Knowledge (XXG)

Dilworth's theorem

Source đź“ť

1941: 2320:
However, the theorem does not extend so simply to partially ordered sets in which the width, and not just the cardinality of the set, is infinite. In this case the size of the largest antichain and the minimum number of chains needed to cover the partial order may be very different from each other.
62:
A version of the theorem for infinite partially ordered sets states that, when there exists a decomposition into finitely many chains, or when there exists a finite upper bound on the size of an antichain, the sizes of the largest antichain and of the smallest chain decomposition are again equal.
80:
chains. Dilworth's theorem states that, in any finite partially ordered set, the largest antichain has the same size as the smallest chain decomposition. Here, the size of the antichain is its number of elements, and the size of the chain decomposition is its number of chains. The width of the
2644:
is defined as the minimum number of chains needed to define the antimatroid, and Dilworth's theorem can be used to show that it equals the width of an associated partial order; this connection leads to a polynomial time algorithm for convex dimension.
75:
in a partially ordered set is a set of elements no two of which are comparable to each other, and a chain is a set of elements every two of which are comparable. A chain decomposition is a partition of the elements of the order into
2582: 2352:
A dual of Dilworth's theorem states that the size of the largest chain in a partial order (if finite) equals the smallest number of antichains into which the order may be partitioned. This is called
1356: 2439:
of any perfect graph is also perfect. Therefore, the complement of any comparability graph is perfect; this is essentially just Dilworth's theorem itself, restated in graph-theoretic terms (
701: 1930: 881: 443: 284: 1695: 1266: 1520: 1140: 1027: 927: 2190:
both of which have the same size. But the only nontrivial chains in the partial order are pairs of elements corresponding to the edges in the graph, so the nontrivial chains in
350: 1645: 1060: 531: 487: 1572: 1455: 1409: 1727: 1216: 960: 2907: 630: 1383: 987: 795: 748: 585: 558: 377: 2427:
equals the size of the largest clique. Every comparability graph is perfect: this is essentially just Mirsky's theorem, restated in graph-theoretic terms. By the
1859: 1753: 1546: 1481: 2306: 2999: 2596: 1833: 1813: 1793: 1773: 1612: 1592: 1429: 1286: 1183: 1160: 1100: 1080: 835: 815: 768: 721: 605: 397: 304: 241: 218: 198: 178: 158: 138: 107: 1944:
Proof of Dilworth's theorem via KĹ‘nig's theorem: constructing a bipartite graph from a partial order, and partitioning into chains according to a matching
3986: 3265: 2502: 3969: 3499: 3335: 3139: 2781: 3243: 3816: 1949: 2416:
of a comparability graph is itself a comparability graph, formed from the restriction of the partial order to a subset of its elements.
2388:, is an antichain, and these antichains partition the partial order into a number of antichains equal to the size of the largest chain. 2404:
formed from a partial order by creating a vertex per element of the order, and an edge connecting any two comparable elements. Thus, a
4029: 3952: 3811: 3035: 3806: 3442: 3524: 3058: 2409: 2630: 3843: 3763: 3162: 3086: 2941: 1291: 3437: 3628: 3557: 2825: 3531: 3519: 3482: 3457: 3432: 3386: 3355: 3462: 3452: 635: 2285:
colors; every color class in a proper coloring of the incomparability graph must be a chain. By the assumption that
1864: 840: 402: 3828: 3328: 1957: 3801: 3467: 2443:). Thus, the complementation property of perfect graphs can provide an alternative proof of Dilworth's theorem. 3733: 3360: 3119: 17: 3274: 2083:
contains vertices corresponding to the same element on both sides of the bipartition) and no two elements of
4024: 3981: 3964: 3217: 3115: 2233:
Dilworth's theorem for infinite partially ordered sets states that a partially ordered set has finite width
2123:
chains. Therefore, we have constructed an antichain and a partition into chains with the same cardinality.
1650: 1221: 3893: 3509: 2480: 1486: 1105: 992: 886: 246: 3053: 2633:
on monotone subsequences can be interpreted as an application of Dilworth's theorem to partial orders of
4019: 3871: 3706: 3697: 3566: 3401: 3365: 3321: 2795: 2428: 2405: 309: 40: 1617: 1032: 3959: 3918: 3908: 3898: 3643: 3606: 3596: 3576: 3561: 3030:, Advances in Mathematics (Springer), vol. 7, New York: Springer, Theorem 5.6, p. 60, 2769: 2484: 48: 492: 448: 3886: 3797: 3743: 3702: 3692: 3581: 3514: 3477: 2397: 2353: 2347: 2270: 3253: 3225:, IMA Volumes in Mathematics and its Applications, vol. 72, Springer-Verlag, pp. 111–131 1551: 1434: 1388: 3925: 3778: 3687: 3677: 3618: 3536: 3286: 3189: 3103: 2958: 2924: 2890: 2847: 2812: 2790: 1700: 1188: 932: 56: 3998: 3838: 3472: 3261: 3935: 3913: 3773: 3758: 3738: 3541: 3296: 3201: 3135: 3031: 2777: 2205:
This connection to bipartite matching allows the width of any partial order to be computed in
3025: 3748: 3601: 3171: 3127: 3095: 3067: 3010: 2950: 2916: 2874: 2839: 2804: 2436: 2424: 2413: 2401: 3185: 3149: 3045: 2970: 2886: 1361: 965: 773: 726: 563: 536: 355: 3930: 3713: 3591: 3586: 3571: 3396: 3381: 3181: 3145: 3041: 2966: 2902: 2882: 2865: 2830: 2634: 2452: 2322: 2206: 1953: 3487: 3237: 2878: 2356:. Its proof is much simpler than the proof of Dilworth's theorem itself: for any element 1838: 1732: 1525: 1460: 1940: 610: 3848: 3833: 3823: 3682: 3660: 3638: 3209: 2984: 2266: 1818: 1798: 1778: 1758: 1597: 1577: 1414: 1271: 1168: 1145: 1085: 1065: 820: 800: 753: 706: 590: 382: 289: 226: 203: 183: 163: 143: 123: 92: 2861:"Recognition algorithms for orders of small width and graphs of small Dilworth number" 81:
partial order is defined as the common size of the antichain and chain decomposition.
4013: 3947: 3903: 3881: 3753: 3623: 3611: 3416: 3193: 3072: 3015: 2978: 2851: 2420: 1948:
Like a number of other results in combinatorics, Dilworth's theorem is equivalent to
32: 3299: 3288:
Recognition Algorithms for Orders of Small Width and Graphs of Small Dilworth Number
2860: 2599:
also concerns antichains in a power set and can be used to prove Sperner's theorem.
