Knowledge (XXG)

Diffusion-limited aggregation

Source 📝

264: 34: 159: 66: 22: 499: 282: 52: 171: 214:
A Brownian tree is built with these steps: first, a "seed" is placed somewhere on the screen. Then, a particle is placed in a random position of the screen, and moved randomly until it bumps against the seed. The particle is left there, and another particle is placed in a random position and moved
142:
simulation where a particle is allowed to freely random walk until it gets within a certain critical range whereupon it is pulled onto the cluster. Of critical importance is that the number of particles undergoing Brownian motion in the system is kept very low so that only the diffusive nature of
137:
Computer simulation of DLA is one of the primary means of studying this model. Several methods are available to accomplish this. Simulations can be done on a lattice of any desired geometry of embedding dimension (this has been done in up to 8 dimensions) or the simulation can be done more along
1097: 184: 130:. Some variations are also observed depending on the geometry of the growth, whether it be from a single point radially outward or from a plane or line for example. Two examples of aggregates generated using a microcomputer by allowing 246:
article in the Computer Recreations section, December 1988), a common computer took hours, and even days, to generate a small tree. Today's computers can generate trees with tens of thousands of particles in minutes or seconds.
316:
developed by Karsten Schmidt, allows users to apply the DLA process to pre-defined guidelines or curves in the simulation space and via various other parameters dynamically direct the growth of 3D forms.
122:. In 2D these fractals exhibit a dimension of approximately 1.71 for free particles that are unrestricted by a lattice, however computer simulation of DLA on a lattice will change the 71:
A DLA consisting of about 33,000 particles obtained by allowing random walkers to adhere to a seed at the center. Different colors indicate different arrival time of the random walkers.
196: 305:
The intricate and organic forms that can be generated with diffusion-limited aggregation algorithms have been explored by artists. Simutils, part of the
1115: 134:
to adhere to an aggregate (originally (i) a straight line consisting of 1300 particles and (ii) one particle at center) are shown on the right.
503: 57:
A DLA obtained by allowing random walkers to adhere to a straight line. Different colors indicate different arrival time of the random walkers.
561: 594: 203:, is a form of computer art that was briefly popular in the 1990s, when home computers started to have sufficient power to simulate 465: 250:
These trees can also be grown easily in an electrodeposition cell, and are the direct result of diffusion-limited aggregation.
1121: 230:
the initial particle position (anywhere on the screen, from a circle surrounding the seed, from the top of the screen, etc.)
509: 934: 1055: 233:
the moving algorithm (usually random, but for example a particle can be deleted if it goes too far from the seed, etc.)
1137: 621: 514: 519: 326: 395:
Ball, R.; Nauenberg, M.; Witten, T. A. (1984). "Diffusion-controlled aggregation in the continuum approximation".
787: 313: 643: 263: 273:. The branching discharges ultimately become hairlike, but are thought to extend down to the molecular level. 1170: 1080: 1129: 688: 554: 1175: 914: 606: 1075: 1070: 860: 792: 404: 369: 360:
