Knowledge (XXG)

Dimictic lake

Source 📝

464:. Early winter is thus a period of restratification. If there is relatively little wind, or the lake is deep, only a thin layer of buoyant cold water forms above denser 4°C waters and the lake will be "cryostratified" once ice forms. If the lake experiences strong winds or is shallow, then the whole water column can cool to near 0°C before ice forms, these colder lakes are termed "cryomictic". Once ice forms on a lake, the heat fluxes from the atmosphere are largely shut down and the initial cyrostratified or cryomictic conditions are largely locked in. The development of thermal stratification during winter is then defined by two periods: Winter I and Winter II. During the early winter period of Winter I the major heat flux is due to heat stored in sediment; during this period the lake heats up from beneath forming a deep layer of 4 °C water. During late winter, the surface ice starts to melt and with the increased length of the day, there is increased sunlight that penetrates through the ice into the upper water column. Thus during Winter II, the major heat flux is now from above, and the warming causes an unstable layer to form, resulting in solar driven convection. This mixing of the upper water column is important for keeping plankton in suspension, which in turn influences the timing of under-ice algal blooms and levels of dissolved oxygen. Coriolis forces can also become important in driving circulation patterns due to differential heating by solar radiation. The winter period of lakes is probably the least studied, but the chemistry and biology are still very active under the ice. 476: 338: 284:, a category which includes all lakes which mix one or more times per year. During winter, dimictic lakes are covered by a layer of ice, creating a cold layer at the surface, a slightly warmer layer beneath the ice, and a still-warmer unfrozen bottom layer, while during summer, the same temperature-derived density differences separate the warm surface waters (the 347:
density differences, the lake readily mixes from top to bottom. During winter any additional cooling below 4 °C results in stratification of water column, so dimictic lakes usually have an inverse thermal stratification, with water at 0 °C below ice and then with temperatures increasing to near 4 °C at the lake's base.
346:
Mixing (overturning) typically occurs during the spring and autumn, when the lake is "isothermal" (i.e. at the same temperature from the top to the bottom). At this time, the water throughout the lake is near 4 °C (the temperature of maximum density), and, in the absence of any temperature or
451:
In late summer, air temperatures drop and the surface of lakes cool, resulting in a deeper mixed layer, until at some point the water column becomes isothermal, and generally high in dissolved oxygen. During fall a combination of wind and cooling air temperatures continue to keep the water column
355:
Once the ice melts, the water column can be mixed by the wind. In large lakes the upper water column is often below 4 °C when the ice melts, so that spring is characterized by continued mixing by solar driven convection, until the water column reaches 4 °C. In small lakes, the period of
1245:
Kirillin, Georgiy; Leppäranta, Matti; Terzhevik, Arkady; Granin, Nikolai; Bernhardt, Juliane; Engelhardt, Christof; Efremova, Tatyana; Golosov, Sergey; Palshin, Nikolai; Sherstyankin, Pavel; Zdorovennova, Galina (October 2012). "Physics of seasonally ice-covered lakes: a review".
341:
There is a seasonal cycle of thermal stratification with two periods of mixing in spring and fall. Such lakes are termed "dimictic'. During summer there is a strong thermal stratification, while there is a weaker inverse stratification in winter. (Figure modified
279:
is a body of freshwater whose difference in temperature between surface and bottom layers becomes negligible twice per year, allowing all strata of the lake's water to circulate vertically. All dimictic lakes are also considered
1396:
Bouffard, Damien; Zdorovennova, Galina; Bogdanov, Sergey; Efremova, Tatyana; Lavanchy, Sébastien; Palshin, Nikolay; Terzhevik, Arkady; Vinnå, Love Råman; Volkov, Sergey; Wüest, Alfred; Zdorovennov, Roman (2019-02-19).
292:). In the spring and fall, these temperature differences briefly disappear, and the body of water overturns and circulates from top to bottom. Such lakes are common in mid-latitude regions with temperate climates. 1610:
Hampton, Stephanie E.; Galloway, Aaron W. E.; Powers, Stephen M.; Ozersky, Ted; Woo, Kara H.; Batt, Ryan D.; Labou, Stephanie G.; O'Reilly, Catherine M.; Sharma, Sapna; Lottig, Noah R.; Stanley, Emily H. (2017).