3768: 3650: 3633: 3551: 3391: 3344: 3213: 3205: 3157: 2894: 2765: 2603: 2326: 77: 28: 2828:(1988), "Combinatorial representation and convex dimension of convex geometries", 2317:-colorable incomparability graph, and thus has the desired partition into chains. 3204:(1995), "Variations on the monotone subsequence theme of ErdĹ‘s and Szekeres", in 3974: 3667: 3546: 3411: 3126:, Algorithms and Combinatorics, vol. 28, Heidelberg: Springer, p. 42, 3081: 2936: 2641: 2577:{\displaystyle \operatorname {width} (B_{n})={n \choose \lfloor {n/2}\rfloor }.} 110: 24: 2905:(1956), "Note on Dilworth's decomposition theorem for partially ordered sets", 3942: 3876: 3717: 3248: 3131: 3993: 3866: 3672: 3304: 2464: 72: 44: 3267:
Lecture Notes in Combinatorics and Probability, Lecture 10: Perfect Graphs
89:
The following proof by induction on the size of the partially ordered set
3788: 3655: 3406: 2281:
as vertices, with an edge between every two incomparable elements) using
2776:, Annals of Discrete Mathematics, vol. 21, Elsevier, p. viii, 2622:
2. Therefore, by Dilworth's theorem, the width of this partial order is
2126:
To prove KĹ‘nig's theorem from Dilworth's theorem, for a bipartite graph
3176: 3107: 2962: 2928: 2843: 2816: 2293:, and by the finite version of Dilworth's theorem, every finite subset 16:"Chain decomposition" redirects here. For the path decomposition, see 3099: 2954: 2920: 2808: 2338:
discusses analogues of Dilworth's theorem in the infinite setting.
2039:, such that each edge in the graph contains at least one vertex in 55:
of the partially order. The theorem is named for the mathematician
1939: 140:
be a finite partially ordered set. The theorem holds trivially if
3317: 3313: 3056:(1972), "Normal hypergraphs and the perfect graph conjecture", 2793:(1950), "A Decomposition Theorem for Partially Ordered Sets", 2939:(1994), "A proof of Dilworth's chain decomposition theorem", 2587:
In other words, a largest family of incomparable subsets of
2859:
Felsner, Stefan; Raghavan, Vijay; Spinrad, Jeremy (2003),
2412:
in a comparability graph corresponds to an antichain. Any
1971:
elements, using KĹ‘nig's theorem, define a bipartite graph
2981:; Kleitman, Daniel J. (1976), "The structure of Sperner 2408:
in a comparability graph corresponds to a chain, and an
51:
needed to cover all elements. This number is called the
2606:, the subinterval forms an antichain with cardinality 3160:(1963), "On Dilworth's theorem in the infinite case", 3084:(1971), "A dual of Dilworth's decomposition theorem", 2696: 2694: 2685: 2325:Îş there is an infinite partially ordered set of width 1956:
matching and several other related theorems including
47:
of incomparable elements equals the minimum number of
2987: 2505: 2332:
whose partition into the fewest chains has Îş chains.
2241:
chains. For, suppose that an infinite partial order
1867: 1841: 1821: 1801: 1781: 1761: 1735: 1703: 1653: 1620: 1600: 1580: 1554: 1528: 1489: 1463: 1437: 1417: 1391: 1364: 1294: 1274: 1224: 1191: 1171: 1148: 1108: 1088: 1068: 1035: 995: 968: 935: 889: 843: 823: 803: 776: 756: 729: 709: 638: 613: 593: 566: 539: 495: 451: 405: 385: 358: 312: 292: 249: 229: 206: 186: 166: 146: 126: 95: 3285:
Felsner, S.; Raghavan, V. & Spinrad, J. (1999),
3238:
Equivalence of seven major theorems in combinatorics
2384:), consisting of elements that have equal values of 2305:-colorable incomparability graph. Therefore, by the 1351:{\displaystyle \{a\}\cup \{z\in C_{i}:z\leq x_{i}\}} 3859: 3787: 3726: 3496: 3425: 3374: 2182:. By Dilworth's theorem, there exists an antichain 2993: 2576: 1924: 1853: 1827: 1807: 1787: 1767: 1747: 1721: 1689: 1639: 1606: 1586: 1566: 1540: 1514: 1475: 1449: 1423: 1403: 1377: 1350: 1280: 1260: 1210: 1177: 1154: 1134: 1094: 1074: 1054: 1021: 981: 954: 921: 875: 829: 809: 789: 762: 742: 715: 695: 624: 599: 579: 552: 525: 481: 437: 391: 371: 344: 298: 278: 235: 212: 192: 172: 152: 132: 101: 2565: 2534: 2249:, meaning that there are at most a finite number 2908:Proceedings of the American Mathematical Society 2614:chains is easy to achieve: for each odd integer 2194:form a matching in the graph. The complement of 1963:To prove Dilworth's theorem for a partial order 2023:. By KĹ‘nig's theorem, there exists a matching 696:{\displaystyle A:=\{x_{1},x_{2},\dots ,x_{k}\}} 1925:{\displaystyle \{a\},C_{1},C_{2},\dots ,C_{k}} 876:{\displaystyle A_{i}\cap C_{j}\neq \emptyset } 438:{\displaystyle A_{0}\cap C_{i}\neq \emptyset } 223:By induction, we assume that for some integer 3329: 2618:in , form a chain of the numbers of the form 2602:If we order the integers in the interval by 2342:Dual of Dilworth's theorem (Mirsky's theorem) 2253:of elements in any antichain. For any subset 2099:in the same chain whenever there is an edge ( 8: 3124:Sparsity: Graphs, Structures, and Algorithms 2724: 2559: 2543: 2440: 2265:chains (if it exists) may be described as a 2229:Extension to infinite partially ordered sets 2202:with the same cardinality as this matching. 