Knowledge (XXG)

Diamond cubic

Source đź“ť

127: 851: 41: 32: 1261: 770:
Yet another coordinatization of the diamond cubic involves the removal of some of the edges from a three-dimensional grid graph. In this coordinatization, which has a distorted geometry from the standard diamond cubic structure but has the same topological structure, the vertices of the diamond cubic
624:
between them in the diamond structure. The four nearest neighbors of each point may be obtained, in this coordinate system, by adding one to each of the four coordinates, or by subtracting one from each of the four coordinates, accordingly as the coordinate sum is zero or one. These four-dimensional
615:
Alternatively, each point of the diamond cubic structure may be given by four-dimensional integer coordinates whose sum is either zero or one. Two points are adjacent in the diamond structure if and only if their four-dimensional coordinates differ by one in a single coordinate. The total difference
20: 537: 382: 415: 782:
that takes the point (0,0,0) into the point (3,3,3), for instance. However, it is still a highly symmetric structure: any incident pair of a vertex and edge can be transformed into any other incident pair by a
103:, which have a similar structure, with one kind of atom (such as silicon in cristobalite) at the positions of carbon atoms in diamond but with another kind of atom (such as oxygen) halfway between those (see 1212:
Blank, V.; Popov, M.; Pivovarov, G.; Lvova, N. et al. (1998). "Ultrahard and superhard phases of fullerite C60: comparison with diamond on hardness and wear". Diamond and Related Materials 7 (2–5): 427.
757: 284: 420: 588:
apart in the integer lattice; the edges of the diamond structure lie along the body diagonals of the integer grid cubes. This structure may be scaled to a cubical unit cell that is some number
239:
of the diamond cubic structure (the proportion of space that would be filled by spheres that are centered on the vertices of the structure and are as large as possible without overlapping) is
296: 584: 1088: 912: 628: 869:
systems that follow the diamond cubic geometry have a high capacity to withstand compression, by minimizing the unbraced length of individual
1179: 1116: 1065: 1017: 992: 967: 942: 1312: 104: 1041: 771:
are represented by all possible 3d grid points and the edges of the diamond cubic are represented by a subset of the 3d grid edges.
1038:
Combinatorial Image Analysis: 13th International Workshop, IWCIA 2009, Playa Del Carmen, Mexico, November 24–27, 2009, Proceedings
1287: 242: 983:
Askeland, Donald R.; Phulé, Pradeep Prabhakar (2006), "Example 3-15: Determining the Packing Factor for Diamond Cubic Silicon",
532:{\displaystyle {\begin{aligned}x=y&=z\ ({\text{mod }}\ 2),\\x+y+z&=0{\text{ or }}1\ ({\text{mod }}\ 4).\end{aligned}}} 290:. Zincblende structures have higher packing factors than 0.34 depending on the relative sizes of their two component atoms. 69:
is a repeating pattern of 8 atoms that certain materials may adopt as they solidify. While the first known example was
392:
Mathematically, the points of the diamond cubic structure can be given coordinates as a subset of a three-dimensional
293:
The first-, second-, third-, fourth-, and fifth-nearest-neighbor distances in units of the cubic lattice constant are
1090:
Graph Drawing: 16th International Symposium, GD 2008, Heraklion, Crete, Greece, September 21–24, 2008, Revised Papers
1036:
Nagy, Benedek; Strand, Robin (2009), "Neighborhood sequences in the diamond grid – algorithms with four neighbors",
