Knowledge

Depth of noncommutative subrings

Source 📝

3170:, and then a very delicate check that the resulting algebra-coalgebra structure is a Hopf algebra (see for example the article from 2001 below); the method of proof is considerably simplified by the 2003 article cited below (albeit packaged into the definition of Hopf algebroid). The Hopf algebroid structure on the endomorphism ring 1407:). Since a group algebra is a Hopf algebra, the first example above illustrates the back implication of the theorem. Other examples come from the fact that finite Hopf-Galois extensions are depth two in a strong sense (the split epimorphism in the definition may be replaced by a bimodule isomorphism). 1375:> 2 makes sense via the right endomorphism ring extension iterated to generate a tower of rings (a technical procedure beyond the scope of this survey, although the first step, the endomorphism ring theorem, is described in the section on Frobenius extension under 3161:
The proof of this theorem is a reconstruction theorem, requiring the construction of a Hopf algebra as a minimum, but in most papers done by construction of a nondegenerate pairing of two algebras in the iterated endomorphism algebra tower above
727: 556: 1333: 3116: 1214: 2165: 3246: 2862: 3027:> 2 Frobenius extension since such a depth n extension embeds in a depth two extension in a tower of iterated endomorphism rings. For example, given a depth three Frobenius extension of ring 2094: 608: 2922: 423: 162: 1089: 226: 782: 2035:
coefficients and combinatorics of skew tableaux to be (up to permutation) the 2 by 3 matrix with top row 1,1,0 and bottom row 0,1,1, which has depth three after applying the definition.
2978: 2727: 1836: 963: 3133:: in particular, somewhat related to A. Ocneanu's definition of depth, his theory of paragroups, and the articles by W. Szymanski, Nikshych-Vainerman, R. Longo and others. 369: 2800: 1720: 877: 2480: 2038:
In a 2011 article in the Journal of Algebra by R. Boltje, S. Danz and B. Kuelshammer, they provide a simplified and extended definition of the depth of any unital subring
104: 2525: 1913: 280:.) Equivalently, the condition for left or right depth two may be given in terms of a split monomorphism of bimodules where the domains and codomains above are reversed. 2624: 2333: 996: 2582: 2013: 1977: 1781: 2276: 816: 1751: 428: 2642:
Main classes of examples of depth two extensions are Galois extensions of algebras being acted upon by groups, Hopf algebras, weak Hopf algebras or
613: 3038: 1110: 56:. A more recent definition of depth of any unital subring in any associative ring is proposed (see below) in a paper studying the depth of a 3248:
is one-dimensional. The action of an endomorphism on its space of definition is shown to be a Hopf-Galois action. The dual Hopf algebra
3430: 2103: 1219: 3310: 1371:
group algebras of a subgroup pair of finite index) the two one-sided conditions of depth two are equivalent, and a notion of depth
3284:
is not as important to the proof as the depth two hypothesis and might be avoided by imposing a progenerator module condition on
3181: 2813: 48:, whereas the notion of depth greater than two measures the defect, or distance, from being depth two in a tower of iterated 2366:
thereby showing that combinatorial depth is finite. In more detail, one defines an ascending chain of sets of subgroups of
3121:
The main theorem in this subject is the following based on algebraic arguments in two of the articles below, published in
2936:
extension, the right and left endomorphism rings are anti-isomorphic, which restricts to an antipode on the bialgebroid
2053: 561: 3001: 2879: 1587: 1474:
is isomorphic to the permutation module on the right cosets. The 2013 paper referenced below proves that the depth of
3276:
is precisely the invariant subalgebra of the Hopf-Galois action (and not just contained within). The condition that
382: 121: 3252:
introduced above as well in the Hopf algebroid context and the dual left action becomes a right coaction that makes
1021: 2032: 186: 732: 37: 1633: 3316:
Boltje, R.; Külshammer, B. (2010), "On the depth two condition for group algebra and Hopf algebra extensions",
2939: 2688: 3406: 3366: 3178:-bimodule A (discussed above) becomes a Hopf algebra in the presence of the hypothesis that the centralizer 3122: 2031:. The inclusion matrix may be computed in at least three ways via idempotents, via character tables or via 1786: 929: 328: 3364:
Kadison, L.; Nikshych, D. (2001), "Hopf algebra actions of strongly separable extensions of depth two",
1527: 3340:
Boltje, R.; Danz, S.; Külshammer, B. (2011), "On the depth of subgroups and group algebra extensions",
2924:(often called a theory of duality of actions, which dates back in operator algebras to the 1970s). If 2354:-set homomorphisms instead of modules and module homomorphisms. They characterize combinatorial depth 3477: 2772: 1683: 849: 2985: 1571: 315: 2437: 83: 3457: 3439: 3393: 3375: 3342: 3318: 3013: 2485: 1873: 1617: 2587: 2296: 968: 3404:
Kadison, L.; Szlachanyi, K. (2003), "Bialgebroid actions on depth two extensions and duality",
3306: 2933: 2667: 2546: 2220: 1982: 1946: 1583: 1567: 1376: 1352: 49: 21: 3428:
Kadison, L. (2014), "Hopf subalgebras and tensor powers of generalized permutation modules",
1760: 3449: 3415: 3385: 3351: 3327: 3126: 2246: 1726:(and each corresponding entry). Denoting the left-hand side of this inequality by the power 1661: 791: 69: 3020:; see Brzezinski-Wisbauer for the definition of the Amitsur cochain complex with product). 1729: 1652:
Depth in relation to finite-dimensional semisimple algebras and subgroups of finite groups
308: 551:{\displaystyle p((a_{1},\cdots ,a_{n}))=\sum _{i=1}^{n}a_{i}g_{i}^{-1}\otimes _{B}g_{i}} 2981: 2643: 41: 3420: 2761:
similar to that of Hopf-Galois theory. There is a right bialgebroid structure on the
3471: 3461: 2758: 895: 3397: 3145:
having depth 2, a surjective Frobenius homomorphism and one-dimensional centralizer
3356: 3332: 2434:
to be minimum, and a technical definition of odd combinatorial depth. For example,
2215:-bimodules). (This definition is equivalent to an earlier notion of depth in case 1384: 296: 61: 45: 891: 25: 17: 3453: 722:{\displaystyle q(a\otimes _{B}a')=(a\gamma _{1}(a'),\cdots ,a\gamma _{n}(a'))} 300: 65: 3111:{\displaystyle \lambda :B\rightarrow {\mbox{End}}\,A_{B},\ \lambda (b)(a)=ba} 3305:. London Math. Soc. Lect. Note Ser., 309. Cambridge University Press, 2003. 3130: 1546:) (not counting multiplicities, an entirely similar definition for depth of 1209:{\displaystyle p(a_{1},\cdots ,a_{n})=\sum _{i=1}^{n}x_{i}\otimes _{B}a_{i}} 3389: 2235:
are complex semisimple algebras.) Again notice that a subring having depth
57: 3023:
The Galois theory of a depth two extension is not irrelevant to a depth
2278:
denote the minimal depth. They then apply this to the group algebras of
1554:-module with closely related results). As a consequence, the depth of 165: 53: 3380: 2682: 2626:, which in turn is bounded by twice the index of the normalizer of 2864:, i.e. isomorphic as rings to the smash product of the bialgebroid 3444: 2344: 2160:{\displaystyle \oplus _{i=1}^{m}A\otimes _{B}\cdots \otimes _{B}A} 1606: 1498:-module is defined in that paper to be the least positive integer 1335:
as the reader may verify. A similar argument naturally shows that
1328:{\displaystyle q(a\otimes _{B}a')=(f_{1}(a)a',\cdots ,f_{n}(a)a')} 2810:; certain endomorphism rings decompose as smash product, such as 890:
As another example (perhaps more elementary than the first; see
1624:
is the length of the descending chain of annihilator ideals in
2207:-bimodules (or equivalently for free Frobenius extensions, as 2015:, the order 2 and order 6 permutation groups on three letter 1403:(i.e. invariant under the left and right adjoint actions of 1562:
is finite if and only if its "generalized quotient module"
3241:{\displaystyle R=\{r\in A:br=rb{\text{ for all }}b\in B\}} 1414:
be a Hopf subalgebra of a finite-dimensional Hopf algebra
3035:, one can show that the left multiplication monomorphism 2638:
Galois theory for depth two extensions and a Main Theorem
2343:
mimicking the definition of depth of a subring but using
1632:, which stabilize on the maximal Hopf ideal within the 1482:
is determined to the nearest even value by the depth of
2857:{\displaystyle {\mbox{End}}\,A_{B}\cong A\otimes _{R}S} 3055: 2944: 2884: 2818: 2693: 2430:. The minimum combinatorial depth follows from taking 1664:) of finite-dimensional semisimple (complex) algebras 36:. The notion of depth two is important in a certain 3264:. The condition that the Frobenius homomorphism map 3184: 3041: 2942: 2882: 2816: 2775: 2691: 2590: 2549: 2488: 2440: 2299: 2249: 2106: 2056: 1985: 1949: 1876: 1789: 1763: 1753:
and similarly for all powers of the inclusion matrix
1732: 1686: 1222: 1113: 1024: 971: 932: 852: 794: 735: 616: 564: 431: 385: 331: 189: 124: 86: 2227:
with surjective Frobenius homomorphism, for example
2199:
if the same condition is satisfied more strongly as
1660:
is the inclusion matrix (or incidence matrix of the
1943:. As another example, consider the group algebras 264:; the theory works as well for a ring homomorphism 179:-bimodules, there is a corresponding definition of 3240: 3110: 2972: 2916: 2856: 2794: 2721: 2618: 2576: 2519: 2474: 2327: 2270: 2159: 2100:+1 times A) is isomorphic to a direct summand in 2088: 2007: 1971: 1907: 1830: 1783:on the subalgebra pair of semisimple algebras is: 1775: 1745: 1714: 1327: 1208: 1083: 990: 957: 871: 810: 776: 721: 602: 550: 417: 363: 236:is a split epimorphism if there is a homomorphism 220: 156: 98: 2670:extension (briefly called Frobenius extensions). 2089:{\displaystyle A\otimes _{B}\cdots \otimes _{B}A} 1850:+1 condition.) For example, a depth one subgroup 603:{\displaystyle q:A\otimes _{B}A\rightarrow A^{n}} 2984:. There is the following relation with relative 2917:{\displaystyle {\mbox{End}}\,A\otimes _{B}A_{A}} 2370:starting with the zeroth stage singleton set of 2666:-Galois, explained in detail in the article on 418:{\displaystyle A^{n}\rightarrow A\otimes _{B}A} 157:{\displaystyle A^{n}\rightarrow A\otimes _{B}A} 2358:as a condition on the number of conjugates of 1084:{\displaystyle \sum _{i=1}^{n}x_{i}f_{i}(a)=a} 1870:, satisfies the condition on the centralizer 1597:is a permutation module over a group algebra 1383:is a Hopf subalgebra of a finite-dimensional 221:{\displaystyle A^{n}=A\times \ldots \times A} 8: 3235: 3191: 1672:, the depth two condition on the subalgebra 777:{\displaystyle \gamma _{i}(g)=\delta _{ij}g} 2741:is a left bialgebroid over the centralizer 2658:is a depth two extension of its subalgebra 110:if there is a split epimorphism of natural 2872:it acts on. Something similar is true for 2382:th stage is to intersect all subgroups of 2293:They define a minimum combinatorial depth 1422:° denote the maximal ideal of elements of 3443: 3419: 3379: 3355: 3331: 3221: 3183: 3141:is a Frobenius extension of a subalgebra 3066: 3061: 3054: 3040: 2973:{\displaystyle {\mbox{End}}\,{}_{B}A_{B}} 2964: 2954: 2952: 2950: 2943: 2941: 2908: 2898: 2890: 2883: 2881: 2845: 2829: 2824: 2817: 2815: 2783: 2774: 2722:{\displaystyle {\mbox{End}}\,{}_{B}A_{B}} 2713: 2703: 2701: 2699: 2692: 2690: 2595: 2589: 2548: 2502: 2487: 2445: 2439: 2304: 2298: 2248: 2148: 2135: 2122: 2111: 2105: 2077: 2064: 2055: 1999: 1984: 1963: 1948: 1890: 1875: 1816: 1794: 1788: 1762: 1737: 1731: 1694: 1685: 1648:= 0 } (using a 1967 theorem of Rieffel). 1526:from the right) has the same constituent 1299: 1263: 1236: 1221: 1200: 1190: 1180: 1170: 1159: 1143: 1124: 1112: 1060: 1050: 1040: 1029: 1023: 976: 970: 937: 931: 898:for some of the elementary notions), let 860: 851: 799: 793: 762: 740: 734: 696: 660: 630: 615: 594: 578: 563: 542: 532: 519: 514: 504: 494: 483: 464: 445: 430: 406: 390: 384: 355: 336: 330: 194: 188: 145: 129: 123: 85: 2378:by all its conjugate subgroups, and the 1490:-module (by restriction). The depth of 1846:condition, then it satisfies the depth 287:be the group algebra of a finite group 3125:, that are inspired from the field of 2733:: denoting this endomorphism ring by 2685:theory based on the natural action of 2646:; for example, suppose a finite group 902:be an algebra over a commutative ring 2988:: the relative Hochschild complex of 2183:-bimodules for some positive integer 303:for the elementary definitions). Let 256:is referred to as the ring extension 232:times) as well as the common notion, 7: 3301:Tomasz Brzezinski; Robert Wisbauer, 3000:, and cup product, is isomorphic as 2932:is in addition to being depth two a 2673:Conversely, any depth two extension 2650:acts by automorphisms on an algebra 1831:{\displaystyle M^{m+1}\leq nM^{m-1}} 1470:, and one shows as an exercise that 1458:-module coalgebra. For example, if 958:{\displaystyle f_{i}:A\rightarrow B} 818:(and extended linearly to a mapping 3431:Journal of Pure and Applied Algebra 2414:−1)'st stage subset. For example, 1578:. This is the case for example if 364:{\displaystyle g_{1},\cdots ,g_{n}} 240:in the reverse direction such that 3137:Main Theorem: Suppose an algebra 2394:. Then the combinatorial depth of 2390:−1)'st stage by all conjugates of 1347:Depth in relation to Hopf algebras 14: 2543:. In general, the minimum depth 2410:th stage subset is equal to the ( 183:. Here we use the usual notation 2531:and its centralizer subgroup in 