Knowledge (XXG)

Johnson–Corey–Chaykovsky reaction

Source 📝

214: 368: 327: 1004: 669: 896: 776: 935: 731: 972: 820: 621: 174: 434: 582: 574: 253: 800: 613: 1256:; Ford, J. Gair; Fonguerna, Sílvia; Adams, Harry; Jones, Ray V. H.; Fieldhouse, Robin (1998-08-08). "Catalytic Asymmetric Epoxidation of Aldehydes. Optimization, Mechanism, and Discovery of Stereoelectronic Control Involving a Combination of Anomeric and Cieplak Effects in Sulfur Ylide Epoxidations with Chiral 1,3-Oxathianes". 449:
Use of a sulfoxonium allows more facile preparation of the reagent using weaker bases as compared to sulfonium ylides. (The difference being that a sulfoxonium contains a doubly bonded oxygen whereas the sulfonium does not.) The former react slower due to their increased stability. In addition, the
852:
variants, but the substrate scope is still limited in all cases. The catalytic variants have been developed almost exclusively for enantioselective purposes; typical organosulfide reagents are not prohibitively expensive and the racemic reactions can be carried out with equimolar amounts of ylide
694:
studies suggests an irreversible 1,4-attack leading to the cyclopropane is energetically favored versus a reversible 1,2-attack that would lead to the epoxide. With extended conjugated systems 1,6-addition tends to predominate over 1,4-addition. Many electron-withdrawing groups have been shown
963:
to form the epoxide. Since the factors underlying these desiderata are at odds, tuning of the catalyst properties has proven difficult. Shown below are several of the most successful catalysts along with the yields and enantiomeric excess for their use in synthesis of
441:
Many types of ylides can be prepared with various functional groups both on the anionic carbon center and on the sulfur. The substitution pattern can influence the ease of preparation for the reagents (typically from the sulfonium halide, e.g.
1508:
Danishefsky, S. J.; Masters, J. J.; Young, W. B.; Link, J. T.; Snyder, L. B.; Magee, T. V.; Jung, D. K.; Isaacs, R. C. A.; Bornmann, W. G.; Alaimo, C. A.; Coburn, C. A.; Di Grandi, M. J. (1996). "Total Synthesis of Baccatin III and Taxol".
947:
Catalytic reagents have been less successful, with most variations suffering from poor yield, poor enantioselectivity, or both. There are also issues with substrate scope, most having limitations with methylene transfer and
689:
states that it is because sulfoxonium reagents have a less concentrated negative charge on the carbon atom (softer), so it prefers 1,4-attack on the softer nucleophilic site. Another explanation supported by
424:
well beyond the original publications. It has seen use in a number of high-profile total syntheses, as detailed below, and is generally recognized as a powerful transformative tool in the organic repertoire.
484:. These, similarly to sulfoxonium reagents, react much slower and are typically easier to prepare. These are limited in their usefulness as the reaction can become prohibitively sluggish: examples involving 209:
failed and a benzalfluorene oxide was obtained instead, noting that "reaction between the sulfur ylid and benzaldehydes did not afford benzalfluorenes as had the phosphorus and arsenic ylids."
213: 375:
The degree of reversibility in the initial step (and therefore the diastereoselectivity) depends on four factors, with greater reversibility corresponding to higher selectivity:
570:
are by far the most common application of the Johnson–Corey–Chaykovsky reaction. Examples involving complex substrates and 'exotic' ylides have been reported, as shown below.
1569:"Understanding Regioselectivities of Corey–Chaykovsky Reactions of Dimethylsulfoxonium Methylide (DMSOM) and Dimethylsulfonium Methylide (DMSM) toward Enones: A DFT Study" 420:
The application of the Johnson–Corey–Chaykovsky reaction in organic synthesis is diverse. The reaction has come to encompass reactions of many types of sulfur ylides with
1494: 1003: 853:
without raising costs significantly. Chiral sulfides, on the other hand, are more costly to prepare, spurring the advancement of catalytic enantioselective methods.
