Knowledge (XXG)

Diamond cubic

Source đź“ť

138: 862: 52: 43: 1272: 781:
Yet another coordinatization of the diamond cubic involves the removal of some of the edges from a three-dimensional grid graph. In this coordinatization, which has a distorted geometry from the standard diamond cubic structure but has the same topological structure, the vertices of the diamond cubic
635:
between them in the diamond structure. The four nearest neighbors of each point may be obtained, in this coordinate system, by adding one to each of the four coordinates, or by subtracting one from each of the four coordinates, accordingly as the coordinate sum is zero or one. These four-dimensional
626:
Alternatively, each point of the diamond cubic structure may be given by four-dimensional integer coordinates whose sum is either zero or one. Two points are adjacent in the diamond structure if and only if their four-dimensional coordinates differ by one in a single coordinate. The total difference
31: 548: 393: 426: 793:
that takes the point (0,0,0) into the point (3,3,3), for instance. However, it is still a highly symmetric structure: any incident pair of a vertex and edge can be transformed into any other incident pair by a
114:, which have a similar structure, with one kind of atom (such as silicon in cristobalite) at the positions of carbon atoms in diamond but with another kind of atom (such as oxygen) halfway between those (see 1223:
Blank, V.; Popov, M.; Pivovarov, G.; Lvova, N. et al. (1998). "Ultrahard and superhard phases of fullerite C60: comparison with diamond on hardness and wear". Diamond and Related Materials 7 (2–5): 427.
768: 295: 431: 599:
apart in the integer lattice; the edges of the diamond structure lie along the body diagonals of the integer grid cubes. This structure may be scaled to a cubical unit cell that is some number
250:
of the diamond cubic structure (the proportion of space that would be filled by spheres that are centered on the vertices of the structure and are as large as possible without overlapping) is
307: 595: 1099: 923: 639: 880:
systems that follow the diamond cubic geometry have a high capacity to withstand compression, by minimizing the unbraced length of individual
1190: 1127: 1076: 1028: 1003: 978: 953: 1323: 115: 1052: 782:
are represented by all possible 3d grid points and the edges of the diamond cubic are represented by a subset of the 3d grid edges.
1049:
Combinatorial Image Analysis: 13th International Workshop, IWCIA 2009, Playa Del Carmen, Mexico, November 24–27, 2009, Proceedings
1298: 253: 994:
Askeland, Donald R.; Phulé, Pradeep Prabhakar (2006), "Example 3-15: Determining the Packing Factor for Diamond Cubic Silicon",
543:{\displaystyle {\begin{aligned}x=y&=z\ ({\text{mod }}\ 2),\\x+y+z&=0{\text{ or }}1\ ({\text{mod }}\ 4).\end{aligned}}} 301:. Zincblende structures have higher packing factors than 0.34 depending on the relative sizes of their two component atoms. 80:
is a repeating pattern of 8 atoms that certain materials may adopt as they solidify. While the first known example was
403:
Mathematically, the points of the diamond cubic structure can be given coordinates as a subset of a three-dimensional
304:
The first-, second-, third-, fourth-, and fifth-nearest-neighbor distances in units of the cubic lattice constant are
1101:
Graph Drawing: 16th International Symposium, GD 2008, Heraklion, Crete, Greece, September 21–24, 2008, Revised Papers
1047:
Nagy, Benedek; Strand, Robin (2009), "Neighborhood sequences in the diamond grid – algorithms with four neighbors",