Witten, T. A.; Sander, L. M. (1981). "Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon".
106: 833: 810: 745: 693: 678: 611: 242: 127: 98: 1060: 1040: 1004: 999: 762: 535:
Open-source application in C for fast generation of DLA structures in 2,3,4 and higher dimensions
341: 270: 269:
High-voltage dielectric breakdown within a block of plexiglas creates a fractal pattern called a
208: 139: 306: 295: 33: 1103: 1065: 989: 897: 802: 708: 683: 673: 616: 599: 589: 584: 547: 331: 123: 1020: 887: 870: 698: 412: 377: 158: 223:
The resulting tree can have many different shapes, depending on principally three factors:
1035: 972: 633: 529: 204: 200: 86: 730: 431: 408: 373: 1050: 994: 982: 953: 909: 892: 875: 828: 772: 757: 725: 663: 336: 102: 1164: 904: 880: 750: 720: 703: 668: 653: 473: 90: 525:
Free, open source program for generating DLAs using freely available ImageJ software
1149: 1144: 1045: 1025: 782: 715: 89:
cluster together to form aggregates of such particles. This theory, proposed by
1110: 1030: 740: 735: 381: 309: 291: 131: 82: 101:
in the system. DLA can be observed in many systems such as electrodeposition,
27:
A DLA cluster grown from a copper sulfate solution in an electrodeposition cell
963: 948: 943: 924: 658: 524: 416: 211:
associated with the physical process known as diffusion-limited aggregation.
919: 865: 777: 628: 94: 183: 65: 498: 237:
Particle color can change between iterations, giving interesting effects.
93:
and L.M. Sander in 1981, is applicable to aggregation in any system where
820: 21: 850: 767: 570: 287: 281: 119: 51: 534: 838: 215:
until it bumps against the seed or any previous particle, and so on.
170: 448: 543: 520:
A Java applet demonstration of DLA from Hong Kong University
515:
Diffusion-Limited Aggregation: A Model for Pattern Formation
539: 447:
Last updated: 03/26/19. Created: 02/11/06 or earlier at
432:"What are Lichtenberg figures, and how do we make them?" 298:/simutils with the DLA process applied to a spiral curve 112:
The clusters formed in DLA processes are referred to as
39:
A Brownian tree resulting from a computer simulation
1089: 1013: 962: 933: 849: 819: 801: 642: 577: 466:"simutils-0001: Diffusion-limited aggregation" 254:Artwork based on diffusion-limited aggregation 81:is the process whereby particles undergoing a 555: 240:At the time of their popularity (helped by a 8: 207:. Brownian trees are mathematical models of 562: 548: 540: 530:TheDLA, iOS app for generating DLA pattern 182: 1116:List of fractals by Hausdorff dimension 352: 118:. These clusters are an example of a 7: 459: 457: 176:Brownian tree resembling a snowflake 79:Diffusion-limited aggregation (DLA) 113: 14: 1098:How Long Is the Coast of Britain? 464:Schmidt, K. (February 20, 2010). 497: 280: 262: 169: 157: 64: 50: 32: 20: 126:slightly for a DLA in the same 1122:The Fractal Geometry of Nature 449:http://lichdesc.teslamania.com 1: 504:Diffusion-limited aggregation 195:, whose name is derived from 1138:Chaos: Making a New Science 382:10.1103/PhysRevLett.47.1400 1192: 327:Dielectric breakdown model 314:Java programming language 417:10.1103/PhysRevA.29.2017 138:the lines of a standard 105:, mineral deposits, and 97:is the primary means of 362:Physical Review Letters 143:the system is present. 1130:The Beauty of Fractals 430:Hickman, Bert (2006). 