1757:, the condition of being depth 1434:is a right ideal and coideal in 910:is taken to be in the center of 291:(over any commutative base ring 2662:of invariants if the action is 2527:(i.e., G equals the product of 2426:has combinatorial depth two in 2374:, the first stage intersecting 1628:of increasing tensor powers of 307:be the group (sub)algebra of a 272:, which induces right and left 44:in place of the more classical 3357:10.1016/j.jalgebra.2011.03.019 3333:10.1016/j.jalgebra.2009.11.043 3280:be a Frobenius extension over 3096: 3090: 3087: 3081: 3051: 3004:to the Amitsur complex of the 2795:{\displaystyle A\otimes _{B}A} 2613: 2601: 2571: 2553: 2514: 2508: 2463: 2451: 2322: 2310: 2265: 2253: 1902: 1896: 1715:{\displaystyle MM^{t}M\leq nM} 1322: 1311: 1305: 1275: 1269: 1256: 1250: 1226: 1149: 1117: 1072: 1066: 949: 872:{\displaystyle A\otimes _{B}A} 752: 746: 716: 713: 702: 677: 666: 650: 644: 620: 587: 558:. It is split by the mapping 473: 470: 438: 435: 396: 135: 34:depth of a Frobenius extension 1: 3421:10.1016/s0001-8708(02)00028-2 1522:-modules, diagonal action of 1426:having counit value 0. Then 76:Definition and first examples 3153:is Hopf-Galois extension of 3002:differential graded algebras 2868:(or its dual) with the ring 2475:{\displaystyle d_{c}(H,G)=1} 1927:a subgroup in the center of 1616:is a Hopf algebra that is a 842:): the splitting condition 99:{\displaystyle B\subseteq A} 38:noncommutative Galois theory 2520:{\displaystyle G=HC_{G}(H)} 1908:{\displaystyle G=HC_{G}(X)} 1858:, viewed as group algebras 834:-module homomorphism since 325:with coset representatives 244:= identity on the image of 3494: 3454:10.1016/j.jpaa.2013.06.008 2619:{\displaystyle d_{c}(H,G)} 2584:is shown to be bounded by 2328:{\displaystyle d_{c}(H,G)} 2286:over any commutative ring 2239:implies that it has depth 2033:Littlewood-Richardson rule 1722:for some positive integer 1680:is given by an inequality 1438:, and the quotient module 991:{\displaystyle x_{i}\in A} 171:; by switching to natural 2027:where the subgroup fixes 1915:for each cyclic subgroup 1866:over the complex numbers 1466:is a subgroup algebra of 1462:is a group algebra, then 248:. (Sometimes the subring 2577:{\displaystyle d(RH,RG)} 2418:is a normal subgroup of 2008:{\displaystyle A=CS_{3}} 1972:{\displaystyle B=CS_{2}} 3407:Advances in Mathematics 3367:Advances in Mathematics 3123:Advances in Mathematics 2980:satisfying axioms of a 1776:{\displaystyle m\geq 1} 918:is a finite projective 276:-modules structures on 28:, there is a notion of 3390:10.1006/aima.2001.2003 3242: 3112: 2974: 2918: 2858: 2796: 2765:-centralized elements 2723: 2620: 2578: 2521: 2476: 2329: 2272: 2271:{\displaystyle d(B,A)} 2161: 2090: 2009: 1973: 1923:(whence normal); e.g. 1909: 1832: 1777: 1747: 1716: 1605:has a basis that is a 1528:indecomposable modules 1339:is right depth two in 1329: 1210: 1175: 1085: 1045: 992: 959: 922:-module, so there are 883:is right depth two in 873: 812: 811:{\displaystyle g_{j}H} 778: 723: 604: 552: 499: 419: 365: 295:; see the articles on 222: 158: 100: 3303:Corings and Comodules 3272:is used to show that 3260:-Galois extension of 3243: 3113: 2996:with coefficients in 2975: 2919: 2859: 2797: 2724: 2621: 2579: 2522: 2477: 2330: 2273: 2162: 2091: 2010: 1974: 1910: 1833: 1778: 1748: 1746:{\displaystyle M^{3}} 1717: 1330: 1211: 1155: 1103:is left depth two in 1086: 1025: 993: 960: 874: 813: 779: 724: 605: 553: 479: 420: 366: 223: 159: 101: 24:extensions, areas of 3182: 3039: 2940: 2880: 2814: 2773: 2689: 2588: 2547: 2486: 2438: 2297: 2247: 2104: 2054: 2042:of associative ring 1983: 1947: 1874: 1842:satisfies the depth 1787: 1761: 1730: 1684: 1518:, tensor product of 1220: 1111: 1022: 969: 930: 879:is satisfied. Thus 850: 792: 733: 614: 562: 429: 383: 329: 187: 122: 84: 3223: for all  2986:homological algebra 2749:commuting with all 2127: 1574:(or Green ring) of 1572:representation ring 1379:). For example, if 1216:with splitting map 1099:. It follows that 527: 3343:Journal of Algebra 3319:Journal of Algebra 3238: 3108: 3059: 3014:group-like element 2970: 2948: 2914: 2888: 2854: 2822: 2792: 2719: 2697: 2616: 2574: 2535:); in particular, 2517: 2472: 2339:of a finite group 2325: 2268: 2157: 2107: 2086: 2005: 1969: 1905: 1854:of a finite group 1838:. (Notice that if 1828: 1773: 1743: 1712: 1618:semisimple algebra 1325: 1206: 1081: 988: 955: 869: 846:= the identity on 808: 774: 719: 600: 548: 510: 415: 361: 218: 164:for some positive 154: 