1709: 397:
with greater hindrance leading to greater reversibility by disfavoring formation of the intermediate and slowing the rate-limiting rotation of the central bond.
193:
below). Additionally detailed below are the history, mechanism, scope, and enantioselective variants of the reaction. Several reviews have been published.
1131:; Winn, C. L. (2004). "Catalytic, Asymmetric Sulfur Ylide-Mediated Epoxidation of Carbonyl Compounds: Scope, Selectivity, and Applications in Synthesis". 775: 934: 367: 1173:
Gololobov, Y. G.; Nesmeyanov, A. N.; lysenko, V. P.; Boldeskul, I. E. (1987). "Twenty-five years of dimethylsulfoxonium ethylide (corey's reagent)".
895: 1511: 1258: 919:
are easily synthesized, although the yields are lower than for the oxathiane reagent. The ylide conformation is determined by interaction with the
1084:; Richardson, J. (2003). "The complexity of catalysis: origins of enantio- and diastereocontrol in sulfur ylide mediated epoxidation reactions". 668: 730: 971: 819: 326: 1538:
Kuehne, M. E.; Xu, F. (1993). "Total synthesis of strychnan and aspidospermatan alkaloids. 3. The total synthesis of (.+-.)-strychnine".
743:
In addition to the reactions originally reported by Johnson, Corey, and Chaykovsky, sulfur ylides have been used for a number of related
1408:
Kawashima, T.; Okazaki, R. (1996). "Synthesis and Reactions of the Intermediates of the Wittig, Peterson, and their Related Reactions".
840:, which is labelled as "ee") variant of the Johnson–Corey–Chaykovsky reaction remains an active area of academic research. The use of 815:
as the catalyst and (dimethyloxosulfaniumyl)methanide as the monomer have been reported for the synthesis of various complex polymers.
1478: 1451: 590: 1540: 983: 1699: 682: 523:=H). The substitution pattern on aryl reagents can heavily influence the selectivity of the reaction as per the criteria above. 1714: 249:) by Corey and Chaykovsky as efficient methylene-transfer reagents established the reaction as a part of the organic canon. 1326:
Johnson, A.W.; LaCount, R.B. (1961). "The Chemistry of Ylids. VI. Dimethylsulfonium Fluorenylide—A Synthesis of Epoxides".
1647: 1133: 411:
with greater solvation allowing more facile rotation in the betaine intermediate, lowering the amount of reversibility.
1704: 892:
and approach of the aldehyde is limited to one face of the ylide by steric interactions with the methyl substituents.
799: 653:
tolerance to the carbonyl equivalent. The examples shown below are representative; in the latter, an aziridine forms
1209:(1997). "Asymmetric Ylide Reactions: Epoxidation, Cyclopropanation, Aziridination, Olefination, and Rearrangement". 979:
Aggarwal has developed an alternative method employing the same sulfide as above and a novel alkylation involving a
1048: 602: 477: 73: 691: 620: 443: 353: 201:
The original publication by Johnson concerned the reaction of 9-dimethylsulfonium fluorenylide with substituted
173: 885: 1568: 581: 573: 1719: 1086: 159: 685:
is typically obtained with sulfoxonium reagents than with sulfonium reagents. One explanation based on the
382:
with higher stability leading to greater reversibility by favoring the starting material over the betaine.