1550:
Ozersky, Ted; Bramburger, Andrew J.; Elgin, Ashley K.; Vanderploeg, Henry A.; Wang, Jia; Austin, Jay A.; Carrick, Hunter J.; Chavarie, Louise; Depew, David C.; Fisk, Aaron T.; Hampton, Stephanie E. (2021).
1186:
Yang, Bernard; Wells, Mathew G.; McMeans, Bailey C.; Dugan, Hilary A.; Rusak, James A.; Weyhenmeyer, Gesa A.; Brentrup, Jennifer A.; Hrycik, Allison R.; Laas, Alo; Pilla, Rachel M.; Austin, Jay A. (2021).
384:, usually defined as the region where temperature gradients exceed 1 °C/m. Due to the stable density gradient, mixing is inhibited within the thermocline, which reduces the vertical transport of 850:
Chowdhury, Mijanur R.; Wells, Mathew G.; Cossu, Remo (December 2015). "Observations and environmental implications of variability in the vertical turbulent mixing in Lake Simcoe".
746:
Pierson, D.C.; Weyhenmeyer, G. A.; Arvola, L.; Benson, B.; Blenckner, T.; Kratz, T.; Livingstone, D.M.; Markensten, H.; Marzec, G.; Pettersson, K.; Weathers, K. (February 2011).
999:
Chowdhury, Mijanur R.; Wells, Mathew G.; Howell, Todd (April 2016). "Movements of the thermocline lead to high variability in benthic mixing in the nearshore of a large lake".
262: 368:
During summer, the heat fluxes from the atmosphere to a lake warms the surface layers. This results in dimictic lakes have a strong thermal stratification, with a warm
946:
Choi, Jun; Troy, Cary D.; Hsieh, Tsung-Chan; Hawley, Nathan; McCormick, Michael J. (July 2012). "A year of internal Poincaré waves in southern Lake Michigan".
356:
spring overturn can be very brief, so that spring overturn is often much shorter than the fall overturn. As the upper water column warms past 4 °C a
255: 392:
and has a high sediment oxygen demand, the hypolimnion in dimictic lakes can become hypoxic during summer stratification, as often seen in
643:
Cannon, D. J.; Troy, C. D.; Liao, Q.; Bootsma, H. A. (2019-06-28). "Ice-Free Radiative Convection Drives Spring Mixing in a Large Lake".
248: 535: 1448:"Mixing, stratification, and plankton under lake-ice during winter in a large lake: Implications for spring dissolved oxygen levels" 460:
After the water column reaches the temperature of maximum density at 4°C, any subsequent cooling produces less dense water due to
574:
Wells, M. G., & Troy, C. D. (2022). Surface Mixed Layers in Lakes. In Encyclopedia of Inland Waters (pp. 546–561). Elsevier.
411:(due to the Earth's rotation). This is expected to occur when the period of internal seiche becomes comparable to the local 452:
mixed. The water continues to cool until the temperature reaches 4 °C. Often fall overturn can last for 3–4 months.
1160: 1135: 797:"Influence of Lake Surface Area and Depth Upon Thermal Stratification and the Depth of the Summer Thermocline" 1298: 596:"High-Frequency Observations of Temperature and Dissolved Oxygen Reveal Under-Ice Convection in a Large Lake" 403:
due to energy input from winds. If the lake is small (less than 5 km in length), then the period of the
1694: 407:
is well predicted by the Merian formulae. Long period internal waves in larger lakes can be influenced by
1188: 1624: 1564: 1514: 1459: 1447: 1410: 1313: 1255: 1200: 1147: 1100: 1008: 955: 912: 859: 808: 759: 710: 652: 607: 461: 389: 357: 136: 88: 1483: 1337: 1279: 1224: 1032: 832: 747: 676: 412: 1501:
Ramón, Cintia L.; Ulloa, Hugo N.; Doda, Tomy; Winters, Kraig B.; Bouffard, Damien (2021-04-07).
