Knowledge (XXG)

Depletion region

Source 📝

360:
and neutralize opposite charges. The more bias the more neutralization (or screening of ions in the region) occurs. The carriers can be recombined to the ions but thermal energy immediately makes recombined carriers transition back as Fermi energy is in proximity. When bias is strong enough that the depletion region becomes very thin, the diffusion component of the current (through the junction interface) greatly increases and the drift component decreases. In this case, the net current flows from the P-side to the N-side. The carrier density is large (it varies exponentially with the applied bias voltage), making the junction conductive and allowing a large forward current. The mathematical description of the current is provided by the
1936:. A full derivation for the depletion width is presented in reference. This derivation is based on solving the Poisson equation in one dimension – the dimension normal to the metallurgical junction. The electric field is zero outside of the depletion width (seen in above figure) and therefore Gauss's law implies that the charge density in each region balance – as shown by the first equation in this sub-section. Treating each region separately and substituting the charge density for each region into the Poisson equation eventually leads to a result for the depletion width. This result for the depletion width is: 380:(applying a negative voltage to the P-side with respect to the N-side), the potential drop (i.e., voltage) across the depletion region increases. Essentially, majority carriers are pushed away from the junction, leaving behind more charged ions. Thus the depletion region is widened and its field becomes stronger, which increases the drift component of current (through the junction interface) and decreases the diffusion component. In this case, the net current flows from the N-side to the P-side. The carrier density (mostly, minority carriers) is small and only a very small 107: 115: 1497: 1265: 196:
electrons to the P-side and (2) recombination of electrons to holes that are diffused from the P-side. Holes in a P-side region near to the interface are also gone by a similar reason. As a result, majority charge carriers (free electrons for the N-type semiconductor, and holes for the P-type semiconductor) are depleted in the region around the junction interface, so this region is called the
1448: 1019: 75:. The only elements left in the depletion region are ionized donor or acceptor impurities. This region of uncovered positive and negative ions is called the depletion region due to the depletion of carriers in this region, leaving none to carry a current. Understanding the depletion region is key to explaining modern 1472:
region that is insulating because no mobile holes remain; only the immobile, negatively charged acceptor impurities. The greater the positive charge placed on the gate, the more positive the applied gate voltage, and the more holes that leave the semiconductor surface, enlarging the depletion region.
359:
Forward bias (applying a positive voltage to the P-side with respect to the N-side) narrows the depletion region and lowers the barrier to carrier injection (shown in the figure to the right). In more detail, majority carriers get some energy from the bias field, enabling them to go into the region
195:
in the P-side. Likewise, the diffused holes are recombined with free electrons so eliminated in the N-side. The net result is that the diffused electrons and holes are gone. In a N-side region near to the junction interface, free electrons in the conduction band are gone due to (1) the diffusion of
322:
is the hole density (number per unit volume). The electric field makes holes drift along the field direction, and for diffusion holes move in the direction of decreasing concentration, so for holes a negative current results for a positive density gradient. (If the carriers are electrons, the hole
220:
Physically speaking, charge transfer in semiconductor devices is from (1) the charge carrier drift by the electric field and (2) the charge carrier diffusion due to the spatially varying carrier concentration. In the P-side of the depletion region, where holes drift by the electric field with the
188:) compared to the N-type. Therefore, when N-doped and P-doped semiconductors are placed together to form a junction, free electrons in the N-side conduction band migrate (diffuse) into the P-side conduction band, and holes in the P-side valence band migrate into the N-side valence band. 208:
that provides a force opposing the charge diffusion. When the electric field is sufficiently strong to cease further diffusion of holes and electrons, the depletion region reaches the equilibrium. Integrating the electric field across the depletion region determines what is called the
520: 1260:{\displaystyle {\begin{aligned}x_{n}&={\sqrt {{\frac {2\epsilon _{s}}{q}}{\frac {N_{a}}{N_{d}}}{\frac {1}{N_{a}+N_{d}}}(\Delta V)}}\\x_{p}&={\sqrt {{\frac {2\epsilon _{s}}{q}}{\frac {N_{d}}{N_{a}}}{\frac {1}{N_{a}+N_{d}}}(\Delta V)}}\\\end{aligned}}} 1488:
of opposite type to the bulk semiconductor, then a spontaneous depletion region forms if the gate is electrically shorted to the substrate, in much the same manner as described for the p–n junction above. For more on this, see
123: 2449: 2182:
is the applied bias. The depletion region is not symmetrically split between the n and p regions - it will tend towards the lightly doped side. A more complete analysis would take into account that there are still
