Knowledge (XXG)

Discrete dipole approximation

Source 📝

188:
reversing the interaction matrix. Several variants have been developed since then. Barrowes, Teixeira, and Kong in 2001 developed a code that uses block reordering, zero padding, and a reconstruction algorithm, claiming minimal memory usage. McDonald, Golden, and Jennings in 2009 used a 1D FFT code and extended the interaction matrix in the x, y, and z directions of the FFT calculations, suggesting memory savings due to this approach. This variant was also implemented in the MATLAB 2021 code by Shabaninezhad and Ramakrishna. Other techniques to accelerate convolutions have been suggested in a general context along with faster evaluations of Fast Fourier Transforms arising in DDA problem solvers.
772: 784: 156:
the dipole polarizabilities. For monochromatic incident waves the self-consistent solution for the oscillating dipole moments may be found; from these the absorption and scattering cross sections are computed. If DDA solutions are obtained for two independent polarizations of the incident wave, then the complete amplitude scattering matrix can be determined. Alternatively, the DDA can be derived from
152:(or Lorentz-Lorenz), when the atoms are located on a cubical lattice. We may expect that, just as a continuum representation of a solid is appropriate on length scales that are large compared with the interatomic spacing, an array of polarizable points can accurately approximate the response of a continuum target on length scales that are large compared with the interdipole separation. 73: 17: 179:
near a plane substrate. Comparisons with exact techniques have also been published. Other aspects, such as the validity criteria of the discrete dipole approximation, were published. The DDA was also extended to employ rectangular or cuboid dipoles, which are more efficient for highly oblate or prolate particles.
134:
The basic idea of the DDA was introduced in 1964 by DeVoe who applied it to study the optical properties of molecular aggregates; retardation effects were not included, so DeVoe's treatment was limited to aggregates that were small compared with the wavelength. The DDA, including retardation effects,
155:
For a finite array of point dipoles the scattering problem may be solved exactly, so the only approximation that is present in the DDA is the replacement of the continuum target by an array of N-point dipoles. The replacement requires specification of both the geometry (location of the dipoles) and
196:
Some of the early calculations of the polarization vector were based on direct inversion and the implementation of the conjugate gradient method by Petravic and Kuo-Petravic. Subsequently, many other conjugate gradient methods have been tested. Advances in the preconditioning of linear systems of
178:
to solve fast convolution problems arising in the discrete dipole approximation (DDA). This allowed for the calculation of scattering by large targets. They distributed an open-source code DDSCAT. There are now several DDA implementations, extensions to periodic targets, and particles placed on or
187:
The Fast Fourier Transform (FFT) method was introduced in 1991 by Goodman, Draine, and Flatau for the discrete dipole approximation. They utilized a 3D FFT GPFA written by Clive Temperton. The interaction matrix was extended to twice its original size to incorporate negative lags by mirroring and
139:
and Pennypacker who used it to study interstellar dust grains. Simply stated, the DDA is an approximation of the continuum target by a finite array of polarizable points. The points acquire dipole moments in response to the local electric field. The dipoles interact with one another via their
163:
With the recognition that the polarizabilities may be tensors, the DDA can readily be applied to anisotropic materials. The extension of the DDA to treat materials with nonzero magnetic susceptibility is also straightforward, although for most applications magnetic effects are negligible.
39:
of radiation by particles of arbitrary shape and by periodic structures. Given a target of arbitrary geometry, one seeks to calculate its scattering and absorption properties by an approximation of the continuum target by a finite array of small
771: 234:
to solve large system of linear equations, and FFT-acceleration of the matrix-vector products which uses convolution theorem. Complexity of this approach is almost linear in number of dipoles for both time and memory.
147:
showed that the dielectric properties of a substance could be directly related to the polarizabilities of the individual atoms of which it was composed, with a particularly simple and exact relationship, the
2613: 1270:
Schmehl, Roland; Nebeker, Brent M.; Hirleman, E. Dan (1997-11-01). "Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique".
213:
Most of the codes apply to arbitrary-shaped inhomogeneous nonmagnetic particles and particle systems in free space or homogeneous dielectric host medium. The calculated quantities typically include the
1769:
Chaumet, Patrick C.; Maire, Guillaume; Sentenac, Anne (2023). "Accelerating the discrete dipole approximation by initializing with a scalar solution and using a circulant preconditioning".
783: 1586:
M. Shabaninezhad; M. G. Awan; G. Ramakrishna (2021). "MATLAB package for discrete dipole approximation by graphics processing unit: Fast Fourier Transform and Biconjugate Gradient".
1841:
Moncada-Villa, E.; Cuevas, J. C. (2022). "Thermal discrete dipole approximation for near-field radiative heat transfer in many-body systems with arbitrary nonreciprocal bodies".
1343:
Penttilä, Antti; Zubko, Evgenij; Lumme, Kari; Muinonen, Karri; Yurkin, Maxim A.; et al. (2007). "Comparison between discrete dipole implementations and exact techniques".
119: 1307: 222:(extinction, absorption, and scattering), internal fields and angle-resolved scattered fields (phase function). There are some published comparisons of existing DDA codes. 2361:
N. W. Bigelow; A. Vaschillo; V. Iberi; J. P. Camden; D. J. Masiello (2012). "Characterization of the electron- and photon-driven plasmonic excitations of metal nanorods".
1006: 718:
Simulates near-field radiative heat transfer. The computational bottleneck is direct matrix inversion (no FFT acceleration is used). Uses OpenMP and MPI parallelization.
1378:
Zubko, Evgenij; Petrov, Dmitry; Grynko, Yevgen; Shkuratov, Yuriy; Okamoto, Hajime; et al. (2010-03-04). "Validity criteria of the discrete dipole approximation".