1658: 1650: 1592: 1532: 1475: 1428: 1378: 1329: 1271: 1216: 1165: 1116: 1073: 1024: 981: 928: 885: 824: 777: 728: 668: 625: 385: 231: 1640: 1632: 1612: 1582: 1572: 1522: 1467: 1418: 1368: 1321: 1263: 1208: 1155: 1108: 1063: 1016: 971: 963: 920: 875: 867: 816: 767: 718: 660: 615: 550: 558: 416: 204: 191: 169: 158: 1628: 1568: 1518: 1463: 1414: 1325: 1317: 1259: 1204: 1151: 1104: 1012: 959: 916: 863: 812: 763: 714: 656: 611: 408: 326: 236: 68: 820: 1688: 1502: 1487: 1341: 1228: 1036: 836: 680: 575: 436: 428: 400: 306: 57: 46: 1553:"The Changing Face of Winter: Lessons and Questions from the Laurentian Great Lakes" 1136:"Wind Mixing and Restratification in a Lake near the Temperature of Maximum Density" 1283: 1052:"Internal waves pump waters in and out of a deep coastal embayment of a large lake" 924: 481: 432: 316: 301: 215: 79: 1680:"Circulation: annual patterns of dimictic lakes" at Encyclopædia Britannica Online 1423: 1398: 1091:
Bouffard, Damien; Lemmin, Ulrich (December 2013). "Kelvin waves in Lake Geneva".
1373: 1356: 514: 440: 424: 420: 381: 377: 373: 321: 311: 289: 125: 114: 1112: 871: 1527: 1267: 509: 504: 499: 494: 471: 369: 285: 281: 103: 1654: 1596: 1536: 1479: 1432: 1382: 1333: 1275: 1220: 1169: 1120: 1077: 1028: 985: 932: 889: 828: 781: 732: 672: 629: 772: 393: 1662: 337: 1587: 1577: 1552: 1212: 1020: 976: 967: 664: 620: 595: 594:
Yang, Bernard; Young, Joelle; Brown, Laura; Wells, Mathew (2017-12-23).
17: 1645: 1050:
Flood, Bryan; Wells, Mathew; Dunlop, Erin; Young, Joelle (2019-08-14).
880: 489: 1679: 1636: 1471: 1068: 1051: 723: 698: 404: 1446:
Yang, Bernard; Wells, Mathew G.; Li, Jingzhi; Young, Joelle (2020).
554: 399:
During summer stratification, most lakes are observed to experience
435:) the observed frequencies of internal seiches are dominated by 1357:"Convection in ice-covered lakes: effects on algal suspension" 699:"Observations of radiatively driven convection in a deep lake" 796: 1161:
10.1175/1520-0485(1981)011<1516:wmaria>2.0.co;2
1503:"Bathymetry and latitude modify lake warming under ice" 903:
Mortimer, C. H. (January 1974). "Lake hydrodynamics".
1189:"A New Thermal Categorization of Ice-Covered Lakes" 748:"An automated method to monitor lake ice phenology" 536:"A revised classification of lakes based on mixing" 795:Gorham, Eville; Boyce, Farrell M. (January 1989). 576:https://doi.org/10.1016/B978-0-12-819166-8.00126-2 543:Canadian Journal of Fisheries and Aquatic Sciences 1134:Farmer, David M.; Carmack, Eddy (November 1981). 1399:"Under-ice convection dynamics in a boreal lake" 1557:Journal of Geophysical Research: Biogeosciences 415:, which is 16.971 hours at a latitude of 45 °N 1297:Bouffard, Damien; Wüest, Alfred (2019-01-05). 