1459:. It is shown in the figure to the right, for a P-type substrate. Supposing that the semiconductor initially is charge neutral, with the charge due to holes exactly balanced by the negative charge due to 1467:
to the gate, then some positively charged holes in the semiconductor nearest the gate are repelled by the positive charge on the gate, and exit the device through the bottom contact. They leave behind a
840: 281: 204:. Due to the majority charge carrier diffusion described above, the depletion region is charged; the N-side of it is positively charged and the P-side of it is negatively charged. This creates an 1024: 410: 1818: 405: 2101: 1890:
semiconductor, respectively. This condition ensures that the net negative acceptor charge exactly balances the net positive donor charge. The total depletion width in this case is the sum
2304:
because they are oppositely charged to the holes that prevail in a P-type material. When an inversion layer forms, the depletion width ceases to expand with increase in gate charge
962: 1744: 1569: 392:
From a full depletion analysis as shown in figure 2, the charge would be approximated with a sudden drop at its limit points which in reality is gradual and is explained by
2484: 2291: 2130: 1934: 869: 308: 1431: 916: 2160: 118:
Figure 2. From Top to Bottom; Top: hole and electron concentrations through the junction; Second: charge densities; Third: electric field; Bottom: electric potential
2353: 2232: 1880: 1853: 1692: 1665: 1638: 1611: 1376: 1349: 1322: 1295: 991: 684: 657: 630: 603: 576: 549: 335:
with negative sign; in some cases, both electrons and holes must be included.) When the two current components balance, as in the p–n junction depletion region at
762: 2180: 1404: 1011: 893: 782: 739: 712: 2517: 2499:
is the meter. This linearly-varying electric field leads to an electrical potential that varies quadratically in space. The energy levels, or energy bands,
2365: 2543: 172:
diffuse into regions with lower concentrations of them, much as ink diffuses into water until it is uniformly distributed. By definition, the
2684: 2570: 2300:
If the depletion width becomes wide enough, then electrons appear in a very thin layer at the semiconductor-oxide interface, called an
340: 2756: 2734: 2709: 2607: 2580: 2553: 2597: 1941: 1474: 2187:
carriers near the edges of the depletion region. This leads to an additional -2kT/q term in the last set of parentheses above.
2659: 2195:
As in p–n junctions, the governing principle here is charge neutrality. Let us assume a P-type substrate. If positive charge
793: 234: 2512: 1481:, near the surface. The above discussion applies for positive voltages low enough that an inversion layer does not form.) 2328:. This effect occurs because the electric field in the depletion layer varies linearly in space from its (maximum) value 1518: 1490: 185: 177: 515:{\displaystyle {\begin{aligned}{\frac {Q_{n}}{x_{n}}}&=qN_{d}\\{\frac {Q_{p}}{x_{p}}}&=-qN_{a}\\\end{aligned}}} 1756: 87: 2248: 20: 1379: 687: 2207:
exposing sufficient negative acceptors to exactly balance the gate charge. Supposing the dopant density to be
1460: 214: 192: 181: 173: 91: 57: 1463:
impurities. If a positive voltage now is applied to the gate, which is done by introducing positive charge
1473:(In this device there is a limit to how wide the depletion width may become. It is set by the onset of an 1383: 691: 135: 923: 364:. The low current conducted under reverse bias and the large current under forward bias is an example of 1697: 1500:
The total width of the depletion region is a function of applied reverse-bias and impurity concentration
875:
of the substance. Integrating electric field with respect to distance determines the electric potential
29: 393: 2313: 2308:. In this case, neutrality is achieved by attracting more electrons into the inversion layer. In the 1640:
are the number of ionized donors and acceptors "per unit of length", respectively. In this way, both
1478: 1434: 2462: 2459: 2108: 1893: 847: 336: 159: 106: 114: 2626: 289: 2730: 2705: 2680: 2655: 2603: 2576: 2549: 1413: 1407: 1324:
are the negative and positive depletion layer width respectively with respect to the center,
898: 715: 315: 191:
Following transfer, the diffused electrons come into contact with holes and are eliminated by
143: 151: 2761: 2135: 2331: 2210: 1858: 1831: 1670: 1643: 1616: 1589: 1354: 1327: 1300: 1273: 969: 662: 635: 608: 581: 554: 527: 131: 632:
are the distance for negative and positive charge respectively with zero at the center,
966:
The final equation would then be arranged so that the function of depletion layer width
744: 2165: 1389: 996: 878: 785: 767: 724: 697: 205: 158:: in both of these cases the properties of the system do not vary in time; they are in 72: 64: 2750: 328: 169: 76: 60: 2325: 872: 397: 377: 155: 1496: 154:. It is most easily described when the junction is in thermal equilibrium or in a 110:
Figure 1. Top: p–n junction before diffusion; Bottom: After equilibrium is reached
1694:
can be viewed as doping spatial densities. If we assume full ionization and that
1485: 127: 79: 2444:{\displaystyle E_{m}={Q \over A\epsilon _{0}}=qN_{A}{w \over \epsilon _{0}},\,} 2234:
acceptors per unit volume, then charge neutrality requires the depletion width
365: 139: 1447: 1508:
says the sum of positive charges must equal the sum of negative charges:
165: 68: 95: 2677:
Introduction to Electrical, Electronics and Communication Engineering
2309: 1456: 146:
for conduction band and valence band in n and p regions (red curves).