160:. This highlights that the approximation of point dipoles is equivalent to that of discretizing the integral equation, and thus decreases with decreasing dipole size. 1970: 1500:
Barrowes, B. E.; Teixeira, F. L.; Kong, J. A. (2001). "Fast algorithm for matrix–vector multiply of asymmetric multilevel block-Toeplitz matrices in 3-D scattering".
1910: 1432: 339:
Implements fast and rigorous consideration of a plane substrate, and allows rectangular-cuboid voxels for highly oblate or prolate particles. Can also calculate
125:(black arrows) in the near field of the vertically oriented dipole in the image plane. Blue/red colors indicate an electric field oriented downwards/upwards. 946:
Singham, Shermila Brito; Bohren, Craig F. (1987-01-01). "Light scattering by an arbitrary particle: a physical reformulation of the coupled dipole method".
205:
Thermal discrete dipole approximation is an extension of the original DDA to simulations of near-field heat transfer between 3D arbitrarily-shaped objects.
1473:
Goodman, John J.; Draine, Bruce T.; Flatau, Piotr J. (1991). "Application of fast-Fourier-transform techniques to the discrete-dipole approximation".
838:
Singham, Shermila B.; Salzman, Gary C. (1986). "Evaluation of the scattering matrix of an arbitrary particle using the coupled dipole approximation".
2307: 777:
Scattering by periodic structures such as slabs, gratings, of periodic cubes placed on a surface, can be solved in the discrete dipole approximation.
699:
Simulates electron-energy loss spectroscopy and cathodoluminescence. Handles substrate through image approximation, but no FFT acceleration is used.
1629:
Fu, Daniel Y; Kumbong, Hermann; Nguyen, Eric; Ré, Christopher (2023). "FlashFFTConv: Efficient Convolutions for Long Sequences with Tensor Cores".
2618: 2326:
V. L. Y. Loke; P. M. Mengüç; Timo A. Nieminen (2011). "Discrete dipole approximation with surface interaction: Computational toolbox for MATLAB".
1530:
J. McDonald; A. Golden; G. Jennings (2009). "OpenDDA: a novel high-performance computational framework for the discrete dipole approximation".
1804:
Edalatpour, S.; Čuma, M.; Trueax, T.; Backman, R.; Francoeur, M. (2015). "Convergence analysis of the thermal discrete dipole approximation".
512:
acceleration is absent or reduced, the code focuses on specific applications not allowing easy calculation of standard scattering quantities.
508:
These list include codes that do not qualify for the previous section. The reasons may include the following: source code is not available,
1214:
Chaumet, Patrick C.; Rahmani, Adel; Bryant, Garnett W. (2003-04-02). "Generalization of the coupled dipole method to periodic structures".
815: 810: 2396:
N. Geuquet; L. Henrard (2010). "EELS and optical response of a noble metal nanoparticle in the frame of a discrete dipole approximation".
2423:
S. Edalatpour; M. Čuma; T. Trueax; R. Backman; M. Francoeur (2015). "Convergence analysis of the thermal discrete dipole approximation".
873:
DeVoe, Howard (1964-07-15). "Optical Properties of Molecular Aggregates. I. Classical Model of Electronic Absorption and Refraction".
2121:
S. P. Groth; A.G. Polimeridis; J.K. White (2020). "Accelerating the discrete dipole approximation via circulant preconditioning".
157: 2598: 800: 2166:"IFDDA, an easy-to-use code for simulating the field scattered by 3D inhomogeneous objects in a stratified medium: tutorial" 2220:
E. Bae; H. Zhang; E. D. Hirleman (2008). "Application of the discrete dipole approximation for dipoles embedded in film".
1726:
Chaumet, Patrick C. (2024). "A comparative study of efficient iterative solvers for the discrete dipole approximation".
426:
and material absorption. Named differently, but the algorithms are very similar to the ones used in the mainstream DDA.
20:
In the discrete dipole approximation, a larger object is approximated in terms of discrete radiating electric dipoles.
2263:
D. W. Mackowski (2002). "Discrete dipole moment method for calculation of the T matrix for nonspherical particles".
1911:"The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength" 149: 911:
E. M. Purcell; C. R. Pennypacker (1973). "Scattering and absorption of light by nonspherical dielectric grains".
423: 348: 344: 282: 231: 2603: 2012: 1153:
B. T. Draine; P. J. Flatau (2008). "The discrete dipole approximation for periodic targets: theory and tests".
555:
Rigorous handling of semi-infinite substrate and finite films (with arbitrary particle placement), but only 2D
219: 2207:
Modeling of light scattering from features above and below surfaces using the discrete-dipole approximation
2031:
M. Zimmermann; A. Tausendfreund; S. Patzelt; G. Goch; S. Kieß; M. Z. Shaikh; M. Gregoire; S. Simon (2012).
556: 509: 175: 472:
Idiot-friendly DDA. Uses OpenMP and HDF5. Has a separate version (IF-DDAM) for multi-layered substrate.
2497: 2442: 2335: 2272: 2229: 2177: 2130: 2085: 2044: 1985: 1935: 1891: 1778: 1735: 1669: 1595: 1549: 1447: 1387: 1352: 1280: 1233: 1172: 1079: 1031: 955: 920: 882: 847: 136: 2545:"An Accelerated Method for Investigating Spectral Properties of Dynamically Evolving Nanostructures" 789:
Scattering by infinite object (such as cylinder) can be solved in the discrete dipole approximation.
79: 2608: 2309:
Effects of geometrical order on the linear and nonlinear optical properties of metal nanoparticles
2466: 2432: 2146: 1951: 1925: 1850: 1813: 1751: 1659: 1630: 1611: 1565: 1539: 1249: 1223: 1196: 1162: 1047: 1021: 2014:
OpenDDA - a novel high-performance computational framework for the discrete dipole approximation
1070:
Draine, B.T.; P.J. Flatau (1994). "Discrete dipole approximation for scattering calculations".
140:
electric fields, so the DDA is also sometimes referred to as the coupled dipole approximation.