641:
is another important application of the Johnson–Corey–Chaykovsky reaction and provides an alternative to
1175: 1043: 912: 841: 808: 744: 361: 270: 57: 446:) and overall reaction rate in various ways. The general format for the reagent is shown on the right. 341:
observed results from the reversibility of the initial addition, allowing equilibration to the favored
252: 869:(DCI) but is limited by the availability of only one enantiomer of the reagent. The synthesis of the 612: 543: 457:
of sulfoxonium reagents are greatly preferred to the significantly more toxic, volatile, and odorous
338: 182: 889: 837: 658: 861:
The most successful reagents employed in a stoichiometric fashion are shown below. The first is a
767:. The long reaction times required for these reactions prevent them from occurring as significant 1488: 924: 451: 357: 320: 266: 143: 1664: 1627: 1588: 1474: 1447: 1354: 1328: 1308: 1286: 1253: 1228: 1206: 1150: 1128: 1099: 1081: 920: 908: 103: 99: 45: 17: 1656: 1619: 1608:"Opportunities for the Application and Advancement of the Corey–Chaykovsky Cyclopropanation" 1580: 1549: 1520: 1468: 1441: 1413: 1390: 1336: 1300: 1291: 1267: 1220: 1211: 1184: 1142: 1091: 1018: 833: 650: 539: 493: 392: 542:
variants of the reaction (See Variations below). The size of the groups can also influence
1023: 878: 874: 512: 458: 301: 206: 186: 151: 530:. The size of the alkyl groups are the major factors in selectivity with these reagents. 526:
If the ylide carbon is substituted with an alkyl group the reagent is referred to as an
845: 716: 1473:(2 ed.). Hoboken, New Jersey: John Wiley & Sons, Inc. pp. 174–175, 743. 1188: 1693: 997: 960: 785: 768: 708: 297: 1607: 1007:
chiral catalyst with carbenoid alkylation for the Johnson–Corey–Chaykovsky reaction
993: 965: 956: 812: 789: 594: 421: 352:
betaine. Initial addition of the ylide results in a betaine with adjacent charges;
202: 115: 118:. It was discovered in 1961 by A. William Johnson and developed significantly by 1028: 928: 720: 686: 646: 589:
The reaction has been used in a number of notable total syntheses including the
312: 163: 119: 865:
oxathiane that has been employed in the synthesis of the β-adrenergic compound
464:
The vast majority of reagents are monosubstituted at the ylide carbon (either R
433: 1038: 916: 870: 724: 606: 454: 404: 305: 286: 1684: 1645:
Luo, J.; Shea, K. J. (2010). "Polyhomologation. A Living C1 Polymerization".
1631: 1623: 1592: 649:. Though less widely applied, the reaction has a similar substrate scope and 472:
as hydrogen). Disubstituted reagents are much rarer but have been described:
949: 881: 849: 792: 764: 756: 634: 547: 290: 111: 1668: 1584: 1312: 1232: 1154: 1103: 959:
sulfide that efficiently generates the ylide which can also act as a good
779:
Oxetane and Azitidine synthesis with the Johnson–Corey–Chaykovsky reaction
952: 862: 563: 278: 131: 1553: 1467:
Mundy, Bradford, P.; Ellerd, Michael D.; Favaloro, Frank G. Jr. (2005).
1417: 1394: 1340: 938:
chiral camphor-derived reagent for the Johnson–Corey–Chaykovsky reaction
492:
and virtually no examples involving other EWG's. For these, the related
1285:
McGarrigle, E. M.; Myers, E. L.; Illa, O.; Shaw, M. A.; Riches, S. L.;
988: 980: 904: 760: 752: 712: 567: 408: 345: 316: 155: 107: 1660: 1524: 1304: 1271: 1224: 1146: 511:. These have been developed extensively, second only to the classical 1095: 759:
the reaction serves as a ring-expansion to produce the corresponding
696: 559: 535: 309: 293: 167: 127: 221:
The subsequent development of (dimethyloxosulfaniumyl)methanide, (CH
122:
and Michael Chaykovsky. The reaction involves addition of a sulfur
1446:. Hoboken, New Jersey: John Wiley & Sons, Inc. pp. 2–14. 1033: 899:
chiral oxathiane reagent for the Johnson–Corey–Chaykovsky reaction
704: 700: 662: 642: 638: 598: 504: 489: 485: 432: 282: 274: 139: 135: 123: 923:
hydrogens and approach of the aldehyde is blocked by the camphor
388:
with higher stability similarly leading to greater reversibility.
360:
is rotation of the central bond into the conformer necessary for
1567:
Xiang, Yu; Fan, Xing; Cai, Pei‐Jun; Yu, Zhi‐Xiang (2019-01-23).