802:. Moreover, the diamond crystal as a network in space has a strong isotropic property. Namely, for any two vertices 388:{\displaystyle {\tfrac {\sqrt {3}}{4}},{\tfrac {\sqrt {2}}{2}},{\tfrac {\sqrt {11}}{4}},1,{\tfrac {\sqrt {19}}{4}},} 407:
by using a cubic unit cell four units across. With these coordinates, the points of the structure have coordinates
1313: 1303: 59: 1328: 1318: 141:
Visualisation of a diamond cubic unit cell: 1. Components of a unit cell, 2. One unit cell, 3. A lattice of
1225: 790: 220: 164:. The lattice describes the repeat pattern; for diamond cubic crystals this lattice is "decorated" with a 176: 104: 870: 795: 247: 1056: 905: 855: 298: 236: 158: 1235:
Lorimer, A. "The Diamond Cubic Truss", Interior World: Design & Detail, vol.121, 2013, pp. 80–81
1021:
Concise Dictionary of Materials Science: Structure and Characterization of Polycrystalline Materials
885: 200: 1133: 1105: 628: 576: 553: 1151:
Parhami, B.; Kwai, Ding-Ming (2001), "A unified formulation of honeycomb and diamond networks",
1186: 1123: 1072: 1024: 999: 974: 949: 232: 196: 137: 77: 35: 1276: 785:
The diamond cubic is sometimes called the "diamond lattice" but it is not, mathematically, a
1178: 1160: 1115: 1064: 567:
All of the other points in the structure may be obtained by adding multiples of four to the
224: 1098:(2009), "Isometric Diamond Subgraphs", in Tollis, Ioannis G.; Patrignani, Maurizio (eds.), 297:
significantly smaller (indicating a less dense structure) than the packing factors for the
239:, where each atom has nearest neighbors of an unlike element. Zincblende's space group is F 911: 799: 786: 404: 228: 161: 126: 70: 1104:, Lecture Notes in Computer Science, vol. 5417, Springer-Verlag, pp. 384–389, 1060: 30: 1308: 1095: 861: 243:
3m, but many of its structural properties are quite similar to the diamond structure.
1292: 851: 632: 571:
coordinates of these eight points. Adjacent points in this structure are at distance
172: 93: 1137: 51: 1282: 884:. The diamond cubic geometry has also been considered for the purpose of providing 775: 111: 85: 63: 1119: 636:
coordinates may be transformed into three-dimensional coordinates by the formula
110:
in any proportion. There are also crystals, such as the high-temperature form of
1244:
R. Kraft. Construction Arrangement, USA, United States Patents, US3139959, 1964
1068: 946:
Diamond films: chemical vapor deposition for oriented and heteroepitaxial growth
917: 893: 831: 169: 154: 55: 199:
in each dimension. The diamond lattice can be viewed as a pair of intersecting
17: 1256: 1245: 42: 1183:
Topological Crystallography -With a View Towards Discrete Geometric Analysis-
100: 1271: 1255:
Gilman, J. Tetrahedral Truss, USA, United States Patents, US4446666, 1981
889: 771: 847: 96: 81: 1205:
Sunada, Toshikazu (2008), "Crystals that nature might miss creating",
1164: 1285:
to construct self-avoiding random walks on the diamond cubic lattice
627:
in coordinate values between any two points (their four-dimensional
1110: 881: 877: 866: 806:
of the crystal net, and for any ordering of the edges adjacent to
136: 107: 830:-edge. Another (hypothetical) crystal with this property is the 969:
Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001),
89: 62:
of the diamond lattice showing the 3-fold symmetry along the
763:{\displaystyle (a,b,c,d)\to (a+b-c-d,\ a-b+c-d,\ -a+b+c-d).} 290:{\displaystyle {\tfrac {\pi {\sqrt {3}}}{16}}\approx 0.34,} 896:, have been found to be more effective for this purpose. 129:
in the technical sense of this word used in mathematics.