2574: 2525: 2458: 2378: 2288: 2245: 2103: 1650:
Bowman, John C.; Roberts, Malcolm (2011). "Efficient dealiased convolutions without padding".
1413: 1188: 971: 582:, which can then be used to efficiently calculate orientation-averaged scattering properties. 2564: 2556: 2515: 2505: 2450: 2405: 2370: 2343: 2280: 2237: 2185: 2138: 2093: 2052: 1993: 1943: 1860: 1823: 1786: 1743: 1708: 1696: 1677: 1603: 1557: 1509: 1482: 1455: 1403: 1395: 1360: 1322: 1288: 1241: 1180: 1133: 1087: 1039: 963: 928: 890: 855: 674:
Simulates electron-energy loss spectroscopy and cathodoluminescence. Built upon DDSCAT 7.1.
215: 579: 171: 144: 122: 2569: 2544: 2501: 2446: 2339: 2276: 2233: 2181: 2134: 2089: 2048: 1989: 1939: 1895: 1782: 1739: 1673: 1599: 1553: 1451: 1391: 1356: 1284: 1237: 1176: 1083: 1035: 959: 924: 886: 851: 1879: 340: 41: 2486:"CDDA: extension and analysis of the discrete dipole approximation for chiral systems" 1308:"Rigorous and fast discrete dipole approximation for particles near a plane interface" 736:
Applies to chiral systems (solves coupled equations for electric and magnetic fields)
679: 651: 2592: 2150: 1955: 1755: 1712: 1615: 1051: 757:
Simulates nanostructures undergoing structural transformation with GPU acceleration.
48: 2470: 1880:"The discrete dipole approximation code DDscat.C++: features, limitations and plans" 1569: 1253: 1200: 2409: 452: 60: 1971:"The discrete-dipole-approximation code ADDA: capabilities and known limitations" 2560: 2347: 2142: 1997: 1947: 1864: 1790: 1747: 1607: 1459: 1364: 1043: 2454: 1827: 1245: 380:
Uses both OpenMP and MPI parallelization. Focuses on computational efficiency.
805: 294: 72: 36: 1561: 1326: 477: 431: 2284: 2241: 1292: 1184: 1091: 2578: 2529: 2462: 2382: 2292: 2249: 2107: 1417: 1192: 975: 360: 2190: 2165: 2098: 2073: 1486: 1399: 1138: 1121: 967: 230:
These codes typically use regular grids (cubical or rectangular cuboid),
2484:
S. A. Rosales; P. Albella; F. González; Y. Gutierrez; F. Moreno (2021).
1228: 1007:"The discrete dipole approximation: an overview and recent developments" 2520: 630: 406: 385: 56: 16: 2510: 2485: 2374: 2057: 2032: 1681: 1408: 894: 1513: 859: 741: 352: 319: 286: 44: 2164:
P. C. Chaumet; D. Sentenac; G. Maire; T. Zhang; A. Sentenac (2021).
605: 314:
Version of DDSCAT translated to C++ with some further improvements.
2437: 2074:"Optical design of organic solar cell with hybrid plasmonic system" 1855: 1818: 1635: 932: 1930: 1664: 1544: 1167: 1026: 71: 52: 15: 625:
Rigorous handling of substrate, but no FFT acceleration is used.
447:
Uses circulant preconditioner for accelerating iterative solvers
47:. This technique is used in a variety of applications including 143:
Nature provides the physical inspiration for the DDA - in 1909
281:
Can also handle periodic particles and efficiently calculate
261: 2072:
W. E. I. Sha; W. C. H. Choy; Y. P. Chen; W. C. Chew (2011).
197:
equations arising in the DDA setup have also been reported.
1771:
Journal of Quantitative Spectroscopy and Radiative Transfer
1728:
Journal of Quantitative Spectroscopy and Radiative Transfer
988:
H. A. Lorentz, Theory of Electrons (Teubner, Leipzig, 1909)
401:
Runs on GPU (OpenCL). Algorithms are partly based on ADDA.
2033:"In-process measuring procedure for sub-100 nm structures" 1697:"An ILUCG algorithm which minimizes in the euclidean norm" 1433:"Rectangular dipoles in the discrete dipole approximation" 1105:
Yurkin, Maxim A. (2023). "Discrete Dipole Approximation".
192:
Conjugate gradient iteration schemes and preconditioning
183:
Fast Fourier Transform for fast convolution calculations
2614:
Scattering, absorption and radiative transfer (optics)
2543:
Jiang, Yibin; Sharma, Abhishek; Cronin, Leroy (2023).
82: 1909:
M. A. Yurkin; V. P. Maltsev; A. G. Hoekstra (2007).
1431:D. A. Smunev; P. C. Chaumet; M. A. Yurkin (2015). 726:Rosales, Albella, González, Gutiérrez, and Moreno 113: 2315:(PhD). Nashville, TN, USA: Vanderbilt University. 2209:(PhD). Tempe, AZ, USA: Arizona State University. 1525: 1523: 1338: 1336: 1222:(16). American Physical Society (APS): 165404. 158:volume integral equation for the electric field 2020:(PhD). Galway: National University of Ireland. 1265: 1263: 746:Yibin Jiang, Abhishek Sharma and Leroy Cronin 1581: 1579: 1122:"The discrete dipole approximation: A review" 1000: 998: 996: 994: 906: 904: 833: 831: 8: 1065: 1063: 1061: 1481:(15). Optica Publishing Group: 1198–1200. 351:(MPI) parallelization and can run on GPU ( 167:There are several reviews of DDA method. 2568: 2549:The Journal of Physical Chemistry Letters 2519: 2509: 2436: 2189: 2097: 2056: 1929: 1854: 1817: 1663: 1634: 1543: 1407: 1227: 1166: 1137: 1025: 106: 95: 94: 89: 81: 76:Magnitude of the electric field strength 1502:Microwave and Optical Technology Letters 517: 497:Runs on GPU (using Matlab capabilities) 347:calculation is not very efficient. Uses 237: 1695:Petravic, M.; Kuo-Petravic, G. (1979). 827: 767: 174:, Flatau, and Goodman, who applied the 1279:(11). The Optical Society: 3026–3036. 2328:J. Quant. Spectrosc. Radiat. Transfer 2123:J. Quant. Spectrosc. Radiat. Transfer 1978:J. Quant. Spectrosc. Radiat. Transfer 1969:M. A. Yurkin; A. G. Hoekstra (2011). 1918:J. Quant. Spectrosc. Radiat. Transfer 1588:J. Quant. Spectrosc. Radiat. Transfer 1440:J. Quant. Spectrosc. Radiat. Transfer 1386:(8). The Optical Society: 1267–1279. 1345:J. Quant. Spectrosc. Radiat. Transfer 1014:J. Quant. Spectrosc. Radiat. Transfer 1005:M. A. Yurkin; A. G. Hoekstra (2007). 482:Shabaninezhad, Awan, and Ramakrishna 226:General-purpose open-source DDA codes 201:Thermal discrete dipole approximation 7: 1652:SIAM Journal on Scientific Computing 816:Method of moments (electromagnetics) 811:Finite-difference time-domain method 1315:The Journal of Physical Chemistry C 1306:M. A. Yurkin; M. Huntemann (2015). 1120:Chaumet, Patrick Christian (2022). 324:Yurkin, Hoekstra, and contributors 209:Discrete dipole approximation codes 14: 954:(1). The Optical Society: 10–12. 341:emission (decay-rate) enhancement 1701:Journal of Computational Physics 846:(5). AIP Publishing: 2658–2667. 782: 770: 457:Chaumet, Sentenac, and Sentenac 1107:Light, Plasmonics and Particles 684:Geuquet, Guillaume and Henrard 2619:Computational electromagnetics 2410:10.1016/j.ultramic.2010.01.013 881:(2). AIP Publishing: 393–400. 801:Computational electromagnetics 436:Groth, Polimeridis, and White 114:{\displaystyle E=|{\vec {E}}|} 107: 100: 90: 1: 1532:Int. J. High Perf. Comp. Appl 1351:(1–3). Elsevier BV: 417–436. 1109:. Elsevier. pp. 167–198. 25:Discrete dipole approximation 1713:10.1016/0021-9991(79)90133-5 544:Schmehl, Nebeker, and Zhang 462:Fortran, GUI in C++ with Qt 35:, is a method for computing 33:coupled dipole approximation 2561:10.1021/acs.jpclett.3c00395 2348:10.1016/j.jqsrt.2011.03.012 2143:10.1016/j.jqsrt.2019.106689 1998:10.1016/j.jqsrt.2011.01.031 1948:10.1016/j.jqsrt.2007.01.033 1865:10.1103/PhysRevB.106.235430 1791:10.1016/j.jqsrt.2023.108505 1748:10.1016/j.jqsrt.2023.108816 1608:10.1016/j.jqsrt.2020.107501 1460:10.1016/j.jqsrt.2015.01.019 1365:10.1016/j.jqsrt.2007.01.026 1044:10.1016/j.jqsrt.2007.01.034 646:Reimplementation of DDA-SI 170:The method was improved by 2635: 2455:10.1103/PhysRevE.91.063307 1828:10.1103/PhysRevE.91.063307 1246:10.1103/physrevb.67.165404 150:Clausius-Mossotti relation 349:Message Passing Interface 232:conjugate gradient method 135:was proposed in 1973 by 1562:10.1177/1094342008097914 1327:10.1021/acs.jpcc.5b09271 2285:10.1364/JOSAA.19.000881 2242:10.1364/JOSAA.25.001728 1884:Adv. Astron. Space Phys 1293:10.1364/josaa.14.003026 1185:10.1364/JOSAA.25.002693 1092:10.1364/JOSAA.11.001491 220:integral cross-sections 2306:M. D. McMahon (2006). 2205:B. M. Nebeker (1998). 