256: 8: 589: 587: 585: 583: 333:Seasonal cycles of mixing and stratification 462:non-linearity of equation of state of water 263: 249: 29: 27:Body of freshwater that mixes twice a year 1644: 1586: 1576: 1526: 1422: 1372: 1159: 1067: 975: 879: 771: 722: 619: 336: 948:Journal of Geophysical Research: Oceans 526: 223: 144: 87: 32: 288:), from the colder bottom waters (the 1240: 1238: 1181: 1179: 7: 692: 690: 1507:Hydrology and Earth System Sciences 1326:10.1146/annurev-fluid-010518-040506 752:Limnology and Oceanography: Methods 25: 1306:Annual Review of Fluid Mechanics 1140:Journal of Physical Oceanography 474: 1093:Journal of Great Lakes Research 852:Journal of Great Lakes Research 801:Journal of Great Lakes Research 376:by the metalimnion. Within the 925:10.1080/05384680.1974.11923886 534:Lewis, William M. Jr. (1983). 1: 1424:10.1080/20442041.2018.1533356 905:SIL Communications, 1953-1996 821:10.1016/s0380-1330(89)71479-9 697:Austin, Jay A. (2019-04-22). 456:Winter inverse stratification 1361:Journal of Plankton Research 1193:Geophysical Research Letters 645:Geophysical Research Letters 600:Geophysical Research Letters 417:(link to Coriolis utility). 1711: 1452:Limnology and Oceanography 1113:10.1016/j.jglr.2013.09.005 1056:Limnology and Oceanography 872:10.1016/j.jglr.2015.07.008 703:Limnology and Oceanography 296:Examples of dimictic lakes 1528:10.5194/hess-25-1813-2021 1374:10.1093/plankt/19.12.1859 1268:10.1007/s00027-012-0279-y 1613:"Ecology under lake ice" 1001:Water Resources Research 372:separated from the cold 1355:Kelley, Dan E. (1997). 773:10.4319/lom.2010.9.0074 606:(24): 12, 218–12, 226. 419:In large lakes (such a 358:thermal stratification 343: 1299:"Convection in Lakes" 364:Summer stratification 340: 1578:10.1029/2021JG006247 1563:(6): e2021JG006247. 1213:10.1029/2020GL091374 1199:(3): e2020GL091374. 1021:10.1002/2015wr017725 968:10.1029/2012jc007984 665:10.1029/2019gl082916 621:10.1002/2017GL075373 1629:2017EcolL..20...98H 1569:2021JGRG..12606247O 1519:2021HESS...25.1813R 1464:2020LimOc..65.2713Y 1415:2019InWat...9..142B 1318:2019AnRFM..51..189B 1260:2012AqSci..74..659K 1205:2021GeoRL..4891374Y 1152:1981JPO....11.1516F 1105:2013JGLR...39..637B 1013:2016WRR....52.3019C 960:2012JGRC..117.7014C 917:1974SILC...20..124M 864:2015JGLR...41..995C 813:1989JGLR...15..233G 764:2011LimOM...9...74P 715:2019LimOc..64.2152A 657:2019GeoRL..46.6811C 612:2017GeoRL..4412218Y 360:starts to develop. 89:Lake stratification 344: 232:Aquatic ecosystems 1637:10.1111/ele.12699 1472:10.1002/lno.11543 1458:(11): 2713–2729. 1367:(12): 1859–1880. 1146:(11): 1516–1533. 1069:10.1002/lno.11292 724:10.1002/lno.11175 651:(12): 6811–6820. 549:(10): 1779–1787. 273: 272: 16:(Redirected from 1702: 1667: 1666: 1648: 1607: 1601: 1600: 1590: 1580: 1547: 1541: 1540: 1530: 1513:(4): 1813–1825. 1498: 1492: 1491: 1443: 1437: 1436: 1426: 1393: 1387: 1386: 1376: 1352: 1346: 1345: 1303: 1294: 1288: 1287: 1248:Aquatic Sciences 1242: 1233: 1232: 1183: 1174: 1173: 1163: 1131: 1125: 1124: 1088: 1082: 1081: 1071: 1047: 1041: 1040: 1007:(4): 3019–3039. 996: 990: 989: 979: 943: 937: 936: 900: 894: 893: 883: 847: 841: 840: 792: 786: 785: 775: 743: 737: 736: 726: 709:(5): 2152–2160. 