188: 436:CapturedLightning.com 187:Growing Brownian tree 186: 1076:Lewis Fry Richardson 1071:Hamid Naderi Yeganeh 861:Burning Ship fractal 793:Weierstrass function 510:JavaScript based DLA 506:at Wikimedia Commons 290:rendered image of a 209:dendritic structures 107:dielectric breakdown 834:Space-filling curve 811:Multifractal system 694:Space-filling curve 679:Sierpinski triangle 409:1984PhRvA..29.2017B 374:1981PhRvL..47.1400W 243:Scientific American 128:embedding dimension 1061:Aleksandr Lyapunov 1041:Desmond Paul Henry 1005:Self-avoiding walk 1000:Percolation theory 644:Iterated function 585:Fractal dimensions 342:Lichtenberg figure 271:Lichtenberg figure 189: 140:molecular dynamics 1158: 1157: 1104:Coastline paradox 1081:Wacław Sierpiński 1066:Benoit Mandelbrot 990:Fractal landscape 898:Misiurewicz point 803:Strange attractor 684:Apollonian gasket 674:Sierpinski carpet 502:Media related to 397:Physical Review A 368:(19): 1400–1403. 332:Eden growth model 227:the seed position 124:fractal dimension 1183: 1021:Michael Barnsley 888:Lyapunov fractal 746:Sierpiński curve 699:Blancmange curve 564: 557: 550: 541: 501: 486: 485: 483: 481: 472:. Archived from 461: 452: 446: 444: 442: 427: 421: 420: 403:(4): 2017–2020. 392: 386: 385: 357: 312:library for the 284: 266: 173: 164:Circular example 161: 68: 54: 36: 24: 1191: 1190: 1186: 1185: 1184: 1182: 1181: 1180: 1161: 1160: 1159: 1154: 1085: 1036:Felix Hausdorff 1009: 973:Brownian motion 958: 929: 852: 845: 815: 797: 788:Pythagoras tree 645: 638: 634:Self-similarity 578:Characteristics 573: 568: 494: 489: 479: 477: 463: 462: 455: 440: 438: 429: 428: 424: 394: 393: 389: 359: 358: 354: 350: 323: 303: 302: 301: 300: 299: 285: 276: 275: 274: 267: 256: 221: 205:Brownian motion 201:Brownian motion 181: 180: 179: 178: 177: 174: 166: 165: 162: 149: 91:T.A. Witten Jr. 87:Brownian motion 76: 75: 74: 73: 72: 69: 60: 59: 58: 55: 44: 43: 42: 41: 40: 37: 29: 28: 25: 12: 11: 5: 1189: 1187: 1179: 1178: 1173: 1171:Wiener process 1163: 1162: 1156: 1155: 1153: 1152: 1147: 1142: 1134: 1126: 1118: 1113: 1108: 1107: 1106: 1093: 1091: 1087: 1086: 1084: 1083: 1078: 1073: 1068: 1063: 1058: 1053: 1051:Helge von Koch 1048: 1043: 1038: 1033: 1028: 1023: 1017: 1015: 1011: 1010: 1008: 1007: 1002: 997: 992: 987: 986: 985: 983:Brownian motor 980: 969: 967: 960: 959: 957: 956: 954:Pickover stalk 951: 946: 940: 938: 931: 930: 928: 927: 922: 917: 912: 910:Newton fractal 907: 902: 901: 900: 893:Mandelbrot set 890: 885: 884: 883: 878: 876:Newton fractal 873: 863: 857: 855: 847: 846: 844: 843: 842: 841: 831: 829:Fractal canopy 825: 823: 817: 816: 814: 813: 807: 805: 799: 798: 796: 795: 790: 785: 780: 775: 773:Vicsek fractal 770: 765: 760: 755: 754: 753: 748: 743: 738: 733: 728: 723: 718: 713: 712: 711: 701: 691: 689:Fibonacci word 686: 681: 676: 671: 666: 664:Koch snowflake 661: 656: 650: 648: 640: 639: 637: 636: 631: 626: 625: 624: 619: 614: 609: 604: 603: 602: 592: 581: 579: 575: 574: 569: 567: 566: 559: 552: 544: 538: 537: 532: 527: 522: 517: 512: 507: 493: 492:External links 490: 488: 487: 453: 422: 387: 351: 349: 346: 345: 344: 339: 337:Fractal canopy 334: 329: 322: 319: 294:created using 286: 279: 278: 277: 268: 261: 260: 259: 258: 257: 255: 252: 235: 234: 231: 228: 220: 217: 175: 168: 167: 163: 156: 155: 154: 153: 152: 148: 145: 132:random walkers 115:Brownian trees 103:Hele-Shaw flow 70: 63: 62: 61: 56: 49: 48: 47: 46: 45: 38: 31: 30: 26: 19: 18: 17: 16: 15: 13: 10: 9: 6: 4: 3: 2: 1188: 1177: 1174: 1172: 1169: 1168: 1166: 1151: 1148: 1146: 1143: 1140: 1139: 1135: 1132: 1131: 1127: 1124: 1123: 1119: 1117: 1114: 1112: 1109: 1105: 1102: 1101: 1099: 1095: 1094: 1092: 1088: 1082: 1079: 1077: 1074: 1072: 1069: 1067: 1064: 1062: 1059: 1057: 1054: 1052: 1049: 1047: 