639:∀ 469:∗ 244:elements 226:− 98:functions 94:relations 40:languages 2504:11338470 2205:. Using 2060:, where 1288:, where 790:Immerman 727:Immerman 697:of size 2730:7869248 2209:in the 590:EXPTIME 102:subsets 63:queries 26:and of 2990:  2980:  2951:  2910:  2869:  2859:  2797:  2758:  2728:  2718:  2700:  2630:  2580:  2570:  2545:  2502:  2494:  2404:  1780:times 1072:tuples 934:, the 926:class 912:PSPACE 899:PSPACE 886:PSPACE 657:being 579:PSPACE 100:, and 2867:S2CID 2726:S2CID 2500:S2CID 2359:Notes 1760:with 794:Vardi 777:PTIME 558:co-NP 248:with 92:over 36:logic 2988:OCLC 2978:ISBN 2949:ISSN 2908:ISSN 2857:ISBN 2795:ISSN 2756:ISSN 2716:ISBN 2628:ISSN 2578:OCLC 2568:ISBN 2543:ISSN 2492:ISSN 2402:ISBN 1573:and 1153:. HO 1015:> 946:and 922:The 823:Horn 802:The 792:and 677:and 405:and 259:< 2939:doi 2935:355 2898:doi 2849:doi 2785:doi 2781:101 2708:doi 2673:doi 2620:doi 2533:doi 2529:355 2482:doi 2392:doi 2274:exp 1941:exp 1669:exp 1623:exp 1582:exp 1532:exp 619:In 490:). 155:to 3018:: 2986:. 2947:. 2933:. 2929:. 2906:. 2894:60 2892:. 2888:. 2865:. 2855:. 2843:. 2793:. 2779:. 2775:. 2750:: 2746:, 2724:. 2714:. 2706:. 2669:68 2667:. 2661:. 2640:^ 2626:. 2616:17 2614:. 2608:. 2576:. 2541:. 2527:. 2521:. 2498:. 2490:. 2478:44 2476:. 2470:. 2432:^ 2416:^ 2400:. 2367:^ 2213:, 1660:. 1523:, 1516:. 1107:HO 1102:FO 932:HO 779:: 752:. 709:. 629:AC 625:AC 596:HO 551:NP 533:NL 507:AC 96:, 82:NP 44:PH 2994:. 2955:. 2941:: 2914:. 2900:: 2873:. 2851:: 2801:. 2787:: 2732:. 2710:: 2681:. 2675:: 2634:. 2622:: 2584:. 2549:. 2535:: 2506:. 2484:: 2410:. 2394:: 2343:) 2335:P 2329:j 2320:) 2314:) 2311:1 2308:( 2305:O 2301:n 2297:( 2289:2 2283:i 2278:2 2270:( 2263:E 2260:M 2257:I 2254:T 2251:N 2244:= 2239:i 2234:j 2228:O 2225:H 2184:P 2181:N 2174:= 2171:) 2166:) 2163:1 2160:( 2157:O 2153:n 2149:( 2144:E 2141:M 2138:I 2135:T 2132:N 2127:= 2122:2 2117:0 2111:O 2108:H 2102:= 2097:O 2094:S 2068:c 2046:c 2042:n 2021:) 2018:2 2012:i 2009:( 1989:) 1986:) 1981:) 1978:1 1975:( 1972:O 1968:n 1964:( 1956:2 1950:i 1945:2 1937:( 1932:E 1929:M 1926:I 1923:T 1920:N 1915:= 1910:i 1905:0 1899:O 1896:H 1861:1 1855:i 1835:i 1815:i 1788:2 1768:i 1736:x 1732:2 1720:2 1715:2 1710:2 1705:2 1701:= 1698:) 1695:x 1692:( 1684:1 1681:+ 1678:i 1673:2 1646:) 1643:x 1640:( 1632:i 1627:2 1618:2 1614:= 1611:) 1608:x 1605:( 1597:1 1594:+ 1591:i 1586:2 1561:x 1558:= 1555:) 1552:x 1549:( 1541:0 1536:2 1504:1 1498:i 1458:i 1438:j 1416:i 1411:j 1387:i 1360:i 1356:X 1326:i 1322:X 1316:Q 1296:Q 1266:i 1261:j 1257:X 1251:Q 1238:i 1233:2 1229:X 1213:i 1208:1 1204:X 1195:= 1170:i 1165:j 1141:i 1119:i 1088:1 1082:i 1070:- 1058:k 1038:k 1018:1 1012:i 984:1 978:i 958:i 865:k 861:k 830:P 699:n 642:, 570:. 560:. 553:. 544:P 522:L 478:z 475:= 472:y 466:x 446:) 443:z 440:, 437:y 434:, 431:x 428:( 425:s 422:e 419:m 416:i 413:t 393:z 390:= 387:y 384:+ 381:x 361:) 358:z 355:, 352:y 349:, 346:x 343:( 340:s 337:u 334:l 331:p 321:x 317:k 303:) 300:k 297:, 294:x 291:( 288:t 285:i 282:b 262:x 256:y 246:y 232:) 229:1 223:n 220:( 210:n 206:x 199:t 195:s 190:n 176:) 173:n 170:( 167:P 157:y 153:x 139:) 136:y 133:, 130:x 127:( 124:E

Index

computational complexity theory
finite model theory
complexity classes
logic
languages
PH
second-order logic
abstract machines
logical system
queries
computational problems
Fagin's theorem
Ronald Fagin
NP
second-order logic
universal quantification
relations
functions
subsets
domain of discourse
First-order logic
AC
concurrent random access machine
transitive closure
L
transitive closure
NL
least fixed point
P
NP

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