500: 992:. The method too has limited substrate scope, failing for any 142:
to produce the corresponding 3-membered ring. The reaction is
1357:; Chaykovsky, M. (1965). "Dimethyloxosulfonium Methylide ((CH 1002: 970: 933: 894: 823:
Living polymerization with Johnson–Corey–Chaykovsky Reaction
818: 798: 774: 729: 667: 619: 611: 580: 572: 366: 325: 251: 212: 172: 734:
Cyclopropanation with the Johnson–Corey–Chaykovsky reaction
185:
transfer, and to this end has been used in several notable
975:
chiral catalysts for the Johnson–Corey–Chaykovsky reaction
848:
fashion has proved more successful than the corresponding
217:
The first example of the Johnson–Corey–Chaykovsky reaction
538:, have been used to synthesize reagents that can perform 672:
Aziridination with the Johnson–Corey–Chaykovsky reaction
181:
The reaction is most often employed for epoxidation via
323:
takes place through a 4-membered cyclic intermediate.
269:
for the Johnson–Corey–Chaykovsky reaction consists of
150:
substitution in the product regardless of the initial
1606:
Beutner, Gregory L.; George, David T. (2023-01-20).
1381:). Formation and Application to Organic Synthesis". 371:
Selectivity in the Johnson–Corey–Chaykovsky reaction
330:Mechanism of the Johnson–Corey–Chaykovsky reaction 300:it gets expelled forming the ring. In the related 1470:Name Reactions and Reagents in Organic Chemistry 727:and even some electron deficient heterocycles. 681:For addition of sulfur ylides to enones, higher 285:group. A negative charge is transferred to the 1248: 1246: 1244: 1242: 1200: 1198: 1123: 1121: 1119: 1117: 1115: 1113: 1076: 1074: 1072: 1070: 1068: 1066: 1064: 1435: 1433: 1431: 1429: 1427: 1168: 1166: 1164: 747:that tend to be grouped under the same name. 534:The R-groups on the sulfur, though typically 8: 1493:: CS1 maint: multiple names: authors list ( 1289:(2007). "Chalcogenides as Organocatalysts". 803:cycloaddition with Corey–Chaykovsky reagent 499:If the ylide carbon is substituted with an 476:If the ylide carbon is substituted with an 1612:Organic Process Research & Development 771:when synthesizing epoxides and aziridines. 488:are widespread, with many fewer involving 190: 31: 1443:Named Reactions in Heterocyclic Chemistry 877:which reduces the nucleophilicity of the 873:diastereomer is rationalized via the 1,3- 1512:Journal of the American Chemical Society 1259:Journal of the American Chemical Society 955:. The trouble stems from the need for a 931:base to promote formation of the ylide. 1060: 695:promote the cyclopropanation including 507:group, the reagent is referred to as a 480:(EWG), the reagent is referred to as a 233:and (dimethylsulfaniumyl)methanide, (CH 158:via this method serves as an important 1486: 1369:) and Dimethylsulfonium Methylide ((CH 27:Chemical reaction in organic chemistry 1573:European Journal of Organic Chemistry 996:possessing basic substituents due to 461:by-products from sulfonium reagents. 