122: 2522: 2492: 1495: 1446: 361: 121: 113: 105: 83: 2675:
Sasikala, B; Afzal Khan; S. Pooranchandra; B. Sasikala (2005).
2132:
is the relative dielectric permittivity of the semiconductor,
578:
are the amount of negative and positive charge respectively,
2324:
Associated with the depletion layer is an effect known as
134:
decreases. Both p and n junctions are doped at a 1e15/cm3
2355:
at the gate to zero at the edge of the depletion width:
213:(also called the junction voltage or barrier voltage or 2599:
CMOS Digital Integrated Circuits Analysis & Design
2465: 2368: 2334: 2251: 2213: 2168: 2138: 2111: 1944: 1896: 1861: 1834: 1759: 1700: 1673: 1646: 1619: 1592: 1521: 1451:
Metal–oxide–semiconductor structure on P-type silicon
1416: 1392: 1357: 1330: 1303: 1276: 1022: 999: 972: 926: 901: 881: 850: 835:{\displaystyle E={\frac {\int D\,dx}{\epsilon _{s}}}} 796: 770: 747: 727: 700: 665: 638: 611: 584: 557: 530: 408: 292: 276:{\displaystyle {\bf {J}}=\sigma {\bf {E}}-eD\nabla p} 237: 1455:
Another example of a depletion region occurs in the
2478: 2443: 2347: 2320:Electric field in depletion layer and band bending 2285: 2226: 2174: 2154: 2124: 2095: 1928: 1874: 1847: 1812: 1738: 1686: 1659: 1632: 1605: 1563: 1425: 1398: 1370: 1343: 1316: 1289: 1259: 1005: 985: 956: 910: 887: 863: 834: 776: 756: 733: 706: 678: 651: 624: 597: 570: 543: 514: 302: 275: 150:A depletion region forms instantaneously across a 788:) creates the second graph as shown in figure 2: 2572:Digital Integrated Circuits: Analysis and Design 1813:{\displaystyle qN_{A}w_{P}\approx qN_{D}w_{N}\,} 1586:are the number of free electrons and holes, and 895:. This would also equal to the built in voltage 184:, and the P-type has an excess of holes (in the 56:, is an insulating region within a conductive, 1433:is the built-in voltage, which is usually the 2312:, this inversion layer is referred to as the 2096:{\displaystyle w\approx \left^{\frac {1}{2}}} 993:would be dependent on the electric potential 8: 2596:Sung-Mo Kang and Yusuf Leblebici (2002). 2470: 2464: 2440: 2429: 2420: 2414: 2395: 2382: 2373: 2367: 2339: 2333: 2282: 2273: 2255: 2250: 2218: 2212: 2167: 2143: 2137: 2116: 2110: 2082: 2057: 2035: 2025: 2013: 2000: 1993: 1977: 1967: 1957: 1943: 1920: 1907: 1895: 1866: 1860: 1839: 1833: 1809: 1803: 1793: 1777: 1767: 1758: 1730: 1717: 1699: 1678: 1672: 1651: 1645: 1624: 1618: 1597: 1591: 1557: 1551: 1532: 1520: 1415: 1391: 1362: 1356: 1335: 1329: 1308: 1302: 1281: 1275: 1230: 1217: 1207: 1199: 1189: 1183: 1171: 1161: 1159: 1146: 1115: 1102: 1092: 1084: 1074: 1068: 1056: 1046: 1044: 1031: 1023: 1021: 998: 977: 971: 925: 900: 880: 855: 849: 824: 812: 803: 795: 769: 746: 726: 699: 670: 664: 643: 637: 616: 610: 589: 583: 562: 556: 535: 529: 502: 477: 467: 461: 451: 429: 419: 413: 409: 407: 294: 293: 291: 252: 251: 239: 238: 236: 721:Taking the integral of the flux density 225:and diffuse with the diffusion constant 176:has an excess of free electrons (in the 98:all rely on depletion region phenomena. 2627:"Electrostatic analysis of a p-n diode" 2534: 229:, the net current density is given by 2203:, then holes are depleted to a depth 388:Determining the depletion layer width 7: 2621: 2619: 16:Insulating region in a semiconductor 2518:Metal–oxide–semiconductor structure 957:{\displaystyle V=\int Edx=\Delta V} 1739:{\displaystyle n,p\ll N_{D},N_{A}} 1564:{\displaystyle n+N_{A}=p+N_{D}\,,} 1417: 1242: 1127: 948: 902: 267: 14: 2727:Electricity, Magnetism, and Light 2652:Semiconductor Device Fundamentals 339:, the current is zero due to the 142:of ~0.59V. Observe the different 2191:Depletion width in MOS capacitor 1477:of carriers in a thin layer, or 295: 253: 240: 2700:Kittel, C; Kroemer, H. (1980). 