96: 50:endomorphism rings 40:, which generates 30:depth two subring 3224: 3127:operator algebras 3077: 3058: 2947: 2934:Frobenius algebra 2887: 2821: 2696: 2668:Frobenius algebra 2221:Frobenius algebra 1636:ideal, Ann  1584:projective module 1568:algebraic element 1391:has depth two in 1377:Frobenius algebra 1353:Frobenius algebra 371:. Define a split 283:For example, let 80:A unital subring 22:Frobenius algebra 3485: 3464: 3447: 3424: 3423: 3400: 3383: 3360: 3359: 3336: 3335: 3326:(6): 1783–1796, 3247: 3245: 3244: 3239: 3225: 3222: 3117: 3115: 3114: 3109: 3075: 3071: 3070: 3060: 3056: 3016:the identity on 2979: 2977: 2976: 2971: 2969: 2968: 2959: 2958: 2953: 2949: 2945: 2923: 2921: 2920: 2915: 2913: 2912: 2903: 2902: 2889: 2885: 2863: 2861: 2860: 2855: 2850: 2849: 2834: 2833: 2823: 2819: 2801: 2799: 2798: 2793: 2788: 2787: 2728: 2726: 2725: 2720: 2718: 2717: 2708: 2707: 2702: 2698: 2694: 2625: 2623: 2622: 2617: 2600: 2599: 2583: 2581: 2580: 2575: 2526: 2524: 2523: 2518: 2507: 2506: 2481: 2479: 2478: 2473: 2450: 2449: 2362:intersecting in 2334: 2332: 2331: 2326: 2309: 2308: 2277: 2275: 2274: 2269: 2243:+1, so they let 2166: 2164: 2163: 2158: 2153: 2152: 2140: 2139: 2126: 2121: 2095: 2093: 2092: 2087: 2082: 2081: 2069: 2068: 2014: 2012: 2011: 2006: 2004: 2003: 1978: 1976: 1975: 1970: 1968: 1967: 1914: 1912: 1911: 1906: 1895: 1894: 1837: 1835: 1834: 1829: 1827: 1826: 1805: 1804: 1782: 1780: 1779: 1774: 1752: 1750: 1749: 1744: 1742: 1741: 1721: 1719: 1718: 1713: 1699: 1698: 1662:Bratteli diagram 1334: 1332: 1331: 1326: 1321: 1304: 1303: 1285: 1268: 1267: 1249: 1241: 1240: 1215: 1213: 1212: 1207: 1205: 1204: 1195: 1194: 1185: 1184: 1174: 1169: 1148: 1147: 1129: 1128: 1090: 1088: 1087: 1082: 1065: 1064: 1055: 1054: 1044: 1039: 1018:if it satisfies 997: 995: 994: 989: 981: 980: 964: 962: 961: 956: 942: 941: 926:-linear mapping 878: 876: 875: 870: 865: 864: 817: 815: 814: 809: 804: 803: 783: 781: 780: 775: 770: 769: 745: 744: 728: 726: 725: 720: 712: 701: 700: 676: 665: 664: 643: 635: 634: 609: 607: 606: 601: 599: 598: 583: 582: 557: 555: 554: 549: 547: 546: 537: 536: 526: 518: 509: 508: 498: 493: 469: 468: 450: 449: 424: 422: 421: 416: 411: 410: 395: 394: 370: 368: 367: 362: 360: 359: 341: 340: 227: 225: 224: 219: 199: 198: 163: 161: 160: 155: 150: 149: 134: 133: 118:-bimodules from 105: 103: 102: 97: 70:commutative ring 3493: 3492: 3488: 3487: 3486: 3484: 3483: 3482: 3468: 3467: 3427: 3403: 3363: 3339: 3315: 3298: 3180: 3179: 3118:has depth two. 3062: 3037: 3036: 2960: 2951: 2938: 2937: 2904: 2894: 2878: 2877: 2841: 2825: 2812: 2811: 2779: 2771: 2770: 2709: 2700: 2687: 2686: 2644:Hopf algebroids 2640: 2591: 2586: 2585: 2545: 2544: 2498: 2484: 2483: 2482:if and only if 2441: 2436: 2435: 2422:if and only if 2300: 2295: 2294: 2245: 2244: 2144: 2131: 2102: 2101: 2073: 2060: 2052: 2051: 1995: 1981: 1980: 1959: 1945: 1944: 1886: 1872: 1871: 1812: 1790: 1785: 1784: 1759: 1758: 1733: 1728: 1727: 1690: 1682: 1681: 1654: 1644:in H such that 1620:, the depth of 1395:if and only if 1349: 1314: 1295: 1278: 1259: 1242: 1232: 1218: 1217: 1196: 1186: 1176: 1139: 1120: 1109: 1108: 1056: 1046: 1020: 1019: 1008:projective base 972: 967: 966: 933: 928: 927: 856: 848: 847: 795: 790: 789: 758: 736: 731: 730: 705: 692: 669: 656: 636: 626: 612: 611: 590: 574: 560: 559: 538: 528: 500: 460: 441: 427: 426: 402: 386: 381: 380: 351: 332: 327: 326: 309:normal subgroup 190: 185: 184: 141: 125: 120: 119: 108:right depth two 82: 81: 78: 42:Hopf algebroids 12: 11: 5: 3491: 3489: 3481: 3480: 3470: 3469: 3466: 3465: 3438:(2): 367–380, 3425: 3401: 3374:(2): 258–286, 3361: 3337: 3313: 3297: 3294: 3237: 3234: 3231: 3228: 3220: 3217: 3214: 3211: 3208: 3205: 3202: 3199: 3196: 3193: 3190: 3187: 3159: 3158: 3107: 3104: 3101: 3098: 3095: 3092: 3089: 3086: 3083: 3080: 3074: 3069: 3065: 3053: 3050: 3047: 3044: 2982:Hopf algebroid 2967: 2963: 2957: 2911: 2907: 2901: 2897: 2893: 2853: 2848: 2844: 2840: 2837: 2832: 2828: 2791: 2786: 2782: 2778: 2716: 2712: 2706: 2639: 2636: 2615: 2612: 2609: 2606: 2603: 2598: 2594: 2573: 2570: 2567: 2564: 2561: 2558: 2555: 2552: 2516: 2513: 2510: 2505: 2501: 2497: 2494: 2491: 2471: 2468: 2465: 2462: 2459: 2456: 2453: 2448: 2444: 2335:of a subgroup 2324: 2321: 2318: 2315: 2312: 2307: 2303: 2267: 2264: 2261: 2258: 2255: 2252: 2156: 2151: 2147: 2143: 2138: 2134: 2130: 2125: 2120: 2117: 2114: 2110: 2085: 2080: 2076: 2072: 2067: 2063: 2059: 2002: 1998: 1994: 1991: 1988: 1966: 1962: 1958: 1955: 1952: 1904: 1901: 1898: 