791:. Moreover, the diamond crystal as a network in space has a strong isotropic property. Namely, for any two vertices 377:{\displaystyle {\tfrac {\sqrt {3}}{4}},{\tfrac {\sqrt {2}}{2}},{\tfrac {\sqrt {11}}{4}},1,{\tfrac {\sqrt {19}}{4}},} 396:
by using a cubic unit cell four units across. With these coordinates, the points of the structure have coordinates
1302: 1292: 48: 1317: 1307: 130:
Visualisation of a diamond cubic unit cell: 1. Components of a unit cell, 2. One unit cell, 3. A lattice of
1214: 779: 209: 153:. The lattice describes the repeat pattern; for diamond cubic crystals this lattice is "decorated" with a 165: 93: 859: 784: 236: 1045: 894: 844: 287: 225: 147: 1224:
Lorimer, A. "The Diamond Cubic Truss", Interior World: Design & Detail, vol.121, 2013, pp. 80–81
1010:
Concise Dictionary of Materials Science: Structure and Characterization of Polycrystalline Materials
874: 189: 1122: 1094: 617: 565: 542: 1140:
Parhami, B.; Kwai, Ding-Ming (2001), "A unified formulation of honeycomb and diamond networks",
1175: 1112: 1061: 1013: 988: 963: 938: 221: 185: 126: 66: 24: 1265: 774:
The diamond cubic is sometimes called the "diamond lattice" but it is not, mathematically, a
1167: 1149: 1104: 1053: 556:
All of the other points in the structure may be obtained by adding multiples of four to the
213: 1087:(2009), "Isometric Diamond Subgraphs", in Tollis, Ioannis G.; Patrignani, Maurizio (eds.), 286:
significantly smaller (indicating a less dense structure) than the packing factors for the
228:, where each atom has nearest neighbors of an unlike element. Zincblende's space group is F 900: 788: 775: 393: 217: 150: 115: 59: 1093:, Lecture Notes in Computer Science, vol. 5417, Springer-Verlag, pp. 384–389, 1049: 19: 1297: 1084: 850: 232:
3m, but many of its structural properties are quite similar to the diamond structure.
1281: 840: 621: 560:
coordinates of these eight points. Adjacent points in this structure are at distance
161: 82: 1126: 40: 1271: 873:. The diamond cubic geometry has also been considered for the purpose of providing 764: 100: 74: 52: 1108: 625:
coordinates may be transformed into three-dimensional coordinates by the formula
99:
in any proportion. There are also crystals, such as the high-temperature form of
1233:
R. Kraft. Construction Arrangement, USA, United States Patents, US3139959, 1964
1057: 935:
Diamond films: chemical vapor deposition for oriented and heteroepitaxial growth
906: 882: 820: 158: 143: 44: 188:
in each dimension. The diamond lattice can be viewed as a pair of intersecting
1245: 1234: 31: 1172:
Topological Crystallography -With a View Towards Discrete Geometric Analysis-
89: 1260: 1244:
Gilman, J. Tetrahedral Truss, USA, United States Patents, US4446666, 1981
878: 760: 836: 85: 70: 1194:
Sunada, Toshikazu (2008), "Crystals that nature might miss creating",
1153: 1274:
to construct self-avoiding random walks on the diamond cubic lattice
616:
in coordinate values between any two points (their four-dimensional
1099: 870: 866: 855: 795:
of the crystal net, and for any ordering of the edges adjacent to
125: 96: 819:-edge. Another (hypothetical) crystal with this property is the 958:
Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001),
78: 51:
of the diamond lattice showing the 3-fold symmetry along the
752:{\displaystyle (a,b,c,d)\to (a+b-c-d,\ a-b+c-d,\ -a+b+c-d).} 279:{\displaystyle {\tfrac {\pi {\sqrt {3}}}{16}}\approx 0.34,} 885:, have been found to be more effective for this purpose. 118:
in the technical sense of this word used in mathematics.