1874: 1868: 1716: 1710: 1684: 1660: 1509: 1496: 1345: 1307: 1301: 1295: 1255: 1231: 690: 645: 273: 267: 2748: 2142:), form a partial order on the vertices of 3987:Positive cone of a partially ordered group 3336: 3322: 3314: 2372:) denote the size of the largest of these 2341: 2237:if and only if it may be partitioned into 2091:be a family of chains formed by including 3175: 3071: 3014: 3003:Journal of Combinatorial Theory, Series A 2986: 2673: 2610:. A partition of this partial order into 2564: 2550: 2546: 2533: 2531: 2519: 2504: 1916: 1897: 1884: 1866: 1840: 1820: 1800: 1780: 1760: 1734: 1702: 1652: 1631: 1619: 1599: 1579: 1553: 1527: 1503: 1488: 1462: 1436: 1416: 1390: 1369: 1363: 1339: 1320: 1293: 1273: 1223: 1202: 1190: 1170: 1147: 1126: 1113: 1107: 1087: 1067: 1040: 1034: 1013: 1000: 994: 973: 967: 946: 934: 913: 900: 888: 861: 848: 842: 822: 802: 781: 775: 755: 734: 728: 708: 684: 665: 652: 637: 612: 592: 571: 565: 544: 538: 494: 450: 423: 410: 404: 384: 363: 357: 336: 317: 311: 291: 248: 228: 205: 185: 165: 145: 125: 94: 3970:Positive cone of an ordered vector space 2700: 2661: 2591:is obtained by selecting the subsets of 2063:that do not correspond to any vertex in 2654: 1614:disjoint chains, as required. Next, if 1558: 1493: 1441: 1395: 264: 2736: 2712: 2432: 2335: 114: 1690:{\displaystyle i\in \{1,2,\dots ,k\}} 1261:{\displaystyle i\in \{1,2,\dots ,k\}} 587:that belongs to an antichain of size 7: 2686:Felsner, Raghavan & Spinrad 2003 2597:Lubell–Yamamoto–Meshalkin inequality 1515:{\displaystyle A\setminus \{x_{i}\}} 1135:{\displaystyle x_{j}\not \geq x_{i}} 1022:{\displaystyle x_{i}\not \geq x_{j}} 922:{\displaystyle y\in A_{i}\cap C_{j}} 279:{\displaystyle P':=P\setminus \{a\}} 3219:Discrete Probability and Algorithms 2487:states that a maximum antichain of 2423:if, in every induced subgraph, the 1411:does not have an antichain of size 3497:Properties & Types ( 2879:10.1023/B:ORDE.0000034609.99940.fb 2538: 2392:Perfection of comparability graphs 2364:as their largest element, and let 2321:In particular, for every infinite 2277:(a graph that has the elements of 2087:are comparable to each other. Let 870: 432: 345:{\displaystyle C_{1},\dots ,C_{k}} 180:has at least one element, and let 14: 3953:Positive cone of an ordered field 2942:The American Mathematical Monthly 2213:-element partial orders of width 797:. Fix arbitrary distinct indices 3807:Ordered topological vector space 2360:, consider the chains that have 1640:{\displaystyle a\not \geq x_{i}} 1062:. By interchanging the roles of 1055:{\displaystyle x_{i}\not \geq y} 2447:Width of special partial orders 2376:-maximal chains. Then each set 352:and has at least one antichain 2525: 2512: 2170:, and there exists an edge in 1431:. Induction then implies that 1102:in this argument we also have 526:{\displaystyle i=1,2,\dots ,k} 482:{\displaystyle i=1,2,\dots ,k} 1: 3764:Series-parallel partial order 3163:Israel Journal of Mathematics 3087:American Mathematical Monthly 2640:The "convex dimension" of an 3443:Cantor's isomorphism theorem 3244:"Dual of Dilworth's Theorem" 3073:10.1016/0012-365X(72)90006-4 3016:10.1016/0097-3165(76)90077-7 2186:and a partition into chains 1567:{\displaystyle P\setminus K} 1450:{\displaystyle P\setminus K} 1404:{\displaystyle P\setminus K} 59:, who published it in 1950. 3483:Szpilrajn extension theorem 3458:Hausdorff maximal principle 3433:Boolean prime ideal theorem 2595:that have median size. The 2079:elements (possibly more if 1722:{\displaystyle A\cup \{a\}} 1211:{\displaystyle a\geq x_{i}} 955:{\displaystyle y\leq x_{j}} 39:states that, in any finite 4046: 3829:Topological vector lattice 2483:or, notationally, (2, ⊆). 2345: 2217:can be recognized in time 2059:be the set of elements of 2051:have the same cardinality 560:be the maximal element in 243:the partially ordered set 160:is empty. So, assume that 15: 4030:Theorems in combinatorics 3351: 3132:10.1007/978-3-642-27875-4 3120:Ossona de Mendez, Patrice 3024:Harzheim, Egbert (2005), 1936:Proof via KĹ‘nig's theorem 43:, the maximum size of an 3438:Cantor–Bernstein theorem 3122:(2012), "Theorem 3.13", 2774:Topics on Perfect Graphs 2725:Berge & Chvátal 1984 2441:Berge & Chvátal 1984 2198:forms a vertex cover in 2031:, and a set of vertices 1932:, completing the proof. 