1893: 1889: 1885: 1882: 1879: 1825: 1822: 1819: 1815: 1811: 1808: 1803: 1800: 1797: 1793: 1772: 1769: 1766: 1740: 1736: 1711: 1708: 1705: 1702: 1697: 1693: 1689: 1653: 1650: 1593:-module or if 1566:represents an 1348: 1345: 1324: 1320: 1317: 1313: 1310: 1307: 1302: 1298: 1294: 1291: 1288: 1284: 1281: 1277: 1274: 1271: 1266: 1262: 1258: 1255: 1252: 1248: 1245: 1239: 1235: 1231: 1228: 1225: 1203: 1199: 1193: 1189: 1183: 1179: 1173: 1168: 1165: 1162: 1158: 1154: 1151: 1146: 1142: 1138: 1135: 1132: 1127: 1123: 1119: 1116: 1080: 1077: 1074: 1071: 1068: 1063: 1059: 1053: 1049: 1043: 1038: 1035: 1032: 1028: 987: 984: 979: 975: 954: 951: 948: 945: 940: 936: 868: 863: 859: 855: 807: 802: 798: 773: 768: 765: 761: 757: 754: 751: 748: 743: 739: 718: 715: 711: 708: 704: 699: 695: 691: 688: 685: 682: 679: 675: 672: 668: 663: 659: 655: 652: 649: 646: 642: 639: 633: 629: 625: 622: 619: 597: 593: 589: 586: 581: 577: 573: 570: 567: 545: 541: 535: 531: 525: 522: 517: 513: 507: 503: 497: 492: 489: 486: 482: 478: 475: 472: 467: 463: 459: 456: 453: 448: 444: 440: 437: 434: 414: 409: 405: 401: 398: 393: 389: 379:epimorphism p: 358: 354: 350: 347: 344: 339: 335: 217: 214: 211: 208: 205: 202: 197: 193: 181:left depth two 153: 148: 144: 140: 137: 132: 128: 95: 92: 89: 77: 74: 66:group algebras 13: 10: 9: 6: 4: 3: 2: 3490: 3479: 3476: 3475: 3473: 3463: 3459: 3455: 3451: 3446: 3441: 3437: 3433: 3432: 3426: 3422: 3417: 3413: 3409: 3408: 3402: 3399: 3395: 3391: 3387: 3382: 3377: 3373: 3369: 3368: 3362: 3358: 3353: 3349: 3345: 3344: 3338: 3334: 3329: 3325: 3321: 3320: 3314: 3312: 3311:0-521-53931-5 3308: 3304: 3300: 3299: 3295: 3293: 3291: 3288:as a natural 3287: 3283: 3279: 3275: 3271: 3267: 3263: 3259: 3255: 3251: 3232: 3229: 3226: 3218: 3215: 3212: 3209: 3206: 3203: 3200: 3197: 3194: 3188: 3185: 3177: 3173: 3169: 3165: 3156: 3152: 3148: 3144: 3140: 3136: 3135: 3134: 3132: 3128: 3124: 3119: 3105: 3102: 3099: 3093: 3084: 3078: 3072: 3067: 3063: 3048: 3045: 3042: 3034: 3031:over subring 3030: 3026: 3021: 3019: 3015: 3011: 3007: 3003: 2999: 2995: 2991: 2987: 2983: 2965: 2961: 2955: 2935: 2931: 2927: 2909: 2905: 2899: 2895: 2891: 2875: 2871: 2867: 2851: 2846: 2842: 2838: 2835: 2830: 2826: 2809: 2805: 2789: 2784: 2780: 2776: 2768: 2764: 2760: 2759:Galois theory 2756: 2752: 2748: 2744: 2740: 2736: 2732: 2714: 2710: 2704: 2684: 2680: 2676: 2671: 2669: 2665: 2661: 2657: 2653: 2649: 2645: 2637: 2635: 2633: 2629: 2610: 2607: 2604: 2596: 2592: 2568: 2565: 2562: 2559: 2556: 2550: 2542: 2539:is normal in 2538: 2534: 2530: 2511: 2503: 2499: 2495: 2492: 2489: 2469: 2466: 2460: 2457: 2454: 2446: 2442: 2433: 2429: 2425: 2421: 2417: 2413: 2409: 2405: 2401: 2397: 2393: 2389: 2385: 2381: 2377: 2373: 2369: 2365: 2361: 2357: 2353: 2349: 2347: 2342: 2338: 2319: 2316: 2313: 2305: 2301: 2291: 2289: 2285: 2281: 2262: 2259: 2256: 2250: 2242: 2238: 2234: 2230: 2226: 2223:extension of 2222: 2218: 2214: 2210: 2206: 2202: 2198: 2194: 2190: 2187:; similarly, 2186: 2182: 2178: 2174: 2170: 2154: 2149: 2145: 2141: 2136: 2132: 2128: 2123: 2118: 2115: 2112: 2108: 2099: 2083: 2078: 2074: 2070: 2065: 2061: 2057: 2049: 2045: 2041: 2036: 2034: 2030: 2026: 2022: 2018: 2000: 1996: 1992: 1989: 1986: 1964: 1960: 1956: 1953: 1950: 1942: 1938: 1934: 1930: 1926: 1922: 1918: 1899: 1891: 1887: 1883: 1880: 1877: 1869: 1865: 1861: 1857: 1853: 1849: 1845: 1841: 1823: 1820: 1817: 1813: 1809: 1806: 1801: 1798: 1795: 1791: 1770: 1767: 1764: 1756: 1738: 1734: 1725: 1709: 1706: 1703: 1700: 1695: 1691: 1687: 1679: 1675: 1671: 1667: 1663: 1659: 1651: 1649: 1647: 1643: 1639: 1635: 1631: 1627: 1623: 1619: 1615: 1611: 1609: 1604: 1600: 1596: 1592: 1589: 1585: 1581: 1577: 1573: 1569: 1565: 1561: 1557: 1553: 1549: 1545: 1541: 1537: 1533: 1529: 1525: 1521: 1517: 1513: 1509: 1505: 1501: 1497: 1493: 1489: 1485: 1481: 1477: 1473: 1469: 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1413: 1408: 1406: 1402: 1399:is normal in 1398: 1394: 1390: 1386: 1382: 1378: 1374: 1370: 1366: 1362: 1358: 1354: 1346: 1344: 1342: 1338: 1318: 1315: 1308: 1300: 1296: 1292: 1289: 1286: 1282: 1279: 1272: 1264: 1260: 1253: 1246: 1243: 1237: 1233: 1229: 1223: 1201: 1197: 1191: 1187: 1181: 1177: 1171: 1166: 1163: 1160: 1156: 1152: 1144: 1140: 1136: 1133: 1130: 1125: 1121: 1114: 1106: 1102: 1098: 1094: 1078: 1075: 1069: 1061: 1057: 1051: 1047: 1041: 1036: 1033: 1030: 1026: 1017: 1013: 1009: 1005: 1001: 985: 982: 977: 973: 965:and elements 952: 946: 943: 938: 934: 925: 921: 917: 913: 909: 905: 901: 897: 896:module