774:
subset of the four-dimensional integer lattice, it is a
603:
of units across by multiplying all coordinates by 
369: 346: 329: 312: 258: 219:
of the width of the unit cell in each dimension. Many
1153:
IEEE Transactions on Parallel and Distributed Systems
1055:, vol. 5852, Springer-Verlag, pp. 109–121, 642: 579: 429: 310: 256: 944:Kobashi, Koji (2005), "2.1 Structure of diamond", 762: 589: 542: 387: 289: 858:) is attributed to the diamond cubic structure. 914: â€“ Scientific study of crystal structures 814:, there is a net-preserving congruence taking 299:face-centered and body-centered cubic lattices 8: 47:3D ball-and-stick model of a diamond lattice 810:and any ordering of the edges adjacent to 1109: 908: â€“ Materials made only out of carbon 846:The compressive strength and hardness of 838:crystal, (10,3)-a, or the diamond twin). 641: 580: 578: 519: 505: 459: 430: 428: 368: 345: 328: 311: 309: 264: 257: 255: 996:The Science and Engineering of Materials 860: 50: 40: 29: 936: 924:Triakis truncated tetrahedral honeycomb 888:though structures composed of skeletal 1042: 1040: 770:Because the diamond structure forms a 149:Diamond's cubic structure is in the Fd 1090: 1088: 850:and various other materials, such as 157:(space group 227), which follows the 88:also adopt this structure, including 7: 116:Category:Minerals in space group 227 34:Rotating model of the diamond cubic 631:) gives the number of edges in the 560:(0,0,0), (0,2,2), (2,0,2), (2,2,0), 926: â€“ Space-filling tessellation 563:(3,3,3), (3,1,1), (1,3,1), (1,1,3) 556:4) that satisfy these conditions: 25: 1053:Lecture Notes in Computer Science 854:, (which has the closely related 203:lattices, with each separated by 1270: 998:, Cengage Learning, p. 82, 973:, Academic Press, p. 1300, 826:-edge to the similarly ordered 920: â€“ Periodic spatial graph 754: 673: 670: 667: 643: 530: 516: 470: 456: 1: 1120:10.1007/978-3-642-00219-9_37 1324:Minerals in space group 227 1069:10.1007/978-3-642-10210-3_9 865:Example of a diamond cubic 590:{\displaystyle {\sqrt {3}}} 1345: 1019:Novikov, Vladimir (2003), 133:Crystallographic structure 125:, this structure is not a 121:Although often called the 423:satisfying the equations 27:Type of crystal structure 1023:, CRC Press, p. 9, 552:There are eight points ( 60:stereographic projection 1299:Crystal structure types 948:, Elsevier, p. 9, 221:compound semiconductors 873: 791:translational symmetry 764: 591: 544: 399:Mathematical structure 389: 291: 146: 66: 48: 38: 869:system for resisting 864: 842:Mechanical properties 765: 592: 545: 390: 292: 248:atomic packing factor 140: 54: 46: 33: 1279:at Wikimedia Commons 906:Allotropes of carbon 856:zincblende structure 640: 577: 427: 308: 254: 237:zincblende structure 235:adopt the analogous 195:of the width of the 84:, other elements in 1061:2009LNCS.5852..109N 971:Inorganic chemistry 886:structural rigidity 772:distance-preserving 201:face-centered cubic 159:face-centered cubic 1207:Notices of the AMS 874: 834:(also called the K 760: 629:Manhattan distance 587: 540: 538: 385: 380: 357: 340: 323: 287: 276: 147: 67: 49: 39: 1275:Media related to 1192:978-4-431-54176-9 1179:Sunada, Toshikazu 1165:10.1109/71.899940 1129:978-3-642-00219-9 1078:978-3-642-10210-3 1030:978-0-8493-0970-0 1005:978-0-534-55396-8 980:978-0-12-352651-9 955:978-0-08-044723-0 