2503:in response to this potential. 2162:is the built-in voltage, and 1248: 1239: 1133: 1124: 1: 2513:Capacitance voltage profiling 2479:{\displaystyle \epsilon _{0}} 2286:{\displaystyle Q/A=qN_{A}w\,} 2238:to satisfy the relationship: 2125:{\displaystyle \epsilon _{r}} 1929:{\displaystyle w=w_{N}+w_{P}} 1443:Formation in an MOS capacitor 864:{\displaystyle \epsilon _{s}} 2602:. McGraw–Hill Professional. 2199:is placed on gate with area 1882:are depletion widths in the 1491:polysilicon depletion effect 764:to determine electric field 88:bipolar junction transistors 2650:Pierret, Robert F. (1996). 138:level, leading to built-in 102:Formation in a p–n junction 96:variable capacitance diodes 71:away, or forced away by an 2778: 382:reverse saturation current 130:in forward bias mode, the 63:material where the mobile 21:Depletion (disambiguation) 18: 2545:The Mechatronics Handbook 2542:Robert H. Bishop (2002). 1378:are the concentration of 741:with respect to distance 303:{\displaystyle {\bf {E}}} 2757:Semiconductor structures 2725:Wayne M. Saslow (2002). 1484:If the gate material is 1426:{\displaystyle \Delta V} 911:{\displaystyle \Delta V} 221:electrical conductivity 92:field-effect transistors 2654:. pp. 209 to 216. 362:Shockley diode equation 310:is the electric field, 2569:John E. Ayers (2003). 2487: = 8.854×10 F/m, 2480: 2445: 2349: 2287: 2228: 2176: 2156: 2155:{\displaystyle V_{bi}} 2126: 2097: 1930: 1876: 1849: 1814: 1740: 1688: 1661: 1634: 1607: 1565: 1501: 1452: 1427: 1400: 1372: 1345: 1318: 1291: 1261: 1007: 987: 958: 918:as shown in Figure 2. 912: 889: 865: 836: 778: 758: 735: 708: 680: 653: 626: 599: 572: 545: 516: 318:(1.6×10 coulomb), and 304: 277: 147: 119: 111: 2481: 2446: 2350: 2348:{\displaystyle E_{m}} 2288: 2229: 2227:{\displaystyle N_{A}} 2177: 2157: 2127: 2098: 1931: 1877: 1875:{\displaystyle w_{N}} 1850: 1848:{\displaystyle w_{P}} 1815: 1741: 1689: 1687:{\displaystyle N_{A}} 1662: 1660:{\displaystyle N_{D}} 1635: 1633:{\displaystyle N_{A}} 1608: 1606:{\displaystyle N_{D}} 1566: 1499: 1450: 1428: 1401: 1373: 1371:{\displaystyle N_{d}} 1346: 1344:{\displaystyle N_{a}} 1319: 1317:{\displaystyle x_{p}} 1292: 1290:{\displaystyle x_{n}} 1262: 1008: 988: 986:{\displaystyle x_{n}} 959: 913: 890: 866: 837: 779: 759: 736: 709: 681: 679:{\displaystyle N_{d}} 654: 652:{\displaystyle N_{a}} 627: 625:{\displaystyle x_{p}} 600: 598:{\displaystyle x_{n}} 573: 571:{\displaystyle Q_{p}} 546: 544:{\displaystyle Q_{n}} 517: 305: 278: 125: 117: 109: 30:semiconductor physics 2523:Semiconductor diodes 2463: 2366: 2332: 2249: 2211: 2166: 2136: 2109: 1942: 1894: 1859: 1832: 1757: 1698: 1671: 1644: 1617: 1590: 1519: 1436:independent variable 1414: 1390: 1355: 1328: 1301: 1274: 1020: 997: 970: 924: 899: 879: 848: 794: 768: 745: 725: 698: 663: 636: 609: 582: 555: 528: 406: 290: 235: 182:P-type semiconductor 174:N-type semiconductor 50:space charge region, 19:For other uses, see 337:dynamic equilibrium 327:is replaced by the 160:dynamic equilibrium 2679:. Firewall Media. 