304:, the formation of the much stronger 7: 1710:Carbon-carbon bond forming reactions 401:Solvation of charges in the betaine 437:General form of ylide reagent used 35:Johnson-Corey–Chaykovsky reaction 25: 603:Kuehne Strychnine total synthesis 591:Danishefsky Taxol total synthesis 585:Example 1 of epoxidation with CCR 577:Example 1 of epoxidation with CCR 356:calculations have shown that the 177:Johnson–Corey–Chaykovsky Reaction 88:Johnson–Corey–Chaykovsky reaction 1541:The Journal of Organic Chemistry 558:Reactions of sulfur ylides with 795:equivalent" have been reported. 788:wherein the ylide serves as a " 692:density functional theory (DFT) 162:alternative to the traditional 907:-derived reagent developed by 707:(the example below involves a 496:is typically more appropriate. 90:(sometimes referred to as the 18:Dimethyloxosulfonium methylide 1: 1648:Accounts of Chemical Research 1189:10.1016/s0040-4020(01)86869-1 1134:Accounts of Chemical Research 903:The other major reagent is a 624:Strychnine synthesis CCR step 605:which produces the pesticide 888:of the ylide is limited by 828:Enantioselective variations 205:derivatives. The attempted 1736: 1685:Animation of the mechanism 1049:Strychnine total synthesis 677:Synthesis of cyclopropanes 661:to form the corresponding 478:electron-withdrawing group 380:Stability of the substrate 927:. The reaction employs a 444:trimethylsulfonium iodide 354:density functional theory 247:Corey–Chaykovsky reagents 92:Corey–Chaykovsky reaction 80: 74:corey-chaykovsky-reaction 69:Organic Chemistry Portal 63: 34: 1624:10.1021/acs.oprd.2c00315 616:Taxol synthesis CCR step 256:Corey–Chaykovsky Reagent 1205:Li, A.-H.; Dai, L.-X.; 1087:Chemical Communications 998:competitive consumption 857:Stoichiometric reagents 629:Synthesis of aziridines 319:formation and instead, 1700:Ring forming reactions 1585:10.1002/ejoc.201801216 1008: 976: 939: 900: 832:The development of an 824: 809:Living polymerizations 804: 780: 745:homologation reactions 735: 673: 625: 617: 586: 578: 438: 386:Stability of the ylide 372: 331: 257: 218: 178: 1715:Epoxidation reactions 1440:Li, Jack Jie (2005). 1254:Aggarwal, Varinder K. 1044:Taxol total synthesis 1006: 974: 937: 913:University of Bristol 898: 867:dichloroisoproterenol 822: 802: 778: 733: 671: 623: 615: 593:, which produces the 584: 576: 554:Synthesis of epoxides 509:semi-stabilized ylide 436: 370: 329: 271:nucleophilic addition 255: 216: 191:Synthesis of epoxides 176: 106:for the synthesis of 58:Ring forming reaction 544:diastereoselectivity 339:diastereoselectivity 207:Wittig-like reaction 1554:10.1021/jo00078a030 1418:10.1055/s-1996-5540 1395:10.1021/ja01084a034 1341:10.1021/ja01463a040 890:transannular strain 838:enantiomeric excess 659:nucleophilic attack 154:. The synthesis of 49:Michael Chaykovsky 43:A. William Johnson 1705:Addition reactions 1009: 1000:of the carbenoid. 977: 943:Catalytic reagents 940: 901: 836:(i.e. yielding an 825: 805: 781: 736: 674: 657:and is opened via 626: 618: 587: 579: 528:unstabilized ylide 439: 373: 364:on the sulfonium. 358:rate-limiting step 332: 267:reaction mechanism 258: 219: 179: 144:diastereoselective 1661:10.1021/ar100062a 1655:(11): 1420–1433. 