1729:is an antichain of size 1522:is an antichain of size 1358:. Then by the choice of 750:be an antichain of size 200:be a maximal element of 18:Heavy path decomposition 3982:Partially ordered group 3802:Specialization preorder 2749:Edelman & Saks 1988 2475:—essentially {1, 2, …, 2419:An undirected graph is 2307:De Bruijn–ErdĹ‘s theorem 2261:, a decomposition into 1958:Hall's marriage theorem 1935: 962:, by the definition of 3468:Kruskal's tree theorem 3463:Knaster–Tarski theorem 3453:Dushnik–Miller theorem 3216:; et al. (eds.), 2995: 2631:ErdĹ‘s–Szekeres theorem 2578: 1945: 1926: 1855: 1835:can be covered by the 1829: 1809: 1789: 1769: 1749: 1723: 1691: 1641: 1608: 1588: 1568: 1542: 1516: 1483:disjoint chains since 1477: 1451: 1425: 1405: 1379: 1352: 1282: 1262: 1212: 1179: 1156: 1136: 1096: 1076: 1056: 1023: 983: 956: 923: 877: 831: 811: 791: 764: 744: 723:is an antichain. Let 717: 697: 626: 601: 581: 554: 527: 483: 439: 393: 373: 346: 300: 280: 237: 214: 194: 174: 154: 134: 103: 2996: 2873:(4): 351–364 (2004), 2796:Annals of Mathematics 2579: 2429:perfect graph theorem 2271:incomparability graph 1943: 1927: 1856: 1830: 1810: 1790: 1770: 1750: 1724: 1692: 1642: 1609: 1589: 1569: 1543: 1517: 1478: 1452: 1426: 1406: 1380: 1378:{\displaystyle x_{i}} 1353: 1283: 1263: 1213: 1185:. Suppose first that 1180: 1157: 1142:. This verifies that 1137: 1097: 1077: 1057: 1024: 984: 982:{\displaystyle x_{j}} 957: 924: 878: 832: 812: 792: 790:{\displaystyle x_{i}} 765: 745: 743:{\displaystyle A_{i}} 718: 698: 627: 602: 582: 580:{\displaystyle C_{i}} 555: 553:{\displaystyle x_{i}} 528: 484: 440: 394: 374: 372:{\displaystyle A_{0}} 347: 301: 281: 238: 215: 195: 175: 155: 135: 104: 41:partially ordered set 3960:Ordered vector space 3059:Discrete Mathematics 2985: 2503: 1865: 1839: 1819: 1799: 1779: 1759: 1733: 1701: 1651: 1618: 1598: 1578: 1552: 1526: 1487: 1461: 1435: 1415: 1389: 1362: 1292: 1272: 1222: 1189: 1169: 1146: 1106: 1086: 1066: 1033: 993: 989:. This implies that 966: 933: 887: 841: 821: 801: 774: 754: 727: 707: 636: 611: 591: 564: 537: 493: 449: 403: 383: 356: 310: 290: 247: 227: 204: 184: 164: 144: 124: 109:is based on that of 93: 3798:Alexandrov topology 3744:Lexicographic order 3703:Well-quasi-ordering 2791:Dilworth, Robert P. 2398:comparability graph 1854:{\displaystyle k+1} 1748:{\displaystyle k+1} 1541:{\displaystyle k-1} 1476:{\displaystyle k-1} 3779:Transitive closure 3739:Converse/Transpose 3448:Dilworth's theorem 3300:"Dilworth's Lemma" 3297:Weisstein, Eric W. 3202:Steele, J. Michael 3177:10.1007/BF02759806 3116:NešetĹ™il, Jaroslav 2991: 2844:10.1007/BF00143895 2824:Edelman, Paul H.; 2574: 2313:itself also has a 2209:. More precisely, 1946: 1922: 1851: 1825: 1805: 1785: 1765: 1745: 1719: 1687: 1637: 1604: 1594:can be covered by 1584: 1564: 1538: 1512: 1473: 1457:can be covered by 1447: 1421: 1401: 1375: 1348: 1278: 1258: 1208: 1175: 1152: 1132: 1092: 1072: 1052: 1019: 979: 952: 919: 873: 827: 807: 787: 760: 740: 713: 693: 625:{\displaystyle P'} 622: 597: 577: 550: 523: 479: 435: 389: 369: 342: 296: 286:can be covered by 276: 233: 210: 190: 170: 150: 130: 99: 57:Robert P. Dilworth 37:Dilworth's theorem 27:, in the areas of 4007: 4006: 3965:Partially ordered 3774:Symmetric closure 3759:Reflexive closure 3502: 3141:978-3-642-27874-7 2994:{\displaystyle k} 2783:978-0-444-86587-8 2563: 2496:has size at most 2485:Sperner's theorem 1828:{\displaystyle P} 1808:{\displaystyle P} 1788:{\displaystyle a} 1768:{\displaystyle P} 1607:{\displaystyle k} 1587:{\displaystyle P} 1424:{\displaystyle k} 1281:{\displaystyle K} 1178:{\displaystyle P} 1165:We now return to 1162:is an antichain. 1155:{\displaystyle A} 1095:{\displaystyle j} 1075:{\displaystyle i} 830:{\displaystyle j} 810:{\displaystyle i} 763:{\displaystyle k} 716:{\displaystyle A} 703:. We claim that 600:{\displaystyle k} 392:{\displaystyle k} 299:{\displaystyle k} 236:{\displaystyle k} 213:{\displaystyle P} 193:{\displaystyle a} 173:{\displaystyle P} 153:{\displaystyle P} 133:{\displaystyle P} 102:{\displaystyle P} 4037: 3749:Linear extension 3498: 3478:Mirsky's theorem 3338: 3331: 3324: 3315: 3310: 3309: 3291: 3281: 3279: 3273:, archived from 3272: 3257: 3252:, archived from 3226: 3224: 3196: 3179: 3158:Perles, Micha A. 3152: 3110: 3076: 3075: 3048: 3019: 3018: 3000: 2998: 2997: 2992: 2973: 2931: 2903:Fulkerson, D. R. 2897: 2854: 2826:Saks, Michael E. 2819: 2786: 2752: 2746: 2740: 2734: 2728: 2722: 2716: 2710: 2704: 2698: 2689: 2683: 2677: 2671: 2665: 2659: 2583: 2581: 2580: 2575: 2570: 2569: 2568: 2562: 2558: 2554: 2537: 2524: 2523: 2425:chromatic number 2414:induced subgraph 2402:undirected graph 2354:Mirsky's theorem 2348:Mirsky's theorem 2007:) is an edge in 1931: 1929: 1928: 1923: 1921: 1920: 1902: 1901: 1889: 1888: 1860: 1858: 1857: 1852: 1834: 1832: 1831: 1826: 1814: 1812: 1811: 1806: 1794: 1792: 1791: 1786: 1774: 1772: 1771: 1766: 1754: 1752: 1751: 1746: 