2476: 2441: 2345: 2283: 2224: 2172: 2152: 2122: 2093: 1926: 1872: 1845: 1810: 1736: 1684: 1657: 1630: 1603: 1561: 1502: 1453: 1423: 1396: 1368: 1341: 1314: 1287: 1257: 1255: 1003: 983: 954: 908: 885: 861: 832: 774: 757:{\displaystyle dx} 754: 731: 704: 686:are the amount of 676: 649: 622: 595: 568: 541: 512: 510: 394:Poisson's equation 300: 273: 180:) compared to the 148: 144:Quasi Fermi levels 120: 112: 54:space charge layer 2704:. W. H. Freeman. 2686:978-81-7008-639-0 2631:ecee.colorado.edu 2435: 2402: 2175:{\displaystyle V} 2090: 2042: 1987: 1506:charge neutrality 1504:The principle of 1399:{\displaystyle q} 1251: 1237: 1205: 1181: 1136: 1122: 1090: 1066: 1006:{\displaystyle V} 888:{\displaystyle V} 830: 777:{\displaystyle E} 734:{\displaystyle D} 707:{\displaystyle q} 694:respectively and 483: 435: 341:Einstein relation 316:elementary charge 215:contact potential 2769: 2741: 2740: 2722: 2716: 2715: 2697: 2691: 2690: 2672: 2666: 2665: 2647: 2641: 2640: 2638: 2637: 2623: 2614: 2613: 2593: 2587: 2586: 2566: 2560: 2559: 2539: 2485: 2483: 2482: 2477: 2475: 2474: 2450: 2448: 2447: 2442: 2436: 2434: 2433: 2421: 2419: 2418: 2403: 2401: 2400: 2399: 2383: 2378: 2377: 2354: 2352: 2351: 2346: 2344: 2343: 2292: 2290: 2289: 2284: 2278: 2277: 2259: 2233: 2231: 2230: 2225: 2223: 2222: 2181: 2179: 2178: 2173: 2161: 2159: 2158: 2153: 2151: 2150: 2131: 2129: 2128: 2123: 2121: 2120: 2102: 2100: 2099: 2094: 2092: 2091: 2083: 2081: 2077: 2076: 2072: 2065: 2064: 2047: 2043: 2041: 2040: 2039: 2030: 2029: 2019: 2018: 2017: 2005: 2004: 1994: 1988: 1983: 1982: 1981: 1972: 1971: 1958: 1935: 1933: 1932: 1927: 1925: 1924: 1912: 1911: 1881: 1879: 1878: 1873: 1871: 1870: 1854: 1852: 1851: 1846: 1844: 1843: 1819: 1817: 1816: 1811: 1808: 1807: 1798: 1797: 1782: 1781: 1772: 1771: 1745: 1743: 1742: 1737: 1735: 1734: 1722: 1721: 1693: 1691: 1690: 1685: 1683: 1682: 1666: 1664: 1663: 1658: 1656: 1655: 1639: 1637: 1636: 1631: 1629: 1628: 1612: 1610: 1609: 1604: 1602: 1601: 1570: 1568: 1567: 1562: 1556: 1555: 1537: 1536: 1432: 1430: 1429: 1424: 1405: 1403: 1402: 1397: 1377: 1375: 1374: 1369: 1367: 1366: 1350: 1348: 1347: 1342: 1340: 1339: 1323: 1321: 1320: 1315: 1313: 1312: 1296: 1294: 1293: 1288: 1286: 1285: 1266: 1264: 1263: 1258: 1256: 1252: 1238: 1236: 1235: 1234: 1222: 1221: 1208: 1206: 1204: 1203: 1194: 1193: 1184: 1182: 1177: 1176: 1175: 1162: 1160: 1151: 1150: 1137: 1123: 1121: 1120: 1119: 1107: 1106: 1093: 1091: 1089: 1088: 1079: 1078: 1069: 1067: 1062: 1061: 1060: 1047: 1045: 1036: 1035: 1012: 1010: 1009: 1004: 992: 990: 989: 984: 982: 981: 963: 961: 960: 955: 917: 915: 914: 909: 894: 892: 891: 886: 870: 868: 867: 862: 860: 859: 841: 839: 838: 833: 831: 829: 828: 819: 804: 783: 781: 780: 775: 763: 761: 760: 755: 740: 738: 737: 732: 713: 711: 710: 705: 685: 683: 682: 677: 675: 674: 658: 656: 655: 650: 648: 647: 631: 629: 628: 623: 621: 620: 604: 602: 601: 596: 594: 593: 577: 575: 574: 569: 567: 566: 550: 548: 547: 542: 540: 539: 521: 519: 518: 513: 511: 507: 506: 484: 482: 481: 472: 471: 462: 456: 455: 436: 434: 433: 424: 423: 414: 396:. The amount of 343:, which relates 309: 307: 306: 301: 299: 298: 282: 280: 279: 274: 257: 256: 244: 243: 211:built-in voltage 198:depletion region 34:depletion region 2777: 2776: 2772: 2771: 2770: 2768: 2767: 2766: 2747: 2746: 2745: 2744: 2737: 2724: 2723: 2719: 2712: 2702:Thermal Physics 2699: 2698: 2694: 2687: 2674: 2673: 2669: 2662: 