694: 685: 684: 640: 634: 633: 623: 591: 578: 572: 566: 565: 563: 557:. Archived from 540: 531: 484: 479: 478: 477: 386:dissolved oxygen 265: 258: 251: 214: 212: 203: 201: 190: 188: 179: 177: 168: 166: 157: 155: 137:Destratification 135: 133: 124: 122: 113: 111: 102: 100: 78: 76: 67: 65: 56: 54: 45: 43: 30: 21: 1710: 1709: 1705: 1704: 1703: 1701: 1700: 1699: 1685: 1684: 1676: 1671: 1670: 1617:Ecology Letters 1609: 1608: 1604: 1549: 1548: 1544: 1500: 1499: 1495: 1445: 1444: 1440: 1395: 1394: 1390: 1354: 1353: 1349: 1301: 1296: 1295: 1291: 1244: 1243: 1236: 1185: 1184: 1177: 1133: 1132: 1128: 1090: 1089: 1085: 1049: 1048: 1044: 998: 997: 993: 945: 944: 940: 902: 901: 897: 858:(4): 995–1009. 849: 848: 844: 794: 793: 789: 745: 744: 740: 696: 695: 688: 642: 641: 637: 593: 592: 581: 573: 569: 561: 555:10.1139/f83-207 538: 533: 532: 528: 523: 480: 475: 473: 470: 458: 449: 413:inertial period 409:Coriolis forces 405:internal seiche 388:. If a lake is 366: 353: 351:Spring overturn 335: 298: 269: 210: 209: 205:Meromictic lake 199: 198: 192:Polymictic lake 186: 185: 175: 174: 170:Monomictic lake 164: 163: 159:Holomictic lake 153: 152: 131: 130: 120: 119: 109: 108: 98: 97: 74: 73: 63: 62: 52: 51: 41: 40: 28: 23: 22: 15: 12: 11: 5: 1708: 1706: 1698: 1697: 1687: 1686: 1683: 1682: 1675: 1674:External links 1672: 1669: 1668: 1602: 1588:2027.42/168250 1542: 1493: 1438: 1409:(2): 142–161. 1388: 1347: 1312:(1): 189–215. 1289: 1254:(4): 659–682. 1234: 1175: 1126: 1099:(4): 637–645. 1083: 1062:(2): 205–223. 1042: 991: 938: 911:(1): 124–197. 895: 842: 807:(2): 233–245. 787: 738: 686: 635: 579: 567: 564:on 2009-03-06. 525: 524: 522: 519: 518: 517: 512: 507: 502: 497: 492: 486: 485: 469: 466: 457: 454: 448: 445: 437:Poincaré waves 401:internal waves 365: 362: 352: 349: 334: 331: 330: 329: 327:Lake Altaussee 324: 319: 314: 309: 304: 297: 294: 271: 270: 268: 267: 260: 253: 245: 242: 241: 240: 239: 237:Wild fisheries 234: 226: 225: 221: 220: 219: 218: 207: 196: 195: 194: 183: 172: 147: 146: 142: 141: 140: 139: 128: 117: 106: 92: 91: 85: 84: 83: 82: 71: 69:Profundal zone 60: 49: 35: 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1707: 1696: 1695:Lakes by type 1693: 1692: 1690: 1681: 1678: 1677: 1673: 1664: 1660: 1656: 1652: 1647: 1642: 1638: 1634: 1630: 1626: 1623:(1): 98–111. 1622: 1618: 1614: 1606: 1603: 1598: 1594: 1589: 1584: 1579: 1574: 1570: 1566: 1562: 1558: 1554: 1546: 1543: 1538: 1534: 1529: 1524: 1520: 1516: 1512: 1508: 1504: 1497: 1494: 1489: 1485: 1481: 1477: 1473: 1469: 1465: 1461: 1457: 1453: 1449: 1442: 1439: 1434: 1430: 1425: 1420: 1416: 1412: 1408: 1404: 1403:Inland Waters 1400: 1392: 1389: 1384: 1380: 1375: 1370: 1366: 1362: 1358: 1351: 1348: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1315: 1311: 1307: 1300: 1293: 1290: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1257: 1253: 1249: 1241: 1239: 1235: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1202: 1198: 1194: 1190: 1182: 1180: 1176: 