1728: 1726: 1725: 1720: 1696: 1694: 1693: 1688: 1646: 1644: 1643: 1638: 1636: 1635: 1613: 1611: 1610: 1605: 1593: 1591: 1590: 1585: 1573: 1571: 1570: 1565: 1547: 1545: 1544: 1539: 1521: 1519: 1518: 1513: 1508: 1507: 1482: 1480: 1479: 1474: 1456: 1454: 1453: 1448: 1430: 1428: 1427: 1422: 1410: 1408: 1407: 1402: 1384: 1382: 1381: 1376: 1374: 1373: 1357: 1355: 1354: 1349: 1344: 1343: 1325: 1324: 1287: 1285: 1284: 1279: 1267: 1265: 1264: 1259: 1217: 1215: 1214: 1209: 1207: 1206: 1184: 1182: 1181: 1176: 1161: 1159: 1158: 1153: 1141: 1139: 1138: 1133: 1131: 1130: 1118: 1117: 1101: 1099: 1098: 1093: 1081: 1079: 1078: 1073: 1061: 1059: 1058: 1053: 1045: 1044: 1028: 1026: 1025: 1020: 1018: 1017: 1005: 1004: 988: 986: 985: 980: 978: 977: 961: 959: 958: 953: 951: 950: 928: 926: 925: 920: 918: 917: 905: 904: 882: 880: 879: 874: 866: 865: 853: 852: 836: 834: 833: 828: 816: 814: 813: 808: 796: 794: 793: 788: 786: 785: 769: 767: 766: 761: 749: 747: 746: 741: 739: 738: 722: 720: 719: 714: 702: 700: 699: 694: 689: 688: 670: 669: 657: 656: 631: 629: 628: 623: 621: 606: 604: 603: 598: 586: 584: 583: 578: 576: 575: 559: 557: 556: 551: 549: 548: 532: 530: 529: 524: 488: 486: 485: 480: 444: 442: 441: 436: 428: 427: 415: 414: 398: 396: 395: 390: 378: 376: 375: 370: 368: 367: 351: 349: 348: 343: 341: 340: 322: 321: 306:disjoint chains 305: 303: 302: 297: 285: 283: 282: 277: 257: 242: 240: 239: 234: 219: 217: 216: 211: 199: 197: 196: 191: 179: 177: 176: 171: 159: 157: 156: 151: 139: 137: 136: 131: 108: 106: 105: 100: 4045: 4044: 4040: 4039: 4038: 4036: 4035: 4034: 4010: 4009: 4008: 4003: 3999:Young's lattice 3855: 3783: 3722: 3572:Heyting algebra 3520:Boolean algebra 3492: 3473:Laver's theorem 3421: 3387:Boolean algebra 3382:Binary relation 3370: 3347: 3342: 3295: 3294: 3284: 3277: 3270: 3260: 3242: 3234: 3222: 3210:Diaconis, Persi 3200: 3156: 3142: 3114: 3100:10.2307/2316481 3080: 3052: 3038: 3023: 2983: 2982: 2977: 2955:10.2307/2975628 2935: 2921:10.2307/2033375 2901: 2858: 2823: 2809:10.2307/1969503 2789: 2784: 2770:Chvátal, Václav 2764: 2761: 2756: 2755: 2747: 2743: 2735: 2731: 2723: 2719: 2711: 2707: 2699: 2692: 2684: 2680: 2672: 2668: 2660: 2656: 2651: 2635:order dimension 2542: 2532: 2515: 2501: 2500: 2495: 2462: 2453:Boolean lattice 2449: 2410:independent set 2394: 2350: 2344: 2330: 2323:cardinal number 2231: 2207:polynomial time 1954:bipartite graph 1950:KĹ‘nig's theorem 1938: 1912: 1893: 1880: 1863: 1862: 1837: 1836: 1817: 1816: 1797: 1796: 1777: 1776: 1757: 1756: 1731: 1730: 1699: 1698: 1649: 1648: 1627: 1616: 1615: 1596: 1595: 1576: 1575: 1550: 1549: 1524: 1523: 1499: 1485: 1484: 1459: 1458: 1433: 1432: 1413: 1412: 1387: 1386: 1365: 1360: 1359: 1335: 1316: 1290: 1289: 1270: 1269: 1220: 1219: 1198: 1187: 1186: 1167: 1166: 1144: 1143: 1122: 1109: 1104: 1103: 1084: 1083: 1064: 1063: 1036: 1031: 1030: 1009: 996: 991: 990: 969: 964: 963: 942: 931: 930: 909: 896: 885: 884: 857: 844: 839: 838: 819: 818: 799: 798: 777: 772: 771: 752: 751: 730: 725: 724: 705: 704: 680: 661: 648: 634: 633: 614: 609: 608: 589: 588: 567: 562: 561: 540: 535: 534: 491: 490: 447: 446: 419: 406: 401: 400: 381: 380: 359: 354: 353: 332: 313: 308: 307: 288: 287: 250: 245: 244: 225: 224: 202: 201: 182: 181: 162: 161: 142: 141: 122: 121: 91: 90: 87: 85:Inductive proof 69: 21: 12: 11: 5: 4043: 4041: 4033: 4032: 4027: 4025:Perfect graphs 4022: 4012: 4011: 4005: 4004: 4002: 4001: 3996: 3991: 3990: 3989: 3979: 3978: 3977: 3972: 3967: 3957: 3956: 3955: 3945: 3940: 3939: 3938: 3933: 3926:Order morphism 3923: 3922: 3921: 3911: 3906: 3901: 3896: 3891: 3890: 3889: 3879: 3874: 3869: 3863: 3861: 3857: 3856: 3854: 3853: 3852: 3851: 3846: 3844:Locally convex 3841: 3836: 3826: 3824:Order topology 3821: 3820: 3819: 3817:Order topology 3814: 3804: 3794: 3792: 3785: 3784: 3782: 3781: 3776: 3771: 3766: 3761: 3756: 3751: 3746: 3741: 3736: 3730: 3728: 3724: 3723: 3721: 3720: 3710: 3700: 3695: 3690: 3685: 3680: 3675: 3670: 3665: 3664: 3663: 3653: 3648: 3647: 3646: 3641: 3636: 3631: 3629:Chain-complete 3621: 3616: 3615: 3614: 3609: 3604: 3599: 3594: 3584: 3579: 3574: 3569: 3564: 3554: 3549: 3544: 3539: 3534: 3529: 3528: 3527: 3517: 3512: 3506: 3504: 3494: 3493: 3491: 3490: 3485: 3480: 3475: 3470: 3465: 3460: 3455: 3450: 3445: 3440: 3435: 3429: 3427: 3423: 3422: 3420: 3419: 3414: 3409: 3404: 3399: 3394: 3389: 3384: 3378: 3376: 3372: 3371: 3369: 3368: 3363: 3358: 3352: 3349: 3348: 3343: 3341: 3340: 3333: 3326: 3318: 3312: 3311: 3292: 3282: 3258: 3240: 3233: 3232:External links 3230: 3229: 3228: 3198: 3170:(2): 108–109, 3154: 3140: 3112: 3094:(8): 876–877, 3078: 3066:(3): 253–267, 3054:Lovász, LászlĂł 3050: 3036: 3021: 2990: 2979:Greene, Curtis 2975: 2949:(4): 352–353, 2933: 2915:(4): 701–702, 2899: 2856: 2821: 