2649: 2648: 2644: 2635: 2633: 2625: 2624: 2617: 2610: 2595: 2594: 2590: 2583: 2568: 2567: 2563: 2556: 2541: 2540: 2536: 2531: 2509: 2466: 2461: 2460: 2425: 2410: 2391: 2387: 2369: 2364: 2363: 2335: 2330: 2329: 2322: 2302:inversion layer 2269: 2247: 2246: 2214: 2209: 2208: 2193: 2164: 2163: 2139: 2134: 2133: 2112: 2107: 2106: 2053: 2052: 2048: 2031: 2021: 2020: 2009: 1996: 1995: 1989: 1973: 1963: 1959: 1956: 1952: 1951: 1940: 1939: 1916: 1903: 1892: 1891: 1862: 1857: 1856: 1835: 1830: 1829: 1799: 1789: 1773: 1763: 1755: 1754: 1726: 1713: 1696: 1695: 1674: 1669: 1668: 1647: 1642: 1641: 1620: 1615: 1614: 1593: 1588: 1587: 1547: 1528: 1517: 1516: 1475:inversion layer 1461:acceptor doping 1445: 1412: 1411: 1408:electron charge 1388: 1387: 1358: 1353: 1352: 1331: 1326: 1325: 1304: 1299: 1298: 1277: 1272: 1271: 1268: 1254: 1253: 1226: 1213: 1212: 1195: 1185: 1167: 1163: 1152: 1142: 1139: 1138: 1111: 1098: 1097: 1080: 1070: 1052: 1048: 1037: 1027: 1018: 1017: 995: 994: 973: 968: 967: 922: 921: 897: 896: 877: 876: 851: 846: 845: 820: 805: 792: 791: 766: 765: 743: 742: 723: 722: 716:electron charge 696: 695: 666: 661: 660: 639: 634: 633: 612: 607: 606: 585: 580: 579: 558: 553: 552: 531: 526: 525: 509: 508: 498: 485: 473: 463: 458: 457: 447: 437: 425: 415: 404: 403: 390: 374: 357: 288: 287: 233: 232: 178:conduction band 132:depletion width 104: 65:charge carriers 46:junction region 38:depletion layer 24: 17: 12: 11: 5: 2775: 2773: 2765: 2764: 2759: 2749: 2748: 2743: 2742: 2735: 2717: 2710: 2692: 2685: 2667: 2660: 2642: 2615: 2608: 2588: 2581: 2561: 2554: 2533: 2532: 2530: 2527: 2526: 2525: 2520: 2515: 2508: 2505: 2473: 2469: 2456: 2455: 2454: 2453: 2452: 2451: 2439: 2432: 2428: 2424: 2417: 2413: 2409: 2406: 2398: 2394: 2390: 2386: 2381: 2376: 2372: 2342: 2338: 2321: 2318: 2298: 2297: 2296: 2295: 2294: 2293: 2281: 2276: 2272: 2268: 2265: 2262: 2258: 2254: 2221: 2217: 2192: 2189: 2171: 2149: 2146: 2142: 2119: 2115: 2089: 2086: 2080: 2075: 2071: 2068: 2063: 2060: 2056: 2051: 2046: 2038: 2034: 2028: 2024: 2016: 2012: 2008: 2003: 1999: 1992: 1986: 1980: 1976: 1970: 1966: 1962: 1955: 1950: 1947: 1923: 1919: 1915: 1910: 1906: 1902: 1899: 1869: 1865: 1842: 1838: 1826: 1825: 1824: 1823: 1822: 1821: 1806: 1802: 1796: 1792: 1788: 1785: 1780: 1776: 1770: 1766: 1762: 1733: 1729: 1725: 1720: 1716: 1712: 1709: 1706: 1703: 1681: 1677: 1654: 1650: 1627: 1623: 1600: 1596: 1576: 1575: 1574: 1573: 1572: 1571: 1560: 1554: 1550: 1546: 1543: 1540: 1535: 1531: 1527: 1524: 1444: 1441: 1422: 1419: 1395: 1386:respectively, 1365: 1361: 1338: 1334: 1311: 1307: 1284: 1280: 1250: 1247: 1244: 1241: 1233: 1229: 1225: 1220: 1216: 1211: 1202: 1198: 1192: 1188: 1180: 1174: 1170: 1166: 1158: 1155: 1153: 1149: 1145: 1141: 1140: 1135: 1132: 1129: 1126: 1118: 1114: 1110: 1105: 1101: 1096: 1087: 1083: 1077: 1073: 1065: 1059: 1055: 1051: 1043: 1040: 1038: 1034: 1030: 1026: 1025: 1015: 1002: 980: 976: 953: 950: 947: 944: 941: 938: 935: 932: 929: 907: 904: 884: 858: 854: 827: 823: 818: 815: 811: 808: 802: 799: 773: 753: 750: 730: 703: 673: 669: 646: 642: 619: 615: 592: 588: 565: 561: 538: 534: 505: 501: 497: 494: 491: 488: 486: 480: 476: 470: 466: 460: 459: 454: 450: 446: 443: 440: 438: 432: 428: 422: 418: 412: 411: 400:would then be 389: 386: 373: 370: 356: 353: 297: 272: 269: 266: 263: 260: 255: 250: 247: 242: 206:electric field 202:depletion zone 103: 100: 73:electric field 42:depletion zone 36:, also called 15: 13: 10: 9: 6: 4: 3: 2: 2774: 2763: 2760: 2758: 2755: 2754: 2752: 2738: 2736:0-12-619455-6 2732: 2728: 2721: 2718: 2713: 2711:0-7167-1088-9 2707: 2703: 2696: 2693: 2688: 2682: 2678: 2671: 2668: 2663: 2657: 2653: 2646: 2643: 2632: 2628: 2622: 2620: 2616: 2611: 2609:0-07-246053-9 2605: 2601: 2600: 2592: 2589: 2584: 2582:0-8493-1951-X 2578: 2575:. CRC Press. 