729: 702: 585: 526: 522: 515: 508: 466: 462: 455: 379: 375: 356: 352: 339: 335: 322: 318: 275: 269: 233:indium antimonide 105:silicon–germanium 78:crystal structure 36:crystal structure 16:(Redirected from 1336: 1274: 1258: 1253: 1247: 1242: 1236: 1233: 1227: 1221: 1215: 1214: 1202: 1196: 1195: 1175: 1169: 1167: 1148: 1142: 1140: 1113: 1092: 1083: 1081: 1044: 1035: 1033: 1016: 1010: 1008: 991: 985: 983: 966: 960: 958: 941: 829: 825: 821: 817: 813: 809: 805: 769: 767: 766: 761: 727: 700: 622: 621: 619: 618: 615: 612: 602: 598: 596: 594: 593: 588: 586: 581: 570: 549: 547: 546: 541: 539: 524: 523: 520: 513: 509: 506: 464: 463: 460: 453: 422: 394: 392: 391: 386: 381: 371: 370: 358: 348: 347: 341: 331: 330: 324: 314: 313: 296: 294: 293: 288: 277: 271: 270: 265: 259: 242: 225:gallium arsenide 218: 216: 215: 212: 209: 194: 192: 191: 188: 185: 152: 144: 45: 21: 1344: 1343: 1339: 1338: 1337: 1335: 1334: 1333: 1314:Infinite graphs 1304:Crystallography 1289: 1288: 1267: 1262: 1261: 1254: 1250: 1243: 1239: 1234: 1230: 1222: 1218: 1204: 1203: 1199: 1193: 1177: 1176: 1172: 1150: 1149: 1145: 1130: 1096:Eppstein, David 1094: 1093: 1086: 1079: 1046: 1045: 1038: 1031: 1018: 1017: 1013: 1006: 993: 992: 988: 981: 968: 967: 963: 956: 943: 942: 938: 933: 912:Crystallography 902: 844: 837: 827: 823: 819: 815: 811: 807: 803: 800:Euclidean space 638: 637: 616: 613: 608: 607: 605: 604: 600: 575: 574: 572: 568: 537: 536: 495: 477: 476: 443: 425: 424: 408: 405:integer lattice 401: 306: 305: 260: 252: 251: 240: 229:silicon carbide 213: 210: 207: 206: 204: 189: 186: 183: 182: 180: 179:, separated by 162:Bravais lattice 150: 142: 135: 123:diamond lattice 71:crystallography 41: 28: 23: 22: 18:Diamond lattice 15: 12: 11: 5: 1342: 1340: 1332: 1331: 1329:Regular graphs 1326: 1321: 1319:Lattice points 1316: 1311: 1306: 1301: 1291: 1290: 1287: 1286: 1280: 1266: 1265:External links 1263: 1260: 1259: 1248: 1237: 1228: 1216: 1197: 1191: 1170: 1143: 1128: 1084: 1077: 1036: 1029: 1011: 1004: 986: 979: 961: 954: 935: 934: 932: 929: 928: 927: 921: 915: 909: 901: 898: 892:, such as the 843: 840: 835: 789:: there is no 759: 756: 753: 750: 747: 744: 741: 738: 735: 732: 726: 723: 720: 717: 714: 711: 708: 705: 699: 696: 693: 690: 687: 684: 681: 678: 675: 672: 669: 666: 663: 660: 657: 654: 651: 648: 645: 584: 565: 564: 561: 535: 532: 529: 518: 512: 507: or  504: 501: 498: 496: 494: 491: 488: 485: 482: 479: 478: 475: 472: 469: 458: 452: 449: 446: 444: 442: 439: 436: 433: 432: 400: 397: 395:respectively. 384: 378: 374: 367: 364: 361: 355: 351: 344: 338: 334: 327: 321: 317: 286: 283: 280: 274: 268: 263: 177:primitive cell 175:atoms in each 134: 131: 94:semiconductors 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1341: 1330: 1327: 1325: 1322: 1320: 1317: 1315: 1312: 1310: 1307: 1305: 1302: 1300: 1297: 1296: 1294: 1284: 1281: 1278: 1277:Diamond cubic 1273: 1269: 1268: 1264: 1257: 1252: 1249: 1246: 1241: 1238: 1232: 1229: 1226: 1220: 1217: 1212: 1208: 1201: 1198: 1194: 1188: 1184: 1180: 1174: 1171: 1166: 1162: 1158: 1154: 1147: 1144: 1139: 1135: 1131: 1125: 1121: 1117: 1112: 1107: 1103: 1102: 1097: 1091: 1089: 1085: 1080: 1074: 1070: 1066: 1062: 1058: 1054: 1050: 1043: 1041: 1037: 1032: 1026: 1022: 1015: 1012: 1007: 1001: 997: 990: 987: 982: 976: 972: 965: 962: 957: 951: 947: 940: 937: 930: 925: 922: 919: 916: 913: 910: 907: 