2803:(1): 161–166, 2787: 2782: 2760: 2757: 2754: 2753: 2741: 2729: 2717: 2705: 2690: 2678: 2674:Fulkerson 1956 2666: 2653: 2652: 2650: 2647: 2585: 2584: 2573: 2567: 2561: 2557: 2553: 2549: 2545: 2541: 2536: 2530: 2527: 2522: 2518: 2514: 2511: 2508: 2491: 2458: 2448: 2445: 2393: 2390: 2346:Main article: 2343: 2340: 2328: 2230: 2227: 2043:and such that 1937: 1934: 1919: 1915: 1911: 1908: 1905: 1900: 1896: 1892: 1887: 1883: 1879: 1876: 1873: 1870: 1850: 1847: 1844: 1824: 1804: 1795:is maximal in 1784: 1764: 1744: 1741: 1738: 1718: 1715: 1712: 1709: 1706: 1686: 1683: 1680: 1677: 1674: 1671: 1668: 1665: 1662: 1659: 1656: 1634: 1630: 1626: 1623: 1603: 1583: 1563: 1560: 1557: 1537: 1534: 1531: 1511: 1506: 1502: 1498: 1495: 1492: 1472: 1469: 1466: 1446: 1443: 1440: 1420: 1400: 1397: 1394: 1372: 1368: 1347: 1342: 1338: 1334: 1331: 1328: 1323: 1319: 1315: 1312: 1309: 1306: 1303: 1300: 1297: 1277: 1257: 1254: 1251: 1248: 1245: 1242: 1239: 1236: 1233: 1230: 1227: 1205: 1201: 1197: 1194: 1174: 1151: 1129: 1125: 1121: 1116: 1112: 1091: 1071: 1051: 1048: 1043: 1039: 1016: 1012: 1008: 1003: 999: 976: 972: 949: 945: 941: 938: 916: 912: 908: 903: 899: 895: 892: 872: 869: 864: 860: 856: 851: 847: 826: 806: 784: 780: 770:that contains 759: 737: 733: 712: 692: 687: 683: 679: 676: 673: 668: 664: 660: 655: 651: 647: 644: 641: 620: 617: 596: 574: 570: 547: 543: 522: 519: 516: 513: 510: 507: 504: 501: 498: 478: 475: 472: 469: 466: 463: 460: 457: 454: 434: 431: 426: 422: 418: 413: 409: 388: 366: 362: 339: 335: 331: 328: 325: 320: 316: 295: 275: 272: 269: 266: 263: 260: 256: 253: 232: 209: 189: 169: 149: 129: 98: 86: 83: 68: 65: 13: 10: 9: 6: 4: 3: 2: 4042: 4031: 4028: 4026: 4023: 4021: 4018: 4017: 4015: 4000: 3997: 3995: 3992: 3988: 3985: 3984: 3983: 3980: 3976: 3973: 3971: 3968: 3966: 3963: 3962: 3961: 3958: 3954: 3951: 3950: 3949: 3948:Ordered field 3946: 3944: 3941: 3937: 3934: 3932: 3929: 3928: 3927: 3924: 3920: 3917: 3916: 3915: 3912: 3910: 3907: 3905: 3904:Hasse diagram 3902: 3900: 3897: 3895: 3892: 3888: 3885: 3884: 3883: 3882:Comparability 3880: 3878: 3875: 3873: 3870: 3868: 3865: 3864: 3862: 3858: 3850: 3847: 3845: 3842: 3840: 3837: 3835: 3832: 3831: 3830: 3827: 3825: 3822: 3818: 3815: 3813: 3810: 3809: 3808: 3805: 3803: 3799: 3796: 3795: 3793: 3790: 3786: 3780: 3777: 3775: 3772: 3770: 3767: 3765: 3762: 3760: 3757: 3755: 3754:Product order 3752: 3750: 3747: 3745: 3742: 3740: 3737: 3735: 3732: 3731: 3729: 3727:Constructions 3725: 3719: 3715: 3711: 3708: 3704: 3701: 3699: 3696: 3694: 3691: 3689: 3686: 3684: 3681: 3679: 3676: 3674: 3671: 3669: 3666: 3662: 3659: 3658: 3657: 3654: 3652: 3649: 3645: 3642: 3640: 3637: 3635: 3632: 3630: 3627: 3626: 3625: 3624:Partial order 3622: 3620: 3617: 3613: 3612:Join and meet 3610: 3608: 3605: 3603: 3600: 3598: 3595: 3593: 3590: 3589: 3588: 3585: 3583: 3580: 3578: 3575: 3573: 3570: 3568: 3565: 3563: 3559: 3555: 3553: 3550: 3548: 3545: 3543: 3540: 3538: 3535: 3533: 3530: 3526: 3523: 3522: 3521: 3518: 3516: 3513: 3511: 3510:Antisymmetric 3508: 3507: 3505: 3501: 3495: 3489: 3486: 3484: 3481: 3479: 3476: 3474: 3471: 3469: 3466: 3464: 3461: 3459: 3456: 3454: 3451: 3449: 3446: 3444: 3441: 3439: 3436: 3434: 3431: 3430: 3428: 3424: 3418: 3417:Weak ordering 3415: 3413: 3410: 3408: 3405: 3403: 3402:Partial order 3400: 3398: 3395: 3393: 3390: 3388: 3385: 3383: 3380: 3379: 3377: 3373: 3367: 3364: 3362: 3359: 3357: 3354: 3353: 3350: 3346: 3339: 3334: 3332: 3327: 3325: 3320: 3319: 3316: 3307: 3306: 3301: 3298: 3293: 3290: 3289: 3283: 3280:on 2011-07-20 3276: 3269: 3268: 3263: 3262:Babai, LászlĂł 3259: 3256:on 2007-07-14 3255: 3251: 3250: 3245: 3241: 3239: 3236: 3235: 3231: 3221: 3220: 3215: 3214:Spencer, Joel 3211: 3207: 3206:Aldous, David 3203: 3199: 3195: 3191: 3187: 3183: 3178: 3173: 3169: 3165: 3164: 3159: 3155: 3151: 3147: 3143: 3137: 3133: 3129: 3125: 3121: 3117: 3113: 3109: 3105: 3101: 3097: 3093: 3089: 3088: 3083: 3079: 3074: 3069: 3065: 3061: 3060: 3055: 3051: 3047: 3043: 3039: 3037:0-387-24219-8 3033: 3029: 3028: 3022: 3017: 3012: 3008: 3004: 2988: 2980: 2976: 2972: 2968: 2964: 2960: 2956: 2952: 2948: 2944: 2943: 2938: 2934: 2930: 2926: 2922: 2918: 2914: 2910: 2909: 2904: 2900: 2896: 2892: 2888: 2884: 2880: 2876: 2872: 2868: 2867: 2862: 2857: 2853: 2849: 2845: 2841: 2837: 2833: 2832: 2827: 2822: 2818: 2814: 2810: 2806: 2802: 2798: 2797: 2792: 2788: 2785: 2779: 2775: 2771: 2767: 2766:Berge, Claude 2763: 2762: 2758: 2750: 2745: 2742: 2738: 2733: 2730: 2726: 2721: 2718: 2714: 2709: 2706: 2702: 2701:Harzheim 2005 2697: 2695: 2691: 2687: 2682: 2679: 2675: 2670: 2667: 2663: 2662:Dilworth 1950 2658: 2655: 2648: 2646: 2643: 2638: 2636: 2632: 2627: 2625: 2621: 2617: 2613: 2609: 2605: 2600: 2598: 2594: 2590: 2571: 2555: 2551: 2547: 2539: 