763:
subset of the four-dimensional integer lattice, it is a
592:
of units across by multiplying all coordinates by 
358: 335: 318: 301: 247: 208:
of the width of the unit cell in each dimension. Many
1142:
IEEE Transactions on Parallel and Distributed Systems
1044:, vol. 5852, Springer-Verlag, pp. 109–121, 631: 568: 418: 299: 245: 933:Kobashi, Koji (2005), "2.1 Structure of diamond", 751: 578: 531: 376: 278: 847:) is attributed to the diamond cubic structure. 903: â€“ Scientific study of crystal structures 803:, there is a net-preserving congruence taking 288:face-centered and body-centered cubic lattices 8: 36:3D ball-and-stick model of a diamond lattice 799:and any ordering of the edges adjacent to 1098: 897: â€“ Materials made only out of carbon 835:The compressive strength and hardness of 827:crystal, (10,3)-a, or the diamond twin). 630: 569: 567: 508: 494: 448: 419: 417: 357: 334: 317: 300: 298: 253: 246: 244: 985:The Science and Engineering of Materials 849: 39: 29: 18: 925: 913:Triakis truncated tetrahedral honeycomb 877:though structures composed of skeletal 1031: 1029: 759:Because the diamond structure forms a 138:Diamond's cubic structure is in the Fd 1079: 1077: 839:and various other materials, such as 146:(space group 227), which follows the 77:also adopt this structure, including 7: 105:Category:Minerals in space group 227 23:Rotating model of the diamond cubic 620:) gives the number of edges in the 549:(0,0,0), (0,2,2), (2,0,2), (2,2,0), 915: â€“ Space-filling tessellation 552:(3,3,3), (3,1,1), (1,3,1), (1,1,3) 545:4) that satisfy these conditions: 14: 1042:Lecture Notes in Computer Science 843:, (which has the closely related 192:lattices, with each separated by 1259: 987:, Cengage Learning, p. 82, 962:, Academic Press, p. 1300, 815:-edge to the similarly ordered 909: â€“ Periodic spatial graph 743: 662: 659: 656: 632: 519: 505: 459: 445: 1: 1109:10.1007/978-3-642-00219-9_37 1313:Minerals in space group 227 1058:10.1007/978-3-642-10210-3_9 854:Example of a diamond cubic 579:{\displaystyle {\sqrt {3}}} 1336: 1008:Novikov, Vladimir (2003), 122:Crystallographic structure 114:, this structure is not a 110:Although often called the 412:satisfying the equations 16:Type of crystal structure 1012:, CRC Press, p. 9, 541:There are eight points ( 49:stereographic projection 1288:Crystal structure types 937:, Elsevier, p. 9, 210:compound semiconductors 862: 780:translational symmetry 753: 580: 533: 388:Mathematical structure 378: 280: 135: 55: 37: 27: 858:system for resisting 853: 831:Mechanical properties 754: 581: 534: 379: 281: 237:atomic packing factor 129: 43: 35: 22: 1268:at Wikimedia Commons 895:Allotropes of carbon 845:zincblende structure 629: 566: 416: 297: 243: 226:zincblende structure 224:adopt the analogous 184:of the width of the 73:, other elements in 1050:2009LNCS.5852..109N 960:Inorganic chemistry 875:structural rigidity 761:distance-preserving 190:face-centered cubic 148:face-centered cubic 1196:Notices of the AMS 863: 823:(also called the K 749: 618:Manhattan distance 576: 529: 527: 374: 369: 346: 329: 312: 276: 265: 136: 56: 38: 28: 1264:Media related to 1181:978-4-431-54176-9 1168:Sunada, Toshikazu 1154:10.1109/71.899940 1118:978-3-642-00219-9 1067:978-3-642-10210-3 1019:978-0-8493-0970-0 994:978-0-534-55396-8 969:978-0-12-352651-9 