1171: 1167: 1162: 1157: 1153: 1149: 1145: 1141: 1137: 1130: 1127: 1122: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1087: 1084: 1079: 1075: 1070: 1065: 1061: 1057: 1053: 1046: 1043: 1038: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 1002: 995: 992: 987: 983: 978: 977:2027.42/95363 973: 969: 965: 961: 957: 953: 949: 942: 939: 934: 930: 926: 922: 918: 914: 910: 906: 899: 896: 891: 887: 882: 877: 873: 869: 865: 861: 857: 853: 846: 843: 838: 834: 830: 826: 822: 818: 814: 810: 806: 802: 798: 791: 788: 783: 779: 774: 769: 765: 761: 757: 753: 749: 742: 739: 734: 730: 725: 720: 716: 712: 708: 704: 700: 693: 691: 687: 682: 678: 674: 670: 666: 662: 658: 654: 650: 646: 639: 636: 631: 627: 622: 617: 613: 609: 605: 601: 597: 590: 588: 586: 584: 580: 577: 571: 568: 560: 556: 552: 548: 544: 537: 530: 527: 520: 516: 513: 511: 508: 506: 503: 501: 498: 496: 493: 491: 488: 487: 483: 472: 467: 465: 463: 455: 453: 447:Fall overturn 446: 444: 442: 438: 434: 430: 429:Lake Michigan 426: 422: 418: 414: 410: 406: 402: 397: 395: 391: 387: 383: 379: 375: 371: 363: 361: 359: 350: 348: 339: 332: 328: 325: 323: 320: 318: 315: 313: 310: 308: 307:Lake Superior 305: 303: 300: 299: 295: 293: 291: 287: 283: 278: 277:dimictic lake 266: 261: 259: 254: 252: 247: 246: 244: 243: 238: 235: 233: 230: 229: 228: 227: 222: 217: 208: 206: 197: 193: 184: 182: 181:Dimictic lake 173: 171: 162: 161: 160: 151: 150: 149: 148: 143: 138: 129: 127: 118: 116: 107: 105: 96: 95: 94: 93: 90: 86: 81: 72: 70: 61: 59: 58:Limnetic zone 50: 48: 47:Littoral zone 39: 38: 37: 36: 31: 19: 1620: 1616: 1605: 1560: 1556: 1545: 1510: 1506: 1496: 1455: 1451: 1441: 1406: 1402: 1391: 1364: 1360: 1350: 1309: 1305: 1292: 1251: 1247: 1196: 1192: 1143: 1139: 1129: 1096: 1092: 1086: 1059: 1055: 1045: 1004: 1000: 994: 951: 947: 941: 908: 904: 898: 855: 851: 845: 804: 800: 790: 758:(2): 74–83. 755: 751: 741: 706: 702: 648: 644: 638: 603: 599: 570: 559:the original 546: 542: 529: 482:Lakes portal 459: 450: 441:Kelvin waves 433:Lake Ontario 398: 367: 354: 345: 317:Lake Opeongo 302:Lake Mendota 276: 274: 216:Amictic lake 180: 80:Benthic zone 1646:10919/94398 954:(C7): n/a. 881:1807/107899 515:Thermocline 425:Lake Geneva 421:Lake Simcoe 382:thermocline 380:there is a 378:metalimnion 374:hypolimnion 322:Loch Lomond 312:Lake Simcoe 290:hypolimnion 126:Hypolimnion 115:Metalimnion 521:References 510:Polymictic 505:Monomictic 500:Meromictic 495:Holomictic 370:epilimnion 286:epilimnion 282:holomictic 145:Lake types 104:Epilimnion 33:Lake zones 1655:1461-0248 1597:2169-8961 1537:1027-5606 1488:225490164 1480:1939-5590 1433:2044-2041 1383:0142-7873 1342:125132769 1334:0066-4189 1276:1015-1621 1229:233921281 1221:1944-8007 1170:0022-3670 1121:0380-1330 1078:0024-3590 1037:130510367 1029:0043-1397 986:0148-0227 933:0538-4680 890:0380-1330 837:128748369 829:0380-1330 782:1541-5856 733:0024-3590 681:197574599 673:0094-8276 630:0094-8276 394:Lake Erie 390:eutrophic 1689:Category 