659:Vaschillo and Bigelow 559:acceleration is used. 541:DDSURF, DDSUB, DDFILM 176:fast Fourier transform 126: 115: 21: 2599:Computational science 1878:V. Y. Choliy (2013). 504:Specialized DDA codes 116: 75: 19: 2191:10.1364/JOSAA.432685 2099:10.1364/OE.19.015908 2011:J. McDonald (2007). 1658:(1). SIAM: 386–406. 1487:10.1364/OL.16.001198 1400:10.1364/ao.49.001267 1139:10.3390/math10173049 968:10.1364/ol.12.000010 80: 2502:2021OExpr..2930020R 2496:(19): 30020–30034. 2447:2015PhRvE..91f3307E 2340:2011JQSRT.112.1711L 2277:2002JOSAA..19..881M 2234:2008JOSAA..25.1728B 2182:2021JOSAA..38.1841C 2135:2020JQSRT.24006689G 2090:2011OExpr..1915908S 2084:(17): 15908–15918. 2049:2012JLasA..24d2010Z 1990:2011JQSRT.112.2234Y 1940:2007JQSRT.106..546Y 1896:2013AASP....3...66C 1783:2023JQSRT.29808505C 1740:2024JQSRT.31208816C 1674:2011SJSC...33..386B 1600:2021JQSRT.26207501S 1554:2009arXiv0908.0863M 1452:2015JQSRT.156...67S 1392:2010ApOpt..49.1267Z 1357:2007JQSRT.106..417P 1321:(52): 29088–29094. 1285:1997JOSAA..14.3026S 1238:2003PhRvB..67p5404C 1177:2008JOSAA..25.2693D 1084:1994JOSAA..11.1491D 1036:2007JQSRT.106..558Y 960:1987OptL...12...10S 925:1973ApJ...186..705P 887:1964JChPh..41..393D 852:1986JChPh..84.2658S 343:of point emitters. 2265:J. Opt. Soc. Am. A 2222:J. Opt. Soc. Am. A 2170:J. Opt. Soc. Am. A 1273:J. Opt. Soc. Am. A 1155:J. Opt. Soc. Am. A 1132:(17). MDPI: 3049. 1072:J. Opt. Soc. Am. A 266:Draine and Flatau 127: 121:(colored) and the 111: 22: 2555:(16): 3929–3938. 2511:10.1364/OE.434061 2375:10.1021/nn302980u 2334:(11): 1711–1725. 2176:(12): 1841–1852. 2058:10.2351/1.4719936 1984:(13): 2234–2247. 1843:Physical Review B 1806:Physical Review E 1682:10.1137/100787933 1161:(11): 2693–3303. 895:10.1063/1.1725879 764:Gallery of shapes 761: 760: 501: 500: 103: 31:), also known as 2626: 2583: 2582: 2572: 2540: 2534: 2533: 2523: 2513: 2481: 2475: 2474: 2440: 2420: 2414: 2413: 2404:(8): 1075–1080. 2393: 2387: 2386: 2369:(8): 7497–7504. 2358: 2352: 2351: 2323: 2317: 2316: 2314: 2303: 2297: 2296: 2260: 2254: 2253: 2228:(7): 1728–1736. 2217: 2211: 2210: 2202: 2196: 2195: 2193: 2161: 2155: 2154: 2118: 2112: 2111: 2101: 2069: 2063: 2062: 2060: 2028: 2022: 2021: 2019: 2008: 2002: 2001: 1975: 1966: 1960: 1959: 1933: 1924:(1–3): 546–557. 1915: 1906: 1900: 1899: 1875: 1869: 1868: 1858: 1838: 1832: 1831: 1821: 1801: 1795: 1794: 1766: 1760: 1759: 1723: 1717: 1716: 1692: 1686: 1685: 1667: 1647: 1641: 1640: 1638: 1626: 1620: 1619: 1583: 1574: 1573: 1547: 1527: 1518: 1517: 1514:10.1002/mop.1348 1497: 1491: 1490: 1470: 1464: 1463: 1437: 1428: 1422: 1421: 1411: 1375: 1369: 1368: 1340: 1331: 1330: 1312: 1303: 1297: 1296: 1267: 1258: 1257: 1231: 1211: 1205: 1204: 1170: 1150: 1144: 1143: 1141: 1117: 1111: 1110: 1102: 1096: 1095: 1078:(4): 1491–1499. 1067: 1056: 1055: 1029: 1020:(1–3): 558–589. 1011: 1002: 989: 986: 980: 979: 943: 937: 936: 908: 899: 898: 870: 864: 863: 860:10.1063/1.450338 835: 786: 774: 695: 670: 621: 518: 493: 468: 422:Also calculates 376: 335: 310: 277: 238: 216:Mueller matrices 120: 118: 117: 112: 110: 105: 104: 96: 93: 2634: 2633: 2629: 2628: 2627: 2625: 2624: 2623: 2604:Electrodynamics 2589: 2588: 2587: 2586: 2542: 2541: 2537: 2483: 2482: 2478: 2422: 2421: 2417: 2398:Ultramicroscopy 2395: 2394: 2390: 2360: 2359: 2355: 2325: 2324: 2320: 2312: 2305: 2304: 2300: 2262: 2261: 2257: 2219: 2218: 2214: 2204: 2203: 2199: 2163: 2162: 2158: 2120: 2119: 2115: 2071: 2070: 2066: 2030: 2029: 2025: 2017: 2010: 2009: 2005: 1973: 1968: 1967: 1963: 1913: 1908: 1907: 1903: 1877: 1876: 1872: 1840: 1839: 1835: 1803: 1802: 1798: 1768: 1767: 1763: 1725: 1724: 1720: 1694: 1693: 1689: 1649: 1648: 1644: 1628: 1627: 1623: 1585: 1584: 1577: 1529: 1528: 1521: 1499: 1498: 1494: 1472: 1471: 1467: 1435: 1430: 1429: 1425: 1377: 1376: 1372: 1342: 1341: 1334: 1310: 1305: 1304: 1300: 1269: 1268: 1261: 1229:physics/0305051 1213: 1212: 1208: 1152: 1151: 1147: 1119: 1118: 1114: 1104: 1103: 1099: 1069: 1068: 1059: 1009: 1004: 1003: 992: 987: 983: 945: 944: 940: 910: 909: 902: 872: 871: 867: 837: 836: 829: 824: 797: 790: 787: 778: 775: 766: 693: 668: 619: 515: 506: 491: 466: 374: 333: 308: 275: 228: 211: 203: 194: 185: 132: 123:Poynting vector 78: 77: 69: 66: 12: 11: 5: 2632: 2630: 2622: 2621: 2616: 2611: 2606: 2601: 2591: 2590: 2585: 2584: 2535: 2476: 2415: 2388: 2353: 2318: 2298: 2271:(5): 881–893. 