2574: 2573: 2565: 2562: 2557: 2555:0-8493-0066-5 2551: 2548:. CRC Press. 2547: 2546: 2538: 2535: 2528: 2524: 2521: 2519: 2516: 2514: 2511: 2510: 2506: 2504: 2502: 2498: 2494: 2490: 2486: 2471: 2467: 2437: 2430: 2426: 2422: 2415: 2411: 2407: 2404: 2396: 2392: 2388: 2384: 2379: 2374: 2370: 2362: 2361: 2360: 2359: 2358: 2357: 2356: 2340: 2336: 2327: 2319: 2317: 2315: 2311: 2307: 2303: 2279: 2274: 2270: 2266: 2263: 2260: 2256: 2252: 2245: 2244: 2243: 2242: 2241: 2240: 2239: 2237: 2219: 2215: 2206: 2202: 2198: 2190: 2188: 2186: 2169: 2147: 2144: 2140: 2117: 2113: 2103: 2087: 2084: 2078: 2073: 2069: 2066: 2061: 2058: 2054: 2049: 2044: 2036: 2032: 2026: 2022: 2014: 2010: 2006: 2001: 1997: 1990: 1984: 1978: 1974: 1968: 1964: 1960: 1953: 1948: 1945: 1937: 1921: 1917: 1913: 1908: 1904: 1900: 1897: 1889: 1885: 1867: 1863: 1840: 1836: 1804: 1800: 1794: 1790: 1786: 1783: 1778: 1774: 1768: 1764: 1760: 1753: 1752: 1751: 1750: 1749: 1748: 1747: 1731: 1727: 1723: 1718: 1714: 1710: 1707: 1704: 1701: 1679: 1675: 1652: 1648: 1625: 1621: 1598: 1594: 1585: 1581: 1558: 1552: 1548: 1544: 1541: 1538: 1533: 1529: 1525: 1522: 1515: 1514: 1513: 1512: 1511: 1510: 1509: 1507: 1498: 1494: 1492: 1487: 1482: 1480: 1476: 1471: 1466: 1462: 1458: 1457:MOS capacitor 1449: 1442: 1440: 1438: 1437: 1420: 1409: 1393: 1385: 1381: 1363: 1359: 1336: 1332: 1309: 1305: 1282: 1278: 1267: 1245: 1231: 1227: 1223: 1218: 1214: 1209: 1200: 1196: 1190: 1186: 1178: 1172: 1168: 1164: 1156: 1154: 1147: 1143: 1130: 1116: 1112: 1108: 1103: 1099: 1094: 1085: 1081: 1075: 1071: 1063: 1057: 1053: 1049: 1041: 1039: 1032: 1028: 1014: 1000: 978: 974: 964: 951: 945: 942: 939: 936: 933: 930: 927: 919: 905: 882: 874: 856: 852: 842: 825: 821: 816: 813: 809: 806: 800: 797: 789: 787: 771: 751: 748: 728: 719: 717: 701: 693: 689: 671: 667: 644: 640: 617: 613: 590: 586: 563: 559: 536: 532: 522: 503: 499: 495: 492: 489: 487: 478: 474: 468: 464: 452: 448: 444: 441: 439: 430: 426: 420: 416: 401: 399: 395: 387: 385: 383: 379: 371: 369: 367: 366:rectification 363: 354: 352: 350: 346: 342: 338: 334: 330: 326: 321: 317: 313: 284: 270: 264: 261: 258: 248: 245: 230: 228: 224: 218: 216: 212: 207: 203: 199: 194: 193:recombination 189: 187: 183: 179: 175: 171: 167: 163: 161: 157: 153: 145: 141: 137: 133: 129: 124: 116: 108: 101: 99: 97: 93: 89: 85: 81: 78: 77:semiconductor 74: 70: 66: 62: 61:semiconductor 59: 55: 51: 47: 43: 39: 35: 31: 26: 22: 2729:. Elsevier. 2726: 2720: 2701: 2695: 2676: 2670: 2651: 2645: 2634:. Retrieved 2630: 2598: 2591: 2571: 2564: 2544: 2537: 2500: 2496: 2488: 2457: 2326:band bending 2323: 2305: 2301: 2299: 2235: 2204: 2200: 2196: 2194: 2184: 2104: 1938: 1887: 1883: 1827: 1583: 1579: 1577: 1505: 1503: 1483: 1469: 1464: 1454: 1435: 1270:In summary, 1269: 1016: 965: 920: 873:permittivity 843: 790: 720: 523: 402: 398:flux density 391: 381: 378:reverse bias 375: 372:Reverse bias 358: 355:Forward bias 348: 344: 332: 324: 319: 311: 285: 231: 226: 222: 219: 210: 201: 197: 190: 186:valence