1663:27889953 468:See also 224:See also 18:Dimictic 1625:Bibcode 1565:Bibcode 1515:Bibcode 1460:Bibcode 1411:Bibcode 1314:Bibcode 1284:6722239 1256:Bibcode 1201:Bibcode 1148:Bibcode 1101:Bibcode 1009:Bibcode 956:Bibcode 913:Bibcode 860:Bibcode 809:Bibcode 760:Bibcode 711:Bibcode 653:Bibcode 608:Bibcode 490:Amictic 1661:  1653:  1595:  1535:  1486:  1478:  1431:  1381:  1340:  1332:  1282:  1274:  1227:  1219:  1168:  1119:  1076:  1035:  1027:  984:  931:  888:  835:  827:  780:  731:  679:  671:  628:  213:  211:  202:  200:  189:  187:  178:  176:  167:  165:  156:  154:  134:  132:  123:  121:  112:  110:  101:  99:  77:  75:  66:  64:  55:  53:  44:  42:  1484:S2CID 1338:S2CID 1302:(PDF) 1280:S2CID 1225:S2CID 1033:S2CID 833:S2CID 677:S2CID 562:(PDF) 539:(PDF) 342:from) 1659:PMID 1651:ISSN 1593:ISSN 1533:ISSN 1476:ISSN 1429:ISSN 1379:ISSN 1330:ISSN 1272:ISSN 1217:ISSN 1166:ISSN 1117:ISSN 1074:ISSN 1025:ISSN 982:ISSN 929:ISSN 886:ISSN 825:ISSN 778:ISSN 729:ISSN 669:ISSN 626:ISSN 439:and 1641:hdl 1633:doi 1583:hdl 1573:doi 1561:126 1523:doi 1468:doi 1419:doi 1369:doi 1322:doi 1264:doi 1209:doi 1156:doi 1109:doi 1064:doi 1017:doi 972:hdl 964:doi 952:117 921:doi 876:hdl 868:doi 817:doi 768:doi 719:doi 661:doi 616:doi 551:doi 431:or 1691:: 1657:. 1649:. 1639:. 1631:. 1621:20 1619:. 1615:. 1591:. 1581:. 1571:. 1559:. 1555:. 1531:. 1521:. 1511:25 1509:. 1505:. 1482:. 1474:. 1466:. 1456:65 1454:. 1450:. 1427:. 1417:. 1405:. 1401:. 1377:. 1365:19 1363:. 1359:. 1336:. 1328:. 1320:. 1310:51 1308:. 1304:. 1278:. 1270:. 1262:. 1252:74 1250:. 1237:^ 1223:. 1215:. 1207:. 1197:48 1195:. 1191:. 1178:^ 1164:. 1154:. 1144:11 1142:. 1138:. 1115:. 1107:. 1097:39 1095:. 1072:. 1060:65 1058:. 1054:. 1031:. 1023:. 1015:. 1005:52 1003:. 980:. 970:. 962:. 950:. 927:. 919:. 909:20 907:. 884:. 874:. 866:. 856:41 854:. 831:. 823:. 815:. 805:15 803:. 799:. 776:. 766:. 754:. 750:. 727:. 717:. 707:64 705:. 701:. 689:^ 675:. 667:. 659:. 649:46 647:. 624:. 614:. 604:44 602:. 598:. 582:^ 547:40 545:. 541:. 443:. 427:, 423:, 396:. 275:A 1665:. 1643:: 1635:: 1627:: 1599:. 1585:: 1575:: 1567:: 1539:. 1525:: 1517:: 1490:. 1470:: 1462:: 1435:. 1421:: 1413:: 1407:9 1385:. 1371:: 1344:. 1324:: 1316:: 1286:. 1266:: 1258:: 1231:. 1211:: 1203:: 1172:. 1158:: 1150:: 1123:. 1111:: 1103:: 1080:. 1066:: 1039:. 1019:: 1011:: 988:. 974:: 966:: 958:: 935:. 923:: 915:: 892:. 878:: 870:: 862:: 839:. 819:: 811:: 784:. 770:: 762:: 756:9 735:. 721:: 713:: 683:. 663:: 655:: 632:. 618:: 610:: 553:: 264:e 257:t 250:v 20:)

Index

Dimictic
Littoral zone
Limnetic zone
Profundal zone
Benthic zone
Lake stratification
Epilimnion
Metalimnion
Hypolimnion
Destratification
Holomictic lake
Monomictic lake
Dimictic lake
Polymictic lake
Meromictic lake
Amictic lake
Aquatic ecosystems
Wild fisheries
v
t
e
holomictic
epilimnion
hypolimnion
Lake Mendota
Lake Superior
Lake Simcoe
Lake Opeongo
Loch Lomond
Lake Altaussee

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.