2255: 2212: 2197: 2156: 2113: 2064: 2023: 2003: 1961: 1901: 1870: 1849:(23): 235430. 1833: 1796: 1761: 1718: 1707:(2): 263–269. 1687: 1642: 1621: 1575: 1519: 1492: 1475:Optics Letters 1465: 1423: 1370: 1332: 1298: 1259: 1206: 1145: 1112: 1097: 1057: 990: 981: 938: 933:10.1086/152538 900: 865: 826: 825: 823: 820: 819: 818: 813: 808: 803: 796: 793: 792: 791: 788: 781: 779: 776: 769: 765: 762: 759: 758: 755: 752: 749: 747: 744: 738: 737: 734: 731: 729: 727: 724: 720: 719: 716: 713: 710: 708: 705: 701: 700: 697: 690: 687: 685: 682: 676: 675: 672: 665: 662: 660: 657: 648: 647: 644: 641: 638: 636: 633: 627: 626: 623: 616: 613: 611: 608: 602: 601: 599: 596: 593: 591: 588: 584: 583: 576: 573: 570: 568: 565: 561: 560: 553: 550: 547: 545: 542: 538: 537: 534: 531: 528: 525: 522: 505: 502: 499: 498: 495: 488: 485: 483: 480: 474: 473: 470: 463: 460: 458: 455: 449: 448: 445: 442: 439: 437: 434: 428: 427: 420: 417: 414: 412: 409: 403: 402: 399: 396: 393: 391: 388: 382: 381: 378: 371: 368: 366: 363: 357: 356: 337: 330: 327: 325: 322: 316: 315: 312: 305: 302: 300: 297: 291: 290: 289:acceleration. 279: 272: 269: 267: 264: 258: 257: 254: 251: 248: 245: 242: 227: 224: 210: 207: 202: 199: 193: 190: 184: 181: 131: 130:Basic concepts 128: 109: 102: 99: 92: 88: 85: 13: 10: 9: 6: 4: 3: 2: 2631: 2620: 2617: 2615: 2612: 2610: 2607: 2605: 2602: 2600: 2597: 2596: 2594: 2580: 2576: 2571: 2566: 2562: 2558: 2554: 2550: 2546: 2539: 2536: 2531: 2527: 2522: 2517: 2512: 2507: 2503: 2499: 2495: 2491: 2487: 2480: 2477: 2472: 2468: 2464: 2460: 2456: 2452: 2448: 2444: 2439: 2434: 2431:(6): 063307. 2430: 2426: 2419: 2416: 2411: 2407: 2403: 2399: 2392: 2389: 2384: 2380: 2376: 2372: 2368: 2364: 2357: 2354: 2349: 2345: 2341: 2337: 2333: 2329: 2322: 2319: 2311: 2310: 2302: 2299: 2294: 2290: 2286: 2282: 2278: 2274: 2270: 2266: 2259: 2256: 2251: 2247: 2243: 2239: 2235: 2231: 2227: 2223: 2216: 2213: 2208: 2201: 2198: 2192: 2187: 2183: 2179: 2175: 2171: 2167: 2160: 2157: 2152: 2148: 2144: 2140: 2136: 2132: 2128: 2124: 2117: 2114: 2109: 2105: 2100: 2095: 2091: 2087: 2083: 2079: 2075: 2068: 2065: 2059: 2054: 2050: 2046: 2043:(4): 042010. 2042: 2038: 2037:J. Laser Appl 2034: 2027: 2024: 2016: 2015: 2007: 2004: 1999: 1995: 1991: 1987: 1983: 1979: 1972: 1965: 1962: 1957: 1953: 1949: 1945: 1941: 1937: 1932: 1927: 1923: 1919: 1912: 1905: 1902: 1897: 1893: 1889: 1885: 1881: 1874: 1871: 1866: 1862: 1857: 1852: 1848: 1844: 1837: 1834: 1829: 1825: 1820: 1815: 1812:(6): 063307. 1811: 1807: 1800: 1797: 1792: 1788: 1784: 1780: 1776: 1772: 1765: 1762: 1757: 1753: 1749: 1745: 1741: 1737: 1733: 1729: 1722: 1719: 1714: 1710: 1706: 1702: 1698: 1691: 1688: 1683: 1679: 1675: 1671: 1666: 1661: 1657: 1653: 1646: 1643: 1637: 1632: 1625: 1622: 1617: 1613: 1609: 1605: 1601: 1597: 1593: 1589: 1582: 1580: 1576: 1571: 1567: 1563: 1559: 1555: 1551: 1546: 1541: 1537: 1533: 1526: 1524: 1520: 1515: 1511: 1507: 1503: 1496: 1493: 1488: 1484: 1480: 1476: 1469: 1466: 1461: 1457: 1453: 1449: 1445: 1441: 1434: 1427: 1424: 1419: 1415: 1410: 1405: 1401: 1397: 1393: 1389: 1385: 1381: 1374: 1371: 1366: 1362: 1358: 1354: 1350: 1346: 1339: 1337: 1333: 1328: 1324: 1320: 1316: 1309: 1302: 1299: 1294: 1290: 1286: 1282: 1278: 1274: 1266: 1264: 1260: 1255: 1251: 1247: 1243: 1239: 1235: 1230: 1225: 1221: 1217: 1210: 1207: 1202: 1198: 1194: 1190: 1186: 1182: 1178: 1174: 1169: 1164: 1160: 1156: 1149: 1146: 1140: 1135: 1131: 1127: 1123: 1116: 1113: 1108: 1101: 1098: 1093: 1089: 1085: 1081: 1077: 1073: 1066: 1064: 1062: 1058: 1053: 1049: 1045: 1041: 1037: 1033: 1028: 1023: 1019: 1015: 1008: 1001: 999: 997: 995: 991: 985: 982: 977: 973: 969: 965: 961: 957: 953: 949: 942: 939: 934: 