1044: 1042: 1039: 1037: 1034: 1032: 1029: 1027: 1024: 1022: 1019: 1018: 1016: 1012: 1006: 1003: 1001: 998: 996: 993: 991: 988: 984: 981: 979: 978:Brownian tree 976: 975: 974: 971: 970: 968: 965: 961: 955: 952: 950: 947: 945: 942: 941: 939: 936: 932: 926: 923: 921: 918: 916: 913: 911: 908: 906: 905:Multibrot set 903: 899: 896: 895: 894: 891: 889: 886: 882: 881:Douady rabbit 879: 877: 874: 872: 869: 868: 867: 864: 862: 859: 858: 856: 854: 848: 840: 837: 836: 835: 832: 830: 827: 826: 824: 822: 818: 812: 809: 808: 806: 804: 800: 794: 791: 789: 786: 784: 781: 779: 776: 774: 771: 769: 766: 764: 761: 759: 756: 752: 751:Z-order curve 749: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 722: 721:Hilbert curve 719: 717: 714: 710: 707: 706: 705: 704:De Rham curve 702: 700: 697: 696: 695: 692: 690: 687: 685: 682: 680: 677: 675: 672: 670: 669:Menger sponge 667: 665: 662: 660: 657: 655: 654:Barnsley fern 652: 651: 649: 647: 641: 635: 632: 630: 627: 623: 620: 618: 615: 613: 610: 608: 605: 601: 598: 597: 596: 593: 591: 588: 587: 586: 583: 582: 580: 576: 572: 565: 560: 558: 553: 551: 546: 545: 542: 536: 533: 531: 528: 526: 523: 521: 518: 516: 513: 511: 508: 505: 500: 496: 495: 491: 476:on 2021-06-19 475: 471: 470:toxiclibs.org 467: 460: 458: 454: 450: 437: 433: 426: 423: 418: 414: 410: 406: 402: 398: 391: 388: 383: 379: 375: 371: 367: 363: 356: 353: 347: 343: 340: 338: 335: 333: 330: 328: 325: 324: 320: 318: 315: 311: 308: 297: 293: 289: 283: 272: 265: 253: 251: 248: 245: 244: 238: 232: 229: 226: 225: 224: 218: 216: 212: 210: 206: 202: 198: 194: 193:Brownian tree 185: 172: 160: 151: 147:Brownian tree 146: 144: 141: 135: 133: 129: 125: 121: 117: 116: 110: 108: 104: 100: 96: 92: 88: 84: 80: 67: 53: 35: 23: 1176:Computer art 1150:Chaos theory 1145:Kaleidoscope 1136: 1128: 1120: 1046:Gaston Julia 1026:Georg Cantor 977: 851:Escape-time 783:Gosper curve 731:Lévy C curve 716:Dragon curve 595:Box-counting 478:. Retrieved 474:the original 469: 439:. Retrieved 435: 425: 400: 396: 390: 365: 361: 355: 304: 249: 241: 239: 236: 222: 213: 197:Robert Brown 192: 190: 150: 136: 114: 111: 78: 77: 1141:(1987 book) 1133:(1986 book) 1125:(1982 book) 1111:Fractal art 1031:Bill Gosper 995:Lévy flight 741:Peano curve 736:Moore curve 622:Topological 607:Correlation 310:open source 292:point cloud 83:random walk 1165:Categories 949:Orbit trap 944:Buddhabrot 937:techniques 925:Mandelbulb 726:Koch curve 659:Cantor set 348:References 1056:Paul Lévy 935:Rendering 920:Mandelbox 866:Julia set 778:Hexaflake 709:Minkowski 629:Recursion 612:Hausdorff 307:toxiclibs 296:toxiclibs 99:transport 95:diffusion 966:fractals 853:fractals 821:L-system 763:T-square 571:Fractals 321:See also 915:Tricorn 768:n-flake 617:Packing 600:Higuchi 590:Assouad 480:June 6, 441:June 6, 405:Bibcode 370:Bibcode 288:Sunflow 219:Factors 120:fractal 85:due to 1014:People 964:Random 871:Filled 839:H tree 758:String 646:system 1090:Other 482:2019 443:2019 199:via 413:doi 378:doi 1167:: 1100:" 468:. 456:^ 434:. 411:. 401:29 399:. 376:. 366:47 364:. 191:A 109:. 1096:" 563:e 556:t 549:v 484:. 451:. 445:. 419:. 415:: 407:: 384:. 380:: 372::

Index





random walk
Brownian motion
T.A. Witten Jr.
diffusion
transport
Hele-Shaw flow
dielectric breakdown
Brownian trees
fractal
fractal dimension
embedding dimension
random walkers
molecular dynamics



Robert Brown
Brownian motion
Brownian motion
dendritic structures
Scientific American

Lichtenberg figure

Sunflow
point cloud

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.