theory 893: 888: 886: 882: 866: 861: 857: 853: 845: 841: 838:is normal in 837: 833: 829: 825: 821: 805: 800: 796: 788:in the coset 787: 771: 766: 763: 759: 755: 749: 741: 737: 709: 706: 697: 693: 689: 686: 683: 680: 673: 670: 661: 657: 653: 647: 640: 637: 631: 627: 623: 617: 595: 591: 584: 579: 575: 571: 568: 565: 543: 539: 533: 529: 523: 520: 515: 511: 505: 501: 495: 490: 487: 484: 480: 476: 465: 461: 457: 454: 451: 446: 442: 432: 412: 407: 403: 399: 391: 387: 378: 374: 356: 352: 348: 345: 342: 337: 333: 324: 320: 317: 313: 310: 306: 302: 298: 294: 290: 286: 281: 279: 275: 271: 267: 263: 259: 255: 251: 247: 243: 239: 235: 231: 215: 212: 209: 206: 203: 200: 195: 191: 182: 178: 174: 170: 167: 151: 146: 142: 138: 130: 126: 117: 113: 109: 93: 90: 87: 75: 73: 71: 67: 63: 59: 55: 51: 47: 46:Galois groups 43: 39: 35: 31: 27: 23: 19: 3435: 3429: 3411: 3405: 3381:math/0107064 3371: 3365: 3347: 3341: 3323: 3317: 3302: 3289: 3285: 3281: 3277: 3273: 3269: 3268:onto all of 3265: 3261: 3257: 3253: 3249: 3175: 3171: 3167: 3163: 3160: 3154: 3150: 3146: 3142: 3138: 3120: 3032: 3028: 3024: 3022: 3017: 3009: 3005: 2997: 2993: 2989: 2929: 2925: 2873: 2869: 2865: 2807: 2803: 2766: 2762: 2754: 2750: 2746: 2745:(those a in 2742: 2738: 2737:, one shows 2734: 2730: 2678: 2674: 2672: 2663: 2659: 2655: 2651: 2647: 2641: 2631: 2627: 2540: 2536: 2532: 2528: 2431: 2427: 2423: 2419: 2415: 2411: 2407: 2403: 2399: 2395: 2391: 2387: 2383: 2379: 2375: 2371: 2367: 2363: 2359: 2355: 2351: 2345: 2340: 2336: 2292: 2287: 2283: 2279: 2240: 2236: 2232: 2228: 2224: 2216: 2212: 2208: 2204: 2200: 2196: 2192: 2188: 2184: 2180: 2176: 2172: 2168: 2097: 2047: 2043: 2039: 2037: 2028: 2024: 2020: 2016: 1940: 1936: 1932: 1928: 1924: 1920: 1916: 1867: 1863: 1859: 1855: 1851: 1847: 1843: 1839: 1754: 1723: 1677: 1673: 1669: 1665: 1657: 1655: 1645: 1641: 1637: 1629: 1625: 1621: 1613: 1607: 1602: 1598: 1594: 1590: 1579: 1575: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1535: 1531: 1523: 1519: 1515: 1511: 1507: 1503: 1499: 1495: 1491: 1487: 1483: 1479: 1475: 1471: 1467: 1463: 1459: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1427: 1423: 1419: 1415: 1411: 1409: 1404: 1400: 1396: 1392: 1388: 1385:Hopf algebra 1380: 1372: 1368: 1364: 1360: 1356: 1350: 1340: 1336: 1107:by defining 1104: 1100: 1096: 1092: 1015: 1011: 1007: 1003: 999: 923: 919: 915: 911: 907: 903: 899: 889: 884: 880: 843: 839: 835: 831: 827: 823: 819: 785: 376: 372: 322: 318: 311: 304: 297:group theory 292: 288: 284: 282: 277: 273: 269: 265: 261: 257: 253: 249: 245: 241: 237: 233: 229: 180: 176: 172: 168: 115: 111: 107: 106:has (or is) 79: 62:finite group 33: 29: 15: 3478:Ring theory 3350:: 258–281, 2191:has depth 2 1634:annihilator 1612:). In case 1454:is a right 1006:) called a 892:ring theory 610:defined by 26:mathematics 18:ring theory 3414:: 75–121, 3296:References 3131:subfactors 2802:dual over 1502:such that 1355:extension 301:group ring 52:above the 3462:119128079 3445:1210.3178 3292:-module. 3230:∈ 3198:∈ 3079:λ 3052:→ 3043:λ 2896:⊗ 2843:⊗ 2836:≅ 2781:⊗ 2757:) with a 2146:⊗ 2142:⋯ 2133:⊗ 2109:⊕ 2075:⊗ 2071:⋯ 2062:⊗ 1821:− 1807:≤ 1768:≥ 1704:≤ 1588:generator 1542:+1 times 1363:(such as 1290:⋯ 1234:⊗ 1188:⊗ 1157:∑ 1134:⋯ 1027:∑ 983:∈ 950:→ 914:. Assume 858:⊗ 760:δ 738:γ 694:γ 684:⋯ 658:γ 628:⊗ 588:→ 576:⊗ 530:⊗ 521:− 481:∑ 455:⋯ 404:⊗ 397:→ 346:⋯ 213:× 210:… 207:× 143:⊗ 136:→ 91:⊆ 3472:Category 3398:18876684 3008:-coring 2386:in the ( 1319:′ 1283:′ 1247:′ 1091:for all 1014:-module 1010:for the 1002:= 1,..., 906:, where 710:′ 674:′ 641:′ 58:subgroup 3174:of the 3149:, then 2654:, then 2406:if the 2046:to be 2 1601:(i.e., 1570:in the 1418:. Let 1387:, then 166:integer 68:over a 54:subring 3460:  3396:  3309:  3076:  3012:(with 2683:Galois 2681:has a 2171:times 2050:+1 if 1550:as an 1534:⊗⋅⋅⋅⊗ 1514:times 1494:as an 1486:as an 1351:For a 729:where 3458:S2CID 3440:arXiv 3394:S2CID 3376:arXiv 2992:over 2348:-sets 2219:is a 2175:) as 1931:, or 1582:is a 1506:⊗⋅⋅⋅⊗ 822:into 316:index 268:into 260:over 60:of a 3307:ISBN 2876:and 2402:is 2 2350:and 2282:and 2231:and 1979:and 1668:and 1640:= { 1610:-set 1586:, a 1410:Let 1367:and 826:, a 784:for 299:and 20:and 3450:doi 3436:218 3416:doi 3412:179 3386:doi 3372:163 3352:doi 3348:335 3328:doi 3324:323 3166:in 3057:End 2946:End 2886:End 2820:End 2806:to 2769:in 2753:in 2729:on 2695:End 2630:in 2398:in 2195:in 1919:in 1862:in 1676:in 1656:If 1558:in 1530:as 1478:in 1095:in 894:or 425:by 321:in 314:of 252:in 64:as 32:or 16:In 3474:: 3456:, 3448:, 3434:, 3410:, 3392:, 3384:, 3370:, 3346:, 3322:, 3256:a 3129:, 2928:| 2677:| 2634:. 