944:978-0-08-044723-0 718: 691: 574: 515: 511: 504: 497: 455: 451: 444: 368: 364: 345: 341: 328: 324: 311: 307: 264: 258: 222:indium antimonide 94:silicon–germanium 67:crystal structure 25:crystal structure 1325: 1263: 1247: 1242: 1236: 1231: 1225: 1222: 1216: 1210: 1204: 1203: 1191: 1185: 1184: 1164: 1158: 1156: 1137: 1131: 1129: 1102: 1081: 1072: 1070: 1033: 1024: 1022: 1005: 999: 997: 980: 974: 972: 955: 949: 947: 930: 818: 814: 810: 806: 802: 798: 794: 758: 756: 755: 750: 716: 689: 611: 610: 608: 607: 604: 601: 591: 587: 585: 583: 582: 577: 575: 570: 559: 538: 536: 535: 530: 528: 513: 512: 509: 502: 498: 495: 453: 452: 449: 442: 411: 383: 381: 380: 375: 370: 360: 359: 347: 337: 336: 330: 320: 319: 313: 303: 302: 285: 283: 282: 277: 266: 260: 259: 254: 248: 231: 214:gallium arsenide 207: 205: 204: 201: 198: 183: 181: 180: 177: 174: 141: 133: 34: 1335: 1334: 1328: 1327: 1326: 1324: 1323: 1322: 1303:Infinite graphs 1293:Crystallography 1278: 1277: 1256: 1251: 1250: 1243: 1239: 1232: 1228: 1223: 1219: 1211: 1207: 1193: 1192: 1188: 1182: 1166: 1165: 1161: 1139: 1138: 1134: 1119: 1085:Eppstein, David 1083: 1082: 1075: 1068: 1035: 1034: 1027: 1020: 1007: 1006: 1002: 995: 982: 981: 977: 970: 957: 956: 952: 945: 932: 931: 927: 922: 901:Crystallography 891: 833: 826: 816: 812: 808: 804: 800: 796: 792: 789:Euclidean space 627: 626: 605: 602: 597: 596: 594: 593: 589: 564: 563: 561: 557: 526: 525: 484: 466: 465: 432: 414: 413: 397: 394:integer lattice 390: 295: 294: 249: 241: 240: 229: 218:silicon carbide 202: 199: 196: 195: 193: 178: 175: 172: 171: 169: 168:, separated by 151:Bravais lattice 139: 131: 124: 112:diamond lattice 60:crystallography 30: 17: 12: 11: 5: 1333: 1332: 1329: 1321: 1320: 1318:Regular graphs 1315: 1310: 1308:Lattice points 1305: 1300: 1295: 1290: 1280: 1279: 1276: 1275: 1269: 1255: 1254:External links 1252: 1249: 1248: 1237: 1226: 1217: 1205: 1186: 1180: 1159: 1132: 1117: 1073: 1066: 1025: 1018: 1000: 993: 975: 968: 950: 943: 924: 923: 921: 918: 917: 916: 910: 904: 898: 890: 887: 881:, such as the 832: 829: 824: 778:: there is no 748: 745: 742: 739: 736: 733: 730: 727: 724: 721: 715: 712: 709: 706: 703: 700: 697: 694: 688: 685: 682: 679: 676: 673: 670: 667: 664: 661: 658: 655: 652: 649: 646: 643: 640: 637: 634: 573: 554: 553: 550: 524: 521: 518: 507: 501: 496: or  493: 490: 487: 485: 483: 480: 477: 474: 471: 468: 467: 464: 461: 458: 447: 441: 438: 435: 433: 431: 428: 425: 422: 421: 389: 386: 384:respectively. 373: 367: 363: 356: 353: 350: 344: 340: 333: 327: 323: 316: 310: 306: 275: 272: 269: 263: 257: 252: 166:primitive cell 164:atoms in each 123: 120: 83:semiconductors 15: 13: 10: 9: 6: 4: 3: 2: 1331: 1330: 1319: 1316: 1314: 1311: 1309: 1306: 1304: 1301: 1299: 1296: 1294: 1291: 1289: 1286: 1285: 1283: 1273: 1270: 1267: 1266:Diamond cubic 1262: 1258: 1257: 1253: 1246: 1241: 1238: 1235: 1230: 1227: 1221: 1218: 1215: 1209: 1206: 1201: 1197: 1190: 1187: 1183: 1177: 1173: 1169: 1163: 1160: 1155: 1151: 1147: 1143: 1136: 1133: 1128: 1124: 1120: 1114: 1110: 1106: 1101: 1096: 1092: 1091: 1086: 1080: 1078: 1074: 1069: 1063: 1059: 1055: 1051: 1047: 1043: 1039: 1032: 1030: 1026: 1021: 1015: 1011: 1004: 1001: 996: 990: 986: 979: 976: 971: 965: 961: 954: 951: 946: 940: 936: 929: 926: 919: 914: 911: 908: 905: 902: 899: 896: 893: 892: 888: 886: 