2528: 2520: 2516: 2509: 2506: 2499: 2498: 2497: 2494: 2490: 2486: 2482: 2479:}—ordered by 2478: 2474: 2471:-element set 2470: 2466: 2461: 2457: 2454: 2446: 2444: 2442: 2438: 2434: 2433:Lovász (1972) 2430: 2426: 2422: 2417: 2415: 2411: 2407: 2403: 2399: 2391: 2389: 2387: 2383: 2379: 2375: 2371: 2367: 2363: 2359: 2355: 2349: 2339: 2337: 2336:Perles (1963) 2333: 2331: 2324: 2318: 2316: 2312: 2308: 2304: 2300: 2296: 2292: 2288: 2284: 2280: 2276: 2272: 2268: 2264: 2260: 2256: 2252: 2248: 2244: 2240: 2236: 2228: 2226: 2224: 2220: 2216: 2212: 2208: 2203: 2201: 2197: 2193: 2189: 2185: 2181: 2177: 2173: 2169: 2165: 2161: 2157: 2154:exactly when 2153: 2149: 2145: 2141: 2137: 2133: 2129: 2124: 2122: 2118: 2114: 2110: 2106: 2102: 2098: 2094: 2090: 2086: 2082: 2078: 2074: 2071:has at least 2070: 2066: 2062: 2058: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2026: 2022: 2018: 2014: 2010: 2006: 2002: 1998: 1994: 1990: 1986: 1982: 1978: 1974: 1970: 1966: 1961: 1959: 1955: 1951: 1942: 1933: 1917: 1913: 1909: 1906: 1903: 1898: 1894: 1890: 1885: 1881: 1877: 1871: 1848: 1845: 1842: 1822: 1802: 1782: 1762: 1742: 1739: 1736: 1713: 1707: 1704: 1681: 1678: 1675: 1672: 1669: 1666: 1663: 1657: 1654: 1632: 1628: 1624: 1621: 1601: 1581: 1561: 1555: 1535: 1532: 1529: 1504: 1500: 1490: 1470: 1467: 1464: 1444: 1438: 1418: 1398: 1392: 1370: 1366: 1340: 1336: 1332: 1329: 1326: 1321: 1317: 1313: 1310: 1304: 1298: 1288:be the chain 1275: 1252: 1249: 1246: 1243: 1240: 1237: 1234: 1228: 1225: 1203: 1199: 1195: 1192: 1172: 1163: 1149: 1127: 1123: 1119: 1114: 1110: 1089: 1069: 1049: 1046: 1041: 1037: 1014: 1010: 1006: 1001: 997: 974: 970: 947: 943: 939: 936: 914: 910: 906: 901: 897: 893: 890: 867: 862: 858: 854: 849: 845: 824: 804: 782: 778: 757: 735: 731: 710: 685: 681: 677: 674: 671: 666: 662: 658: 653: 649: 642: 639: 618: 615: 594: 572: 568: 545: 541: 520: 517: 514: 511: 508: 505: 502: 499: 496: 476: 473: 470: 467: 464: 461: 458: 455: 452: 429: 424: 420: 416: 411: 407: 386: 364: 360: 337: 333: 329: 326: 323: 318: 314: 293: 270: 261: 258: 254: 251: 230: 221: 207: 187: 167: 147: 127: 118: 116: 112: 96: 84: 82: 79: 74: 66: 64: 60: 58: 54: 50: 46: 42: 38: 34: 33:combinatorics 30: 26: 19: 4020:Order theory 3791:& Orders 3769:Star product 3698:Well-founded 3651:Prefix order 3607:Distributive 3597:Complemented 3567:Foundational 3532:Completeness 3488:Zorn's lemma 3447: 3392:Cyclic order 3375:Key concepts 3345:Order theory 3303: 3287: 3275:the original 3266: 3254:the original 3247: 3218: 3167: 3161: 3123: 3091: 3085: 3082:Mirsky, Leon 3063: 3057: 3027:Ordered sets 3026: 3009:(1): 41–68, 3006: 3002: 3001:-families", 2946: 2940: 2937:Galvin, Fred 2912: 2906: 2870: 2864: 2838:(1): 23–32, 2835: 2829: 2800: 2794: 2773: 2744: 2732: 2720: 2708: 2681: 2669: 2657: 2639: 2628: 2623: 2619: 2615: 2611: 2607: 2604:divisibility 2601: 2592: 2588: 2586: 2492: 2488: 2476: 2472: 2468: 2459: 2455: 2450: 2418: 2395: 2385: 2381: 2377: 2373: 2369: 2365: 2361: 2357: 2351: 2334: 2319: 2314: 2310: 2302: 2298: 2294: 2290: 2286: 2282: 2278: 2274: 2262: 2258: 2254: 2250: 2246: 2242: 2238: 2234: 2232: 2222: 2218: 2214: 2210: 2204: 2199: 2195: 2191: 2187: 2183: 2179: 2175: 2171: 2167: 2163: 2159: 2155: 2151: 2147: 2143: 2139: 2135: 2131: 2127: 2125: 2120: 2116: 2112: 2108: 2104: 2100: 2096: 2092: 2088: 2084: 2080: 2076: 2072: 2068: 2064: 2060: 2056: 2052: 2048: 2044: 2040: 2036: 2032: 2028: 2024: 2020: 2016: 2012: 2008: 2004: 2000: 1996: 1992: 1988: 1984: 1980: 1976: 1972: 1968: 1964: 1962: 1947: 1164: 222: 119: 88: 70: 61: 52: 36: 29:order theory 22: 3975:Riesz space 3936:Isomorphism 3812:Normal cone 3734:Composition 3668:Semilattice 3577:Homogeneous 3562:Equivalence 3412:Total order 2737:Steele 1995 2713:Mirsky 1971 2642:antimatroid 1999:and where ( 399:. Clearly, 25:mathematics 4014:Categories 3943:Order type 3877:Cofinality 3718:Well-order 3693:Transitive 3582:Idempotent 3515:Asymmetric 3249:PlanetMath 2759:References 2437:complement 2289:has width 2245:has width 632:, and set 3994:Upper set 3931:Embedding 3867:Antichain 3688:Tolerance 3678:Symmetric 3673:Semiorder 3619:Reflexive 3537:Connected 3305:MathWorld 3194:120943065 2852:119826035 2560:⌋ 2544:⌊ 2510:⁡ 2481:inclusion 2465:power set 2146:in which 1907:… 1708:∪ 1676:… 1658:∈ 1647:for each 1574:. Thus, 1559:∖ 1533:− 1494:∖ 1468:− 1442:∖ 1396:∖ 1333:≤ 1314:∈ 1305:∪ 1247:… 1229:∈ 1218:for some 1196:≥ 940:≤ 907:∩ 894:∈ 871:∅ 868:≠ 855:∩ 675:… 515:… 471:… 433:∅ 430:≠ 417:∩ 327:… 265:∖ 73:antichain 67:Statement 45:antichain 3789:Topology 3656:Preorder 3639:Eulerian 3602:Complete 3552:Directed 3542:Covering 3407:Preorder 3366:Category 3361:Glossary 3264:(2005), 2772:(1984), 2267:coloring 1987:) where 1625:≱ 1120:≱ 1047:≱ 1029:, since 1007:≱ 619:′ 