2290:. 1939:x 1935:= 1864:CG 1860:CH 1646:Qh 1442:= 1359:| 1343:. 887:. 844:pq 242:pq 72:. 3452:: 3442:: 3418:: 3388:: 3378:: 3354:: 3330:: 3290:B 3286:A 3282:B 3278:A 3274:B 3270:B 3266:A 3262:B 3258:T 3254:A 3250:T 3236:} 3233:B 3227:b 3219:b 3216:r 3213:= 3210:r 3207:b 3204:: 3201:A 3195:r 3192:{ 3189:= 3186:R 3176:B 3172:S 3168:A 3164:B 3157:. 3155:B 3151:A 3147:R 3143:B 3139:A 3106:a 3103:b 3100:= 3097:) 3094:a 3091:( 3088:) 3085:b 3082:( 3073:, 3068:B 3064:A 3049:B 3046:: 3033:B 3029:A 3025:n 3018:A 3010:S 3006:R 2998:A 2994:B 2990:A 2966:B 2962:A 2956:B 2930:B 2926:A 2910:A 2906:A 2900:B 2892:A 2874:T 2870:A 2866:S 2852:S 2847:R 2839:A 2831:B 2827:A 2808:S 2804:R 2790:A 2785:B 2777:A 2767:T 2763:B 2755:B 2751:b 2747:A 2743:R 2739:S 2735:S 2731:A 2715:B 2711:A 2705:B 2679:B 2675:A 2664:G 2660:B 2656:A 2652:A 2648:G 2632:G 2628:H 2614:) 2611:G 2608:, 2605:H 2602:( 2597:c 2593:d 2572:) 2569:G 2566:R 2563:, 2560:H 2557:R 2554:( 2551:d 2541:G 2537:H 2533:G 2529:H 2515:) 2512:H 2509:( 2504:G 2500:C 2496:H 2493:= 2490:G 2470:1 2467:= 2464:) 2461:G 2458:, 2455:H 2452:( 2447:c 2443:d 2432:n 2428:G 2424:H 2420:G 2416:H 2412:n 2408:n 2404:n 2400:G 2396:H 2392:H 2388:n 2384:H 2380:n 2376:H 2372:H 2368:H 2364:G 2360:H 2356:n 2352:G 2346:G 2341:G 2337:H 2323:) 2320:G 2317:, 2314:H 2311:( 2306:c 2302:d 2288:R 2284:H 2280:G 2266:) 2263:A 2260:, 2257:B 2254:( 2251:d 2241:m 2237:m 2233:B 2229:A 2225:B 2217:A 2213:A 2211:- 2209:B 2205:B 2203:- 2201:A 2197:A 2193:n 2189:B 2185:m 2181:B 2179:- 2177:B 2173:A 2169:n 2167:( 2155:A 2150:B 2137:B 2129:A 2124:m 2119:1 2116:= 2113:i 2098:n 2096:( 2084:A 2079:B 2066:B 2058:A 2048:n 2044:A 2040:B 2029:c 2025:c 2023:, 2021:b 2019:, 2017:a 2001:3 1997:S 1993:C 1990:= 1987:A 1965:2 1961:S 1957:C 1954:= 1951:B 1941:K 1937:H 1933:G 1929:G 1925:H 1921:H 1917:X 1903:) 1900:X 1897:( 1892:G 1888:C 1884:H 1881:= 1878:G 1868:C 1856:G 1852:H 1848:m 1844:m 1840:M 1824:1 1818:m 1814:M 1810:n 1802:1 1799:+ 1796:m 1792:M 1771:1 1765:m 1755:M 1739:3 1735:M 1724:n 1710:M 1707:n 1701:M 1696:t 1692:M 1688:M 1678:A 1674:B 1670:A 1666:B 1658:M 1642:h 1638:Q 1630:Q 1626:H 1622:Q 1614:H 1608:G 1603:Q 1599:R 1595:Q 1591:H 1580:Q 1576:R 1564:Q 1560:H 1556:R 1552:H 1548:Q 1544:Q 1540:n 1538:( 1536:Q 1532:Q 1524:R 1520:R 1516:Q 1512:n 1510:( 1508:Q 1504:Q 1500:n 1496:R 1492:Q 1488:R 1484:Q 1480:H 1476:R 1472:Q 1468:H 1464:R 1460:H 1456:H 1452:H 1450:° 1448:R 1446:/ 1444:H 1440:Q 1436:H 1432:H 1430:° 1428:R 1424:R 1420:R 1416:H 1412:R 1405:A 1401:A 1397:B 1393:A 1389:B 1381:B 1373:n 1369:B 1365:A 1361:B 1357:A 1341:A 1337:B 1323:) 1316:a 1312:) 1309:a 1306:( 1301:n 1297:f 1293:, 1287:, 1280:a 1276:) 1273:a 1270:( 1265:1 1261:f 1257:( 1254:= 1251:) 1244:a 1238:B 1230:a 1227:( 1224:q 1202:i 1198:a 1192:B 1182:i 1178:x 1172:n 1167:1 1164:= 1161:i 1153:= 1150:) 1145:n 1141:a 1137:, 1131:, 1126:1 1122:a 1118:( 1115:p 1105:A 1101:B 1097:A 1093:a 1079:a 1076:= 1073:) 1070:a 1067:( 1062:i 1058:f 1052:i 1048:x 1042:n 1037:1 1034:= 1031:i 1016:A 1012:B 1004:n 1000:i 998:( 986:A 978:i 974:x 953:B 947:A 944:: 939:i 935:f 924:B 920:B 916:A 912:A 908:B 904:B 900:A 885:A 881:B 867:A 862:B 854:A 840:G 836:H 832:B 830:- 828:B 824:B 820:A 806:H 801:j 797:g 786:g 772:g 767:j 764:i 756:= 753:) 750:g 747:( 742:i 717:) 714:) 707:a 703:( 698:n 690:a 687:, 681:, 678:) 671:a 667:( 662:1 654:a 651:( 648:= 645:) 638:a 632:B 624:a 621:( 618:q 596:n 592:A 585:A 580:B 572:A 569:: 566:q 544:i 540:g 534:B 524:1 516:i 512:g 506:i 502:a 496:n 491:1 488:= 485:i 477:= 474:) 471:) 466:n 462:a 458:, 452:, 447:1 443:a 439:( 436:( 433:p 413:A 408:B 400:A 392:n 388:A 377:B 375:- 373:A 357:n 353:g 349:, 343:, 338:1 334:g 323:G 319:n 312:H 305:B 293:k 289:G 285:A 278:A 274:B 270:A 266:B 262:B 258:A 254:A 250:B 246:p 238:q 234:p 230:n 228:( 216:A 204:A 201:= 196:n 192:A 177:A 175:- 173:B 169:n 152:A 147:B 139:A 131:n 127:A 116:B 114:- 112:A 94:A 88:B

Index

ring theory
Frobenius algebra
mathematics
noncommutative Galois theory
Hopf algebroids
Galois groups
endomorphism rings
subring
subgroup
finite group
group algebras
commutative ring
integer
group theory
group ring
normal subgroup
index
ring theory
module theory
Frobenius algebra
Frobenius algebra
Hopf algebra
indecomposable modules
algebraic element
representation ring
projective module
generator
G-set
semisimple algebra
annihilator

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.