930: 926: 922: 918: 914: 907: 905: 901: 896: 892: 888: 884: 880: 876: 875:J. Chem. Phys 869: 866: 861: 857: 853: 849: 845: 841: 840:J. Chem. Phys 834: 832: 828: 821: 817: 814: 812: 809: 807: 804: 802: 799: 798: 794: 785: 780: 773: 768: 763: 756: 753: 750: 748: 745: 743: 740: 739: 735: 732: 730: 728: 725: 722: 721: 717: 714: 711: 709: 706: 703: 702: 698: 691: 688: 686: 683: 681: 678: 677: 673: 666: 663: 661: 658: 656: 654: 650: 649: 645: 642: 639: 637: 634: 632: 629: 628: 624: 617: 614: 612: 609: 607: 604: 603: 600: 597: 594: 592: 589: 586: 585: 581: 577: 574: 571: 569: 566: 563: 562: 558: 554: 551: 548: 546: 543: 540: 539: 535: 532: 529: 526: 523: 520: 519: 516: 513: 511: 503: 496: 489: 486: 484: 481: 479: 476: 475: 471: 464: 461: 459: 456: 454: 451: 450: 446: 443: 440: 438: 435: 433: 430: 429: 425: 421: 418: 415: 413: 410: 408: 405: 404: 400: 397: 394: 392: 389: 387: 384: 383: 379: 372: 369: 367: 364: 362: 359: 358: 354: 350: 346: 342: 338: 331: 328: 326: 323: 321: 318: 317: 313: 306: 303: 301: 298: 296: 293: 292: 288: 284: 280: 273: 270: 268: 265: 263: 260: 259: 255: 252: 249: 246: 243: 240: 239: 236: 233: 225: 223: 221: 217: 208: 206: 200: 198: 191: 189: 182: 180: 177: 173: 168: 165: 161: 159: 153: 151: 146: 141: 138: 129: 124: 97: 86: 83: 74: 70: 67: 64: 62: 58: 54: 50: 49:nanophotonics 46: 43: 38: 34: 30: 26: 18: 2552: 2548: 2538: 2493: 2490:Opt. Express 2489: 2479: 2428: 2425:Phys. Rev. E 2424: 2418: 2401: 2397: 2391: 2366: 2362: 2356: 2331: 2327: 2321: 2308: 2301: 2268: 2264: 2258: 2225: 2221: 2215: 2206: 2200: 2173: 2169: 2159: 2126: 2122: 2116: 2081: 2078:Opt. Express 2077: 2067: 2040: 2036: 2026: 2013: 2006: 1981: 1977: 1964: 1921: 1917: 1904: 1887: 1883: 1873: 1846: 1842: 1836: 1809: 1805: 1799: 1777:. Elsevier. 1774: 1770: 1764: 1734:. Elsevier. 1731: 1727: 1721: 1704: 1700: 1690: 1655: 1651: 1645: 1624: 1591: 1587: 1538:(1): 42–61. 1535: 1531: 1508:(1): 28–32. 1505: 1501: 1495: 1478: 1474: 1468: 1443: 1439: 1426: 1383: 1379: 1373: 1348: 1344: 1318: 1314: 1301: 1276: 1272: 1219: 1216:Phys. Rev. B 1215: 1209: 1158: 1154: 1148: 1129: 1125: 1115: 1106: 1100: 1075: 1071: 1017: 1013: 984: 951: 947: 941: 916: 913:Astrophys. J 912: 878: 874: 868: 843: 839: 652: 514: 507: 229: 212: 204: 195: 186: 169: 166: 162: 154: 142: 133: 68: 65: 61:astrophysics 59:physics and 55:scattering, 32: 28: 24: 23: 2521:10902/24774 1126:Mathematics 707:Edalatpour 578:Calculates 432:VoxScatter 424:near fields 345:Near-fields 283:near fields 42:polarizable 2609:Scattering 2593:Categories 2438:1502.02186 2129:: 106689. 1856:2206.14921 1819:1502.02186 1636:2311.05908 1594:: 107501. 1409:2115/50065 822:References 806:Mie theory 567:Mackowski 527:References 295:DDscat.C++ 247:References 37:scattering 2151:209969404 1956:119574693 1931:0704.0037 1890:: 66–70. 1756:264805146 1665:1008.1366 1616:233839571 1545:0908.0863 1446:: 67–79. 1380:Appl. Opt 1168:0809.0338 1052:119572857 1027:0704.0038 948:Opt. Lett 635:Dmitriev 536:Features 365:McDonald 256:Features 101:→ 2579:37078273 2570:10150391 2530:34614734 2471:21556373 2463:26172822 2383:22849410 2363:ACS Nano 2293:11999964 2250:18594631 2108:21934954 1570:10285783 1418:20220882 1254:26726283 1201:15747060 1193:18978846 976:19738776 795:See also 712:Fortran 692:2013 (v. 689:Fortran 667:2019 (v. 664:Fortran 618:2014 (v. 590:McMahon 580:T-matrix 572:Fortran 549:Fortran 530:Language 490:2021 (v. 469:0.9.19) 465:2021 (v. 373:2009 (v. 332:2020 (v. 307:2017 (v. 274:2019 (v. 271:Fortran 250:Language 2498:Bibcode 2443:Bibcode 2336:Bibcode 2273:Bibcode 2230:Bibcode 2178:Bibcode 2131:Bibcode 2086:Bibcode 2045:Bibcode 1986:Bibcode 1936:Bibcode 1892:Bibcode 1779:Bibcode 1736:Bibcode 1670:Bibcode 1596:Bibcode 1550:Bibcode 1448:Bibcode 1388:Bibcode 1353:Bibcode 1281:Bibcode 1234:Bibcode 1173:Bibcode 1080:Bibcode 1032:Bibcode 956:Bibcode 921:Bibcode 919:: 705. 