1548:(26): 7490–7497. 1525:10.1021/ja952692a 1519:(12): 2843–2859. 1329:J. Am. Chem. Soc. 1305:10.1021/cr068402y 1299:(12): 5841–5883. 1272:10.1021/ja9812150 1266:(33): 8328–8339. 1225:10.1021/cr960411r 1183:(12): 2609–2651. 1147:10.1021/ar030045f 1090:(21): 2644–2651. 909:Varinder Aggarwal 633:The synthesis of 104:organic chemistry 100:chemical reaction 84: 83: 46:Elias James Corey 16:(Redirected from 1727: 1673: 1672: 1642: 1636: 1635: 1603: 1597: 1596: 1579:(2–3): 582–590. 1564: 1558: 1557: 1535: 1529: 1528: 1505: 1499: 1498: 1492: 1484: 1464: 1458: 1457: 1437: 1422: 1421: 1405: 1399: 1398: 1389:(6): 1353–1364. 1383:J. Am. Chem. Soc 1351: 1345: 1344: 1323: 1317: 1316: 1292:Chemical Reviews 1282: 1276: 1275: 1250: 1237: 1236: 1219:(6): 2341–2372. 1212:Chemical Reviews 1202: 1193: 1192: 1170: 1159: 1158: 1125: 1108: 1107: 1096:10.1039/b304625g 1078: 1019:Darzens reaction 834:enantioselective 651:functional group 595:chemotherapeutic 540:enantioselective 494:Darzens reaction 482:stabilized ylide 452:dialkylsulfoxide 393:Steric hindrance 289:and because the 76: 32: 21: 1735: 1734: 1730: 1729: 1728: 1726: 1725: 1724: 1690: 1689: 1681: 1676: 1644: 1643: 1639: 1605: 1604: 1600: 1566: 1565: 1561: 1537: 1536: 1532: 1507: 1506: 1502: 1485: 1481: 1466: 1465: 1461: 1454: 1439: 1438: 1425: 1407: 1406: 1402: 1380: 1376: 1372: 1368: 1364: 1360: 1353: 1352: 1348: 1325: 1324: 1320: 1287:Aggarwal, V. K. 1284: 1283: 1279: 1252: 1251: 1240: 1207:Aggarwal, V. K. 1204: 1203: 1196: 1172: 1171: 1162: 1129:Aggarwal, V. K. 1127: 1126: 1111: 1082:Aggarwal, V. K. 1080: 1079: 1062: 1058: 1053: 1024:Wittig reaction 1014: 945: 875:anomeric effect 859: 830: 813:trialkylboranes 741: 739:Other reactions 683:1,4-selectivity 679: 631: 556: 522: 518: 471: 467: 431: 429:Types of ylides 418: 362:backside attack 302:Wittig reaction 263: 244: 240: 236: 232: 228: 224: 199: 187:total syntheses 152:stereochemistry 72: 48: 44: 28: 23: 22: 15: 12: 11: 5: 1733: 1731: 1723: 1722: 1720:Name reactions 1717: 1712: 1707: 1702: 1692: 1691: 1688: 1687: 1680: 1679:External links 1677: 1675: 1674: 1637: 1598: 1559: 1530: 1500: 1479: 1459: 1452: 1423: 1412:(7): 600–608. 1400: 1378: 1374: 1370: 1366: 1362: 1358: 1346: 1335:(2): 417–423. 1318: 1277: 1238: 1194: 1160: 1141:(8): 611–620. 1109: 1059: 1057: 1054: 1052: 1051: 1046: 1041: 1036: 1031: 1026: 1021: 1015: 1013: 1010: 944: 941: 858: 855: 846:stoichiometric 844:sulfides in a 829: 826: 817: 816: 797: 796: 786:cycloadditions 773: 772: 769:side reactions 740: 737: 678: 675: 645:transfer from 630: 627: 555: 552: 532: 531: 524: 520: 516: 497: 469: 465: 459:dialkylsulfide 430: 427: 417: 414: 413: 412: 398: 395:in the betaine 389: 383: 262: 259: 242: 238: 234: 230: 226: 222: 198: 195: 160:retrosynthetic 82: 81: 78: 77: 70: 66: 65: 61: 60: 55: 54:Reaction type 51: 50: 41: 37: 36: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1732: 1721: 1718: 1716: 1713: 1711: 1708: 1706: 1703: 1701: 1698: 1697: 1695: 1686: 1683: 1682: 1678: 1670: 1666: 1662: 1658: 1654: 1650: 1649: 1641: 1638: 1633: 1629: 1625: 