379:of size 255:′ 78:disjoint 3894:Duality 3872:Cofinal 3860:Related 3839:FrĂ©chet 3716:)  3592:Bounded 3587:Lattice 3560:)  3558:Partial 3426:Results 3397:Lattice 3186:0168497 3150:2920058 3108:2316481 3046:2127991 2971:1270960 2963:2975628 2929:2033375 2895:1363140 2887:2079151 2817:1969503 2463:is the 2421:perfect 2269:of the 2111:; then 2067:; then 2055:. Let 1861:chains 1815:). Now 1775:(since 1697:, then 929:. Then 837:. Then 113: ( 3919:Subnet 3899:Filter 3849:Normed 3834:Banach 3800:& 3707:Better 3644:Strict 3634:Graded 3525:topics 3356:Topics 3192:  3184:  3148:  3138:  3106:  3044:  3034:  2969:  2961:  2927:  2893:  2885:  2850:  2815:  2780:  2467:of an 2435:, the 2406:clique 2400:is an 2301:has a 2166:is in 2158:is in 1268:. Let 883:. Let 533:, let 489:. For 111:Galvin 49:chains 3909:Ideal 3887:Graph 3683:Total 3661:Total 3547:Dense 3278:(PDF) 3271:(PDF) 3223:(PDF) 3190:S2CID 3104:JSTOR 2959:JSTOR 2925:JSTOR 2891:S2CID 2866:Order 2848:S2CID 2831:Order 2813:JSTOR 2649:Notes 2637:two. 2507:width 2174:from 2150:< 2107:) in 2015:< 2011:when 1967:with 53:width 3500:list 3136:ISBN 3032:ISBN 2778:ISBN 2629:The 2451:The 2225:). 2115:has 2095:and 2047:and 1082:and 817:and 445:for 120:Let 115:1994 31:and 3914:Net 3714:Pre 3172:doi 3128:doi 3096:doi 3068:doi 3011:doi 2951:doi 2947:101 2917:doi 2875:doi 2840:doi 2805:doi 2431:of 2297:of 2273:of 2257:of 2178:to 2130:= ( 2035:in 2027:in 2019:in 1975:= ( 1952:on 1755:in 1548:in 607:in 117:). 71:An 23:In 4016:: 3302:. 3246:, 3212:; 3208:; 3188:, 3182:MR 3180:, 3166:, 3146:MR 3144:, 3134:, 3118:; 3102:, 3092:78 3090:, 3062:, 3042:MR 3040:, 3007:20 3005:, 2967:MR 2965:, 2957:, 2945:, 2923:, 2911:, 2889:, 2883:MR 2881:, 2871:20 2869:, 2863:, 2846:, 2834:, 2811:, 2801:51 2799:, 2768:; 2693:^ 2626:. 2396:A 2309:, 2223:kn 2162:, 2119:- 2075:- 1995:= 1991:= 1960:. 1385:, 643::= 259::= 220:. 35:, 3712:( 3709:) 3705:( 3556:( 3503:) 3337:e 3330:t 3323:v 3308:. 3227:. 3197:. 3174:: 3168:1 3153:. 3130:: 3111:. 3098:: 3077:. 3070:: 3064:2 3049:. 3020:. 3013:: 2989:k 2974:. 2953:: 2932:. 2919:: 2913:7 2898:. 2877:: 2855:. 2842:: 2836:5 2820:. 2807:: 2751:. 2739:. 2727:. 2715:. 2703:. 2688:. 2676:. 2664:. 2624:n 2620:m 2616:m 2612:n 2608:n 2593:X 2589:X 2572:. 2566:) 2556:2 2552:/ 2548:n 2540:n 2535:( 2529:= 2526:) 2521:n 2517:B 2513:( 2493:n 2489:B 2477:n 2473:X 2469:n 2460:n 2456:B 2386:N 2382:i 2380:( 2378:N 2374:x 2370:x 2368:( 2366:N 2362:x 2358:x 2329:0 2327:ℵ 2315:w 2311:P 2303:w 2299:P 2295:S 2291:w 2287:P 2283:w 2279:S 2275:S 2263:w 2259:P 2255:S 2251:w 2247:w 2243:P 2239:w 2235:w 2221:( 2219:O 2215:k 2211:n 2200:G 2196:A 2192:P 2188:P 2184:A 2180:v 2176:u 2172:E 2168:V 2164:v 2160:U 2156:u 2152:v 2148:u 2144:G 2140:E 2138:, 2136:V 2134:, 2132:U 2128:G 2121:m 2117:n 2113:P 2109:M 2105:y 2103:, 2101:x 2097:y 2093:x 2089:P 2085:A 2081:C 2077:m 2073:n 2069:A 2065:C 2061:S 2057:A 2053:m 2049:C 2045:M 2041:C 2037:G 2033:C 2029:G 2025:M 2021:S 2017:v 2013:u 2009:G 2005:v 2003:, 2001:u 1997:S 1993:V 1989:U 1985:E 1983:, 1981:V 1979:, 1977:U 1973:G 1969:n 1965:S 1918:k 1914:C 1910:, 1904:, 1899:2 1895:C 1891:, 1886:1 1882:C 1878:, 1875:} 1872:a 1869:{ 1849:1 1846:+ 1843:k 1823:P 1803:P 1783:a 1763:P 1743:1 1740:+ 1737:k 1717:} 1714:a 1711:{ 1705:A 1685:} 1682:k 1679:, 1673:, 1670:2 1667:, 1664:1 1661:{ 1655:i 1633:i 1629:x 1622:a 1602:k 1582:P 1562:K 1556:P 1536:1 1530:k 1510:} 1505:i 1501:x 1497:{ 1491:A 1471:1 1465:k 1445:K 1439:P 1419:k 1399:K 1393:P 1371:i 1367:x 1346:} 1341:i 1337:x 1330:z 1327:: 1322:i 1318:C 1311:z 1308:{ 1302:} 1299:a 1296:{ 1276:K 1256:} 1253:k 1250:, 1244:, 1241:2 1238:, 1235:1 1232:{ 1226:i 1204:i 1200:x 1193:a 1173:P 1150:A 1128:i 1124:x 1115:j 1111:x 1090:j 1070:i 1050:y 1042:i 1038:x 1015:j 1011:x 1002:i 998:x 975:j 971:x 948:j 944:x 937:y 915:j 911:C 902:i 898:A 891:y 863:j 859:C 850:i 846:A 825:j 805:i 783:i 779:x 758:k 736:i 732:A 711:A 691:} 686:k 682:x 678:, 672:, 667:2 663:x 659:, 654:1 650:x 646:{ 640:A 616:P 595:k 573:i 569:C 546:i 542:x 521:k 518:, 512:, 509:2 506:, 503:1 500:= 497:i 477:k 474:, 468:, 465:2 462:, 459:1 456:= 453:i 425:i 421:C 412:0 408:A 387:k 365:0 361:A 338:k 334:C 330:, 324:, 319:1 315:C 294:k 274:} 271:a 268:{ 262:P 252:P 231:k 208:P 188:a 168:P 148:P 128:P 97:P 20:.

Index

Heavy path decomposition
mathematics
order theory
combinatorics
partially ordered set
antichain
chains
Robert P. Dilworth
antichain
disjoint
Galvin
1994

KĹ‘nig's theorem
bipartite graph
Hall's marriage theorem
polynomial time
coloring
incomparability graph
De Bruijn–Erdős theorem
cardinal number
ℵ0
Perles (1963)
Mirsky's theorem
Mirsky's theorem
comparability graph
undirected graph
clique
independent set
induced subgraph

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