883:Bibcode 848:Bibcode 751:Python 742:PyDScat 640:Python 615:Matlab 595:Matlab 533:Updated 524:Authors 487:Matlab 441:Matlab 407:VIE-FFT 386:DDA-GPU 377:0.4.1) 361:OpenDDA 336:1.4.0) 311:7.3.1) 299:Choliy 285:. Uses 278:7.3.3) 253:Updated 244:Authors 145:Lorentz 137:Purcell 57:aerosol 45:dipoles 2577:  2567:  2528:  2469:  2461:  2381:  2291:  2248:  2149:  2106:  1954:  1754:  1614:  1568:  1416:  1252:  1199:  1191:  1050:  974:  704:T-DDA 694:  680:DDEELS 669:  620:  606:DDA-SI 492:  467:  453:IF-DDA 416:C/C++ 375:  353:OpenCL 334:  309:  287:OpenMP 276:  262:DDSCAT 172:Draine 2467:S2CID 2433:arXiv 2313:(PDF) 2147:S2CID 2018:(PDF) 1974:(PDF) 1952:S2CID 1926:arXiv 1914:(PDF) 1851:arXiv 1814:arXiv 1752:S2CID 1660:arXiv 1631:arXiv 1612:S2CID 1566:S2CID 1540:arXiv 1436:(PDF) 1311:(PDF) 1250:S2CID 1224:arXiv 1197:S2CID 1163:arXiv 1048:S2CID 1022:arXiv 1010:(PDF) 754:2023 733:2021 723:CDDA 715:2015 696:2.1) 671:2.0) 643:2015 631:PyDDA 622:0.2) 610:Loke 598:2006 575:2002 564:DDMM 552:2008 494:1.0) 478:MPDDA 444:2019 419:2019 398:2016 390:Kieß 53:radar 2575:PMID 2526:PMID 2459:PMID 2379:PMID 2289:PMID 2246:PMID 2104:PMID 1414:PMID 1189:PMID 972:PMID 655:-DDA 587:CDA 521:Name 411:Sha 395:C++ 320:ADDA 304:C++ 241:Name 2565:PMC 2557:doi 2516:hdl 2506:doi 2451:doi 2406:doi 2402:110 2371:doi 2344:doi 2332:112 2281:doi 2238:doi 2186:doi 2139:doi 2127:240 2094:doi 2053:doi 1994:doi 1982:112 1944:doi 1922:106 1861:doi 1847:106 1824:doi 1787:doi 1775:298 1744:doi 1732:312 1709:doi 1678:doi 1604:doi 1592:262 1558:doi 1510:doi 1483:doi 1456:doi 1444:156 1404:hdl 1396:doi 1361:doi 1349:106 1323:doi 1319:119 1289:doi 1242:doi 1181:doi 1134:doi 1088:doi 1040:doi 1018:106 964:doi 929:doi 917:186 891:doi 856:doi 557:FFT 510:FFT 355:). 29:DDA 2595:: 2573:. 2563:. 2553:14 2551:. 2547:. 2524:. 2514:. 2504:. 2494:29 2492:. 2488:. 2465:. 2457:. 2449:. 2441:. 2429:91 2427:. 2400:. 2377:. 2365:. 2342:. 2330:. 2287:. 2279:. 2269:19 2267:. 2244:. 2236:. 2226:25 2224:. 2184:. 2174:38 2172:. 2168:. 2145:. 2137:. 2125:. 2102:. 2092:. 2082:19 2080:. 2076:. 2051:. 2041:24 2039:. 2035:. 1992:. 1980:. 1976:. 1950:. 1942:. 1934:. 1920:. 1916:. 1886:. 1882:. 1859:. 1845:. 1822:. 1810:91 1808:. 1785:. 1773:. 1750:. 1742:. 1730:. 1705:32 1703:. 1699:. 1676:. 1668:. 1656:33 1654:. 1610:. 1602:. 1590:. 1578:^ 1564:. 1556:. 1548:. 1536:23 1534:. 1522:^ 1506:31 1504:. 1479:16 1477:. 1454:. 1442:. 1438:. 1412:. 1402:. 1394:. 1384:49 1382:. 1359:. 1347:. 1335:^ 1317:. 1313:. 1287:. 1277:14 1275:. 1262:^ 1248:. 1240:. 1232:. 1220:67 1218:. 1195:. 1187:. 1179:. 1171:. 1159:25 1157:. 1130:10 1128:. 1124:. 1086:. 1076:11 1074:. 1060:^ 1046:. 1038:. 1030:. 1016:. 1012:. 993:^ 970:. 962:. 952:12 950:. 927:. 915:. 903:^ 889:. 879:41 877:. 854:. 844:84 842:. 830:^ 370:C 329:C 218:, 63:. 51:, 2581:. 2559:: 2532:. 2518:: 2508:: 2500:: 2473:. 2453:: 2445:: 2435:: 2412:. 2408:: 2385:. 2373:: 2367:6 2350:. 2346:: 2338:: 2295:. 2283:: 2275:: 2252:. 2240:: 2232:: 2194:. 2188:: 2180:: 2153:. 2141:: 2133:: 2110:. 2096:: 2088:: 2061:. 2055:: 2047:: 2000:. 1996:: 1988:: 1958:. 1946:: 1938:: 1928:: 1898:. 1894:: 1888:3 1867:. 1863:: 1853:: 1830:. 1826:: 1816:: 1793:. 1789:: 1781:: 1758:. 1746:: 1738:: 1715:. 1711:: 1684:. 1680:: 1672:: 1662:: 1639:. 1633:: 1618:. 1606:: 1598:: 1572:. 1560:: 1552:: 1542:: 1516:. 1512:: 1489:. 1485:: 1462:. 1458:: 1450:: 1420:. 1406:: 1398:: 1390:: 1367:. 1363:: 1355:: 1329:. 1325:: 1295:. 1291:: 1283:: 1256:. 1244:: 1236:: 1226:: 1203:. 1183:: 1175:: 1165:: 1142:. 1136:: 1094:. 1090:: 1082:: 1054:. 1042:: 1034:: 1024:: 978:. 966:: 958:: 935:. 931:: 923:: 897:. 893:: 885:: 862:. 858:: 850:: 653:e 108:| 98:E 91:| 87:= 84:E 27:(

Index


scattering
polarizable
dipoles
nanophotonics
radar
aerosol
astrophysics

Poynting vector
Purcell
Lorentz
Clausius-Mossotti relation
volume integral equation for the electric field
Draine
fast Fourier transform
Mueller matrices
integral cross-sections
conjugate gradient method
DDSCAT
near fields
OpenMP
DDscat.C++
ADDA
emission (decay-rate) enhancement
Near-fields
Message Passing Interface
OpenCL
OpenDDA
DDA-GPU

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.