884: 880: 876: 872: 868: 861: 857: 852: 848: 846: 842: 841:boron nitride 838: 830: 828: 822: 790: 786: 781: 777: 772: 768: 766: 762: 746: 740: 737: 734: 731: 728: 725: 722: 719: 713: 710: 707: 704: 701: 698: 695: 692: 686: 683: 680: 677: 674: 671: 668: 665: 653: 650: 647: 644: 641: 638: 635: 623: 622:shortest path 619: 613: 600: 571: 551: 548: 547: 546: 544: 539: 522: 516: 499: 491: 488: 486: 481: 478: 475: 472: 469: 462: 456: 439: 436: 434: 429: 426: 423: 409: 405: 401: 395: 387: 385: 371: 365: 361: 354: 351: 348: 342: 338: 331: 325: 321: 314: 308: 304: 291: 289: 273: 270: 267: 261: 255: 250: 238: 233: 227: 223: 219: 215: 211: 191: 187: 167: 163: 160: 159:tetrahedrally 156: 152: 149: 145: 128: 121: 119: 117: 113: 108: 106: 102: 98: 95: 91: 87: 84: 80: 76: 72: 68: 65: 64:diamond cubic 61: 54: 50: 46: 42: 33: 26: 21: 1240: 1229: 1220: 1208: 1199: 1195: 1189: 1174:, Springer, 1171: 1162: 1148:(1): 74–80, 1145: 1141: 1135: 1089: 1037: 1009: 1003: 984: 978: 959: 953: 934: 928: 864: 834: 773: 769: 765:partial cube 614: 598: 555: 540: 407: 403: 399: 391: 292: 234: 154: 137: 111: 109: 101:cristobalite 63: 57: 907:Laves graph 883:octet truss 865:Similarly, 860:compression 821:Laves graph 144:space group 45:Pole figure 1282:Categories 920:References 785:congruence 134:unit cells 1202:: 208–215 1100:0807.2218 879:triangles 811:and each 738:− 720:− 708:− 696:− 681:− 675:− 660:→ 510:mod  450:mod  268:≈ 251:π 186:unit cell 132:3 Ă— 3 Ă— 3 90:germanium 53:direction 1272:Software 1170:(2012), 1127:14066610 889:See also 212:such as 75:group 14 1046:Bibcode 837:diamond 776:lattice 609:⁠ 595:⁠ 586:⁠ 562:⁠ 558:x, y, z 206:⁠ 194:⁠ 182:⁠ 170:⁠ 157:of two 116:lattice 86:silicon 71:diamond 1178:  1125:  1115:  1064:  1016:  991:  966:  941:  871:struts 717:  690:  543:modulo 514:  503:  454:  443:  220:, and 162:bonded 97:alloys 92:, and 81:, the 62:, the 1298:Cubes 1123:S2CID 1095:arXiv 867:truss 856:truss 155:motif 79:α-tin 1176:ISBN 1113:ISBN 1062:ISBN 1014:ISBN 989:ISBN 964:ISBN 939:ISBN 793:x, y 271:0.34 235:The 216:, β- 88:and 1150:doi 1105:doi 1054:doi 807:to 787:of 107:). 58:In 47:in 1284:: 1200:55 1198:, 1146:12 1144:, 1121:, 1111:, 1103:, 1076:^ 1060:, 1052:, 1040:, 1028:^ 767:. 612:. 406:, 402:, 362:19 339:11 262:16 142:m 1157:. 1152:: 1130:. 1107:: 1097:: 1071:. 1056:: 1048:: 1023:. 998:. 973:. 948:. 825:4 817:y 813:x 809:y 805:x 801:y 797:x 747:. 744:) 741:d 735:c 732:+ 729:b 726:+ 723:a 714:, 711:d 705:c 702:+ 699:b 693:a 687:, 684:d 678:c 672:b 669:+ 666:a 663:( 657:) 654:d 651:, 648:c 645:, 642:b 639:, 636:a 633:( 606:4 603:/ 599:a 590:a 572:3 523:. 520:) 517:4 506:( 500:1 492:0 489:= 482:z 479:+ 476:y 473:+ 470:x 463:, 460:) 457:2 446:( 440:z 437:= 430:y 427:= 424:x 410:) 408:z 404:y 400:x 398:( 372:, 366:4 355:, 352:1 349:, 343:4 332:, 326:2 322:2 315:, 309:4 305:3 274:, 256:3 230:4 203:4 200:/ 197:1 179:4 176:/ 173:1 140:3

Index


crystal structure


Pole figure
stereographic projection
direction
crystallography
crystal structure
diamond
group 14
α-tin
semiconductors
silicon
germanium
silicon–germanium
alloys
cristobalite
Category:Minerals in space group 227
lattice

space group
face-centered cubic
Bravais lattice
tetrahedrally
bonded
primitive cell
unit cell
face-centered cubic
compound semiconductors

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