1621: 1617: 1613: 1609: 1602: 1599: 1594: 1590: 1586: 1582: 1578: 1574: 1570: 1563: 1560: 1555: 1551: 1547: 1543: 1542: 1534: 1531: 1526: 1522: 1518: 1514: 1513: 1504: 1501: 1496: 1490: 1482: 1480:9780471739869 1476: 1472: 1471: 1463: 1460: 1455: 1453:9780471704140 1449: 1445: 1444: 1436: 1434: 1432: 1430: 1428: 1424: 1419: 1415: 1411: 1404: 1401: 1396: 1392: 1388: 1384: 1356: 1350: 1347: 1342: 1338: 1334: 1331: 1330: 1322: 1319: 1314: 1310: 1306: 1302: 1298: 1294: 1293: 1288: 1281: 1278: 1273: 1269: 1265: 1261: 1260: 1255: 1249: 1247: 1245: 1243: 1239: 1234: 1230: 1226: 1222: 1218: 1214: 1213: 1208: 1201: 1199: 1195: 1190: 1186: 1182: 1178: 1177: 1169: 1167: 1165: 1161: 1156: 1152: 1148: 1144: 1140: 1136: 1135: 1130: 1124: 1122: 1120: 1118: 1116: 1114: 1110: 1105: 1101: 1097: 1093: 1089: 1088: 1083: 1077: 1075: 1073: 1071: 1069: 1067: 1065: 1061: 1055: 1050: 1047: 1045: 1042: 1040: 1037: 1035: 1032: 1030: 1027: 1025: 1022: 1020: 1017: 1016: 1011: 1005: 1001: 999: 995: 994:electrophiles 991: 990: 985: 982: 973: 969: 967: 962: 961:leaving group 958: 954: 951: 942: 936: 932: 930: 926: 922: 918: 914: 910: 906: 897: 893: 891: 887: 883: 880: 876: 872: 868: 864: 856: 854: 851: 847: 843: 839: 835: 827: 821: 814: 810: 807: 806: 801: 794: 791: 787: 783: 782: 777: 770: 766: 762: 758: 754: 750: 749: 748: 746: 738: 732: 728: 726: 722: 718: 714: 710: 709:Weinreb amide 706: 702: 698: 693: 688: 684: 676: 670: 666: 664: 660: 656: 652: 648: 644: 640: 636: 628: 622: 614: 610: 608: 604: 600: 596: 592: 583: 575: 571: 569: 565: 561: 553: 551: 549: 545: 541: 537: 529: 525: 514: 510: 506: 502: 498: 495: 491: 487: 483: 479: 475: 474: 473: 462: 460: 456: 453: 447: 445: 435: 428: 426: 423: 422:electrophiles 415: 410: 406: 402: 399: 396: 394: 390: 387: 384: 381: 378: 377: 376: 369: 365: 363: 359: 355: 351: 347: 344: 340: 337: 328: 324: 322: 318: 314: 311: 307: 303: 299: 298:leaving group 295: 292: 288: 284: 280: 276: 272: 268: 260: 254: 250: 248: 215: 211: 208: 204: 196: 194: 192: 188: 184: 175: 171: 169: 166:reactions of 165: 161: 157: 153: 149: 145: 141: 137: 133: 129: 125: 121: 117: 116:cyclopropanes 113: 109: 105: 101: 97: 93: 89: 79: 75: 71: 68: 67: 62: 59: 56: 53: 52: 47: 42: 39: 38: 33: 30: 19: 1652: 1646: 1640: 1618:(1): 10–41. 1615: 1611: 1601: 1576: 1572: 1562: 1545: 1539: 1533: 1516: 1510: 1503: 1469: 1462: 1442: 1409: 1403: 1386: 1382: 1355:Corey, E. J. 1349: 1332: 1327: 1321: 1296: 1290: 1280: 1263: 1257: 1216: 1210: 1180: 1174: 1138: 1132: 1085: 987: 978: 966:(E)-stilbene 957:nucleophilic 946: 902: 886:conformation 866: 860: 831: 790:nucleophilic 742: 721:phosphonates 717:nitro groups 680: 654: 647:oxaziridines 632: 588: 557: 550:substrates. 