904: 903: 899: 897: 895: 891: 887: 883: 879: 872: 868: 863: 859: 857: 853: 852:boron nitride 849: 841: 839: 833: 801: 797: 792: 788: 783: 779: 777: 773: 757: 751: 748: 745: 742: 739: 736: 733: 730: 724: 721: 718: 715: 712: 709: 706: 703: 697: 694: 691: 688: 685: 682: 679: 676: 664: 661: 658: 655: 652: 649: 646: 634: 633:shortest path 630: 624: 611: 582: 562: 559: 558: 557: 555: 550: 533: 527: 510: 502: 499: 497: 492: 489: 486: 483: 480: 473: 467: 450: 447: 445: 440: 437: 434: 420: 416: 412: 406: 398: 396: 382: 376: 372: 365: 362: 359: 353: 349: 342: 336: 332: 325: 319: 315: 302: 300: 284: 281: 278: 272: 266: 261: 249: 244: 238: 234: 230: 226: 222: 202: 198: 178: 174: 171: 170:tetrahedrally 167: 163: 160: 156: 139: 132: 130: 128: 124: 119: 117: 113: 109: 106: 102: 98: 95: 91: 87: 83: 79: 76: 75:diamond cubic 72: 65: 61: 57: 53: 44: 37: 32: 19: 1251: 1240: 1231: 1219: 1210: 1206: 1200: 1185:, Springer, 1182: 1173: 1159:(1): 74–80, 1156: 1152: 1146: 1100: 1048: 1020: 1014: 995: 989: 970: 964: 945: 939: 875: 845: 784: 780: 776:partial cube 625: 609: 566: 551: 418: 414: 410: 402: 303: 245: 165: 148: 122: 120: 112:cristobalite 74: 68: 918:Laves graph 894:octet truss 876:Similarly, 871:compression 832:Laves graph 155:space group 56:Pole figure 1293:Categories 931:References 796:congruence 145:unit cells 1213:: 208–215 1111:0807.2218 890:triangles 822:and each 749:− 731:− 719:− 707:− 692:− 686:− 671:→ 521:mod  461:mod  279:≈ 262:π 197:unit cell 143:3 Ă— 3 Ă— 3 101:germanium 64:direction 1283:Software 1181:(2012), 1138:14066610 900:See also 223:such as 86:group 14 1057:Bibcode 848:diamond 787:lattice 620:⁠ 606:⁠ 597:⁠ 573:⁠ 569:x, y, z 217:⁠ 205:⁠ 193:⁠ 181:⁠ 168:of two 127:lattice 97:silicon 82:diamond 1189:  1136:  1126:  1075:  1027:  1002:  977:  952:  882:struts 728:  701:  554:modulo 525:  514:  465:  454:  231:, and 173:bonded 108:alloys 103:, and 92:, the 73:, the 1309:Cubes 1134:S2CID 1106:arXiv 878:truss 867:truss 166:motif 90:α-tin 1187:ISBN 1124:ISBN 1073:ISBN 1025:ISBN 1000:ISBN 975:ISBN 950:ISBN 804:x, y 282:0.34 246:The 227:, β- 99:and 1161:doi 1116:doi 1065:doi 818:to 798:of 118:). 69:In 58:in 1295:: 1211:55 1209:, 1157:12 1155:, 1132:, 1122:, 1114:, 1087:^ 1071:, 1063:, 1051:, 1039:^ 778:. 623:. 417:, 413:, 373:19 350:11 273:16 153:m 1168:. 1163:: 1141:. 1118:: 1108:: 1082:. 1067:: 1059:: 1034:. 1009:. 984:. 959:. 836:4 828:y 824:x 820:y 816:x 812:y 808:x 758:. 755:) 752:d 746:c 743:+ 740:b 737:+ 734:a 725:, 722:d 716:c 713:+ 710:b 704:a 698:, 695:d 689:c 683:b 680:+ 677:a 674:( 668:) 665:d 662:, 659:c 656:, 653:b 650:, 647:a 644:( 617:4 614:/ 610:a 601:a 583:3 534:. 531:) 528:4 517:( 511:1 503:0 500:= 493:z 490:+ 487:y 484:+ 481:x 474:, 471:) 468:2 457:( 451:z 448:= 441:y 438:= 435:x 421:) 419:z 415:y 411:x 409:( 383:, 377:4 366:, 363:1 360:, 354:4 343:, 337:2 333:2 326:, 320:4 316:3 285:, 267:3 241:4 214:4 211:/ 208:1 190:4 187:/ 184:1 151:3 20:)

Index

Diamond lattice

crystal structure


Pole figure
stereographic projection
direction
crystallography
crystal structure
diamond
group 14
α-tin
semiconductors
silicon
germanium
silicon–germanium
alloys
cristobalite
Category:Minerals in space group 227
lattice

space group
face-centered cubic
Bravais lattice
tetrahedrally
bonded
primitive cell
unit cell
face-centered cubic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