band 164: 156:steady state 152:p–n junction 149: 126:Figure 3. A 53: 49: 45: 41: 37: 33: 27: 25: 1486:polysilicon 1384:donor atoms 786:Gauss's law 692:donor atoms 128:PN junction 80:electronics 2751:Categories 2661:0201543931 2636:2018-09-26 2529:References 2468:ϵ 2427:ϵ 2393:ϵ 2114:ϵ 2067:− 1975:ϵ 1965:ϵ 1949:≈ 1784:≈ 1711:≪ 1418:Δ 1243:Δ 1169:ϵ 1128:Δ 1054:ϵ 949:Δ 934:∫ 903:Δ 853:ϵ 822:ϵ 807:∫ 493:− 268:∇ 259:− 249:σ 166:Electrons 140:potential 2507:See also 1746:, then: 1470:depleted 1380:acceptor 688:acceptor 331:density 329:electron 323:density 69:diffused 2762:MOSFETs 2491:is the 2314:channel 1479:channel 1406:is the 871:is the 714:is the 384:flows. 314:is the 2733:  2708:  2683:  2658:  2606:  2579:  2552:  2458:where 2310:MOSFET 2105:where 1828:where 1578:where 844:where 784:(i.e. 524:where 376:Under 286:where 136:doping 94:, and 84:diodes 32:, the 2493:farad 1855:and 170:holes 67:have 58:doped 2731:ISBN 2706:ISBN 2681:ISBN 2656:ISBN 2604:ISBN 2577:ISBN 2550:ISBN 2501:bend 2495:and 2185:some 1886:and 1667:and 1613:and 1582:and 1410:and 1382:and 1351:and 1297:and 690:and 659:and 605:and 551:and 168:and 347:to 217:). 200:or 52:or 28:In 2753:: 2629:. 2618:^ 2316:. 1439:. 1013:. 718:. 368:. 351:. 283:, 162:. 90:, 86:, 82:: 48:, 44:, 40:, 2739:. 2714:. 2689:. 2664:. 2639:. 2612:. 2585:. 2558:. 2497:m 2489:F 2472:0 2438:, 2431:0 2423:w 2416:A 2412:N 2408:q 2405:= 2397:0 2389:A 2385:Q 2380:= 2375:m 2371:E 2341:m 2337:E 2306:Q 2280:w 2275:A 2271:N 2267:q 2264:= 2261:A 2257:/ 2253:Q 2236:w 2220:A 2216:N 2205:w 2201:A 2197:Q 2170:V 2148:i 2145:b 2141:V 2118:r 2088:2 2085:1 2079:] 2074:) 2070:V 2062:i 2059:b 2055:V 2050:( 2045:) 2037:D 2033:N 2027:A 2023:N 2015:D 2011:N 2007:+ 2002:A 1998:N 1991:( 1985:q 1979:0 1969:r 1961:2 1954:[ 1946:w 1922:P 1918:w 1914:+ 1909:N 1905:w 1901:= 1898:w 1888:n 1884:p 1868:N 1864:w 1841:P 1837:w 1820:. 1805:N 1801:w 1795:D 1791:N 1787:q 1779:P 1775:w 1769:A 1765:N 1761:q 1732:A 1728:N 1724:, 1719:D 1715:N 1708:p 1705:, 1702:n 1680:A 1676:N 1653:D 1649:N 1626:A 1622:N 1599:D 1595:N 1584:p 1580:n 1559:, 1553:D 1549:N 1545:+ 1542:p 1539:= 1534:A 1530:N 1526:+ 1523:n 1493:. 1465:Q 1421:V 1394:q 1364:d 1360:N 1337:a 1333:N 1310:p 1306:x 1283:n 1279:x 1249:) 1246:V 1240:( 1232:d 1228:N 1224:+ 1219:a 1215:N 1210:1 1201:a 1197:N 1191:d 1187:N 1179:q 1173:s 1165:2 1157:= 1148:p 1144:x 1134:) 1131:V 1125:( 1117:d 1113:N 1109:+ 1104:a 1100:N 1095:1 1086:d 1082:N 1076:a 1072:N 1064:q 1058:s 1050:2 1042:= 1033:n 1029:x 1001:V 979:n 975:x 952:V 946:= 943:x 940:d 937:E 931:= 928:V 906:V 883:V 857:s 826:s 817:x 814:d 810:D 801:= 798:E 772:E 752:x 749:d 729:D 702:q 672:d 668:N 645:a 641:N 618:p 614:x 591:n 587:x 564:p 560:Q 537:n 533:Q 504:a 500:N 496:q 490:= 479:p 475:x 469:p 465:Q 453:d 449:N 445:q 442:= 431:n 427:x 421:n 417:Q 349:σ 345:D 333:n 325:p 320:p 312:e 296:E 271:p 265:D 262:e 254:E 246:= 241:J 227:D 223:σ 23:.

Index

Depletion (disambiguation)
semiconductor physics
doped
semiconductor
charge carriers
diffused
electric field
semiconductor
electronics
diodes
bipolar junction transistors
field-effect transistors
variable capacitance diodes



PN junction
depletion width
doping
potential
Quasi Fermi levels
p–n junction
steady state
dynamic equilibrium
Electrons
holes
N-type semiconductor
conduction band
P-type semiconductor
valence band

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.