533: 527: 508: 481: 463: 448: 440: 419: 400: 391: 385: 379: 374: 349: 342: 335: 333: 264: 246: 220: 203:benzaldehyde 200: 180: 147: 95: 91: 87: 85: 64:Identifiers 40:Named after 29: 1176:Tetrahedron 1029:Epoxidation 929:phosphazene 917:enantiomers 725:isocyanides 687:HSAB theory 515:reagents (R 455:by-products 405:counterions 321:olefination 313:double bond 164:epoxidation 120:E. J. Corey 1694:Categories 1056:References 1039:E.J. Corey 921:bridgehead 879:equatorial 757:aziridines 635:aziridines 607:strychnine 601:, and the 306:phosphorus 296:is a good 287:heteroatom 245:(known as 112:aziridines 1632:1083-6160 1593:1434-193X 1489:cite book 984:carbenoid 953:aldehydes 950:aliphatic 882:lone pair 850:catalytic 793:carbenoid 765:azetidine 564:aldehydes 548:alicyclic 513:methylene 348:over the 315:prevents 291:sulfonium 261:Mechanism 183:methylene 146:favoring 1669:20825177 1313:18072810 1233:11848902 1155:15311960 1104:14649793 1012:See also 863:bicyclic 784:Several 753:epoxides 713:sulfones 568:epoxides 566:to form 407:such as 279:carbonyl 156:epoxides 132:aldehyde 108:epoxides 102:used in 1410:Synlett 989:in situ 986:formed 981:rhodium 968:oxide. 915:. Both 911:of the 905:camphor 761:oxetane 697:ketones 655:in situ 560:ketones 536:methyls 409:lithium 346:betaine 317:oxirane 277:to the 273:of the 197:History 168:olefins 98:) is a 1667:  1630:  1591:  1477:  1450:  1311:  1231:  1153:  1102:  925:moiety 884:. The 842:chiral 811:using 705:amides 701:esters 639:imines 490:esters 486:amides 310:oxygen 294:cation 128:ketone 114:, and 1034:Ylide 871:axial 751:With 663:amine 643:amine 637:from 599:taxol 597:drug 505:allyl 416:Scope 336:trans 283:imine 275:ylide 189:(See 148:trans 140:enone 138:, or 136:imine 126:to a 124:ylide 1665:PMID 1628:ISSN 1589:ISSN 1577:2019 1495:link 1475:ISBN 1448:ISBN 1365:SOCH 1309:PMID 1229:PMID 1151:PMID 1100:PMID 755:and 562:and 501:aryl 468:or R 343:anti 334:The 265:The 229:SOCH 86:The 1657:doi 1620:doi 1581:doi 1550:doi 1521:doi 1517:118 1414:doi 1391:doi 1377:SCH 1337:doi 1301:doi 1297:107 1268:doi 1264:120 1221:doi 1185:doi 1143:doi 1092:doi 763:or 711:), 546:in 503:or 403:by 350:syn 281:or 241:SCH 96:CCR 94:or 1696:: 1663:. 1653:43 1651:. 1626:. 1616:27 1614:. 1610:. 1587:. 1575:. 1571:. 1546:58 1544:. 1515:. 1491:}} 1487:{{ 1426:^ 1387:87 1385:. 1333:83 1307:. 1295:. 1262:. 1241:^ 1227:. 1217:97 1215:. 1197:^ 1181:43 1179:. 1163:^ 1149:. 1139:37 1137:. 1112:^ 1098:. 1063:^ 723:, 719:, 715:, 703:, 699:, 665:. 609:. 519:=R 170:. 134:, 130:, 110:, 1671:. 1659:: 1634:. 1622:: 1595:. 1583:: 1556:. 1552:: 1527:. 1523:: 1497:) 1483:. 1456:. 1420:. 1416:: 1397:. 1393:: 1379:2 1375:2 1373:) 1371:3 1367:2 1363:2 1361:) 1359:3 1343:. 1339:: 1315:. 1303:: 1274:. 1270:: 1235:. 1223:: 1191:. 1187:: 1157:. 1145:: 1106:. 1094:: 521:2 517:1 470:2 466:1 308:- 243:2 239:2 237:) 235:3 231:2 227:2 225:) 223:3 20:)

Index

Dimethyloxosulfonium methylide
Elias James Corey
Ring forming reaction
corey-chaykovsky-reaction
chemical reaction
organic chemistry
epoxides
aziridines
cyclopropanes
E. J. Corey
ylide
ketone
aldehyde
imine
enone
diastereoselective
stereochemistry
epoxides
retrosynthetic
epoxidation
olefins
Johnson–Corey–Chaykovsky Reaction
methylene
total syntheses
Synthesis of epoxides
benzaldehyde
Wittig-like reaction
The first example of the Johnson–Corey–Chaykovsky reaction
Corey–Chaykovsky Reagent
reaction mechanism

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.