Knowledge (XXG)

Dispersion relation

Source đź“ť

1758:, until the wave packet and its phase maxima move together near the speed of light, whereas the wavelength continues to decrease without bound. Both transverse and longitudinal coherence widths (packet sizes) of such high energy electrons in the lab may be orders of magnitude larger than the ones shown here. 1493: 2171:
is the string's mass per unit length. As for the case of electromagnetic waves in vacuum, ideal strings are thus a non-dispersive medium, i.e. the phase and group velocities are equal and independent (to first order) of vibration frequency.
1380: 1712: 917: 2316:
is also non-trivial and important, being directly related to the acoustic and thermal properties of a material. For most systems, the phonons can be categorized into two main types: those whose bands become zero at the center of the
630: 1144: 2372:
studied refraction in prisms but failed to recognize the material dependence of the dispersion relation, dismissing the work of another researcher whose measurement of a prism's dispersion did not match Newton's own.
1209: 2002: 2084: 2245: 796: 1841: 1390: 2158: 1610: 288: 2101: 1943:
is the acceleration due to gravity. Deep water, in this respect, is commonly denoted as the case where the water depth is larger than half the wavelength. In this case the phase velocity is
1027: 1278: 451: 1615: 820: 82:
of each sinusoidal component of a wave in the medium, as a function of frequency. In addition to the geometry-dependent and material-dependent dispersion relations, the overarching
1934: 974: 395: 355: 225: 1051: 721: 320: 1523: 184: 2268: 937: 2282:
are possible for a given momentum and that some energies might not be available at any momentum. The collection of all possible energies and momenta is known as the
1269: 1543: 164: 2514:
P. M. Jones, G. M. Rackham and J. W. Steeds (1977). "Higher order Laue zone effects in electron diffraction and their use in lattice parameter determination".
503: 2665: 1750:. The top electron has twice the momentum, while the bottom electron has half. Note that as the momentum increases, the phase velocity decreases down to 2361:
has found application in the precise measurement of lattice parameters, beam energy, and more recently for the electronics industry: lattice strain.
1806:. In this case, the waveform will spread over time, such that a narrow pulse will become an extended pulse, i.e., be dispersed. In these materials, 2278:
In the study of solids, the study of the dispersion relation of electrons is of paramount importance. The periodicity of crystals means that many
2100: 1160: 1798:. It is possible to make the effective speed of light dependent on wavelength by making light pass through a material which has a non-constant 2497: 31: 2659: 1949: 976:) in the non-relativistic approximation. The variation has two parts: a constant part due to the de Broglie frequency of the rest mass ( 2013: 2181: 1742:
This animation portrays the de Broglie phase and group velocities (in slow motion) of three free electrons traveling over a field 0.4
736: 112:
In the presence of dispersion, a wave does not propagate with an unchanging waveform, giving rise to the distinct frequency-dependent
676:
Plane waves in vacuum are the simplest case of wave propagation: no geometric constraint, no interaction with a transmitting medium.
2570: 2472: 2447: 1736: 1870: 2338: 1746:
in width. The momentum per unit mass (proper velocity) of the middle electron is lightspeed, so that its group velocity is 0.707
2358: 2312:
Phonons are to sound waves in a solid what photons are to light: they are the quanta that carry it. The dispersion relation of
1809: 1881:
green dots propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The
2680: 2384: 2122: 1548: 1045: 83: 1772:
As mentioned above, when the focus in a medium is on refraction rather than absorption—that is, on the real part of the
322:
expresses the dispersion relation of the given medium. Dispersion relations are more commonly expressed in terms of the
240: 979: 142:
Dispersion occurs when sinusoidal waves of different wavelengths have different propagation velocities, so that a
1860: 133: 2387:(1926–27) became apparent with subsequent papers on the dispersion relation's connection to causality in the 1488:{\displaystyle \omega ={\frac {m_{0}c^{2}}{\hbar }}{\sqrt {1+\left({\frac {k\hbar }{m_{0}c}}\right)^{2}}}\,.} 403: 1715: 1903: 51: 2287: 109:, have a nontrivial dispersion relation, even in the absence of geometric constraints and other media. 1714:
This gives the non-relativistic approximation discussed above. If we start with the non-relativistic
942: 363: 2630: 2595: 2519: 2377: 2346: 2295: 1147: 685: 2175:
For a nonideal string, where stiffness is taken into account, the dispersion relation is written as
1847:
and corresponds to the speed at which the peak of the pulse propagates, a value different from the
328: 192: 1799: 1789: 137: 129: 102: 35: 2535: 1894: 1041: 694: 296: 1375:{\displaystyle \omega (k)={\sqrt {k^{2}c^{2}+\left({\frac {m_{0}c^{2}}{\hbar }}\right)^{2}}}\,.} 2342: 1707:{\displaystyle \omega (k)\approx {\frac {m_{0}c^{2}}{\hbar }}+{\frac {\hbar k^{2}}{2m_{0}}}\,.} 912:{\displaystyle \omega (k)\approx {\frac {m_{0}c^{2}}{\hbar }}+{\frac {\hbar k^{2}}{2m_{0}}}\,.} 2566: 2562: 2555: 2493: 2468: 2443: 2439: 2388: 1776:—it is common to refer to the functional dependence of angular frequency on wavenumber as the 1500: 1221: 323: 169: 2253: 1387:
at non-relativistic velocity. To approximate, we pull out the rest-mass dependent frequency:
922: 2638: 2603: 2527: 2410: 2405: 2325:, since they correspond to classical sound in the limit of long wavelengths. The others are 2095: 1864: 1773: 1254: 87: 47: 2607: 2104:
Two-frequency beats of a non-dispersive transverse wave. Since the wave is non-dispersive,
730:
dispersion relation. In this case, the phase velocity and the group velocity are the same:
2322: 2634: 2599: 2523: 2354: 2326: 2318: 2283: 1848: 1844: 1743: 1528: 802: 625:{\displaystyle A(x,t)=A_{0}e^{2\pi i{\frac {x-vt}{\lambda }}}=A_{0}e^{i(kx-\omega t)},} 484: 473: 149: 117: 113: 79: 75: 2674: 2432: 2291: 2279: 1780:. For particles, this translates to a knowledge of energy as a function of momentum. 2539: 1139:{\displaystyle E^{2}=(p{\textrm {c}})^{2}+\left(m_{0}{\textrm {c}}^{2}\right)^{2}\,} 30: 17: 2621:
John S. Toll (1956). "Causality and the dispersion relation: Logical foundations".
2400: 2369: 2492:. Advanced Series on Ocean Engineering. Vol. 2. World Scientific, Singapore. 2286:
of a material. Properties of the band structure define whether the material is an
1384: 1248: 1151: 1038: 814: 143: 106: 91: 1231: 358: 146:
of mixed wavelengths tends to spread out in space. The speed of a plane wave,
101:, shallow water) or by interaction of the waves with the transmitting medium. 67: 63: 39: 2642: 1803: 98: 71: 2531: 472:) to describe the dispersion relation has become standard because both the 74:. Given the dispersion relation, one can calculate the frequency-dependent 1204:{\displaystyle E=\hbar \omega \,,\quad \mathbf {p} =\hbar \mathbf {k} \,,} 62:
on the properties of waves in a medium. A dispersion relation relates the
2662:
to help visualize dispersion surfaces, by Andrey Chuvilin and Ute Kaiser
1869: 1735: 1037:
While applications of matter waves occur at non-relativistic velocity,
2313: 2307: 1795: 27:
Relation of wavelength/wavenumber as a function of a wave's frequency
688:
in vacuum, the angular frequency is proportional to the wavenumber:
42:
at different angles, splitting white light into a rainbow of colors.
2099: 1997:{\displaystyle v_{p}={\frac {\omega }{k}}={\sqrt {\frac {g}{k}}},} 1868: 1734: 97:
Dispersion may be caused either by geometric boundary conditions (
29: 2337:
With high-energy (e.g., 200 keV, 32 fJ) electrons in a
2079:{\displaystyle v_{g}={\frac {d\omega }{dk}}={\frac {1}{2}}v_{p}.} 1873:
Frequency dispersion of surface gravity waves on deep water. The
2240:{\displaystyle \omega ^{2}={\frac {T}{\mu }}k^{2}+\alpha k^{4},} 791:{\displaystyle v={\frac {\omega }{k}}={\frac {d\omega }{dk}}=c,} 2561:(illustrated, revised ed.). Cambridge University. p.  2116:
For an ideal string, the dispersion relation can be written as
2586:
A. D. D. Craik (2004). "The origins of water wave theory".
2329:, since they can be excited by electromagnetic radiation. 1885:
red square traverses the figure in the time it takes the
397:. Rewriting the relation above in these variables gives 661:
is a position along the wave's direction of travel, and
1836:{\displaystyle {\frac {\partial \omega }{\partial k}}} 1802:, or by using light in a non-uniform medium such as a 1722: 2256: 2184: 2125: 2016: 1952: 1906: 1812: 1794:
The name "dispersion relation" originally comes from
1618: 1551: 1531: 1503: 1393: 1281: 1257: 1163: 1054: 1044:
to derive his waves. Starting from the relativistic
982: 945: 925: 823: 739: 697: 506: 497:
The plane waves being considered can be described by
406: 366: 331: 299: 243: 195: 172: 152: 2153:{\displaystyle \omega =k{\sqrt {\frac {T}{\mu }}},} 1718:we will end up without the first, rest mass, term. 1605:{\displaystyle {\sqrt {1+x^{2}}}\approx 1+x^{2}/2,} 494:have convenient representations via this function. 2554: 2463:R. A. Serway, C. J. Moses and C. A. Moyer (1989). 2431: 2262: 2239: 2152: 2078: 1996: 1928: 1877:red square moves with the phase velocity, and the 1835: 1706: 1604: 1537: 1517: 1487: 1374: 1263: 1203: 1138: 1021: 968: 931: 911: 790: 715: 624: 445: 389: 349: 314: 283:{\displaystyle v(\lambda )=\lambda \ f(\lambda ).} 282: 219: 178: 158: 2490:Water wave mechanics for engineers and scientists 817:the frequency dispersion relation is non-linear: 2353:cross-sections of a crystal's three-dimensional 1029:) and a quadratic part due to kinetic energy. 1754:, whereas the group velocity increases up to 230:The wave's speed, wavelength, and frequency, 8: 2376:Dispersion of waves on water was studied by 1022:{\displaystyle \hbar \omega _{0}=m_{0}c^{2}} 919:The equation says the matter wave frequency 805:in vacuum, which is frequency-independent. 667:is the time at which the wave is described. 2557:Never at Rest: A Biography of Isaac Newton 2349:(CBED) patterns allows one, in effect, to 2270:is a constant that depends on the string. 1273:relativistic frequency dispersion relation 2255: 2228: 2212: 2198: 2189: 2183: 2135: 2124: 2067: 2053: 2030: 2021: 2015: 1979: 1966: 1957: 1951: 1913: 1905: 1813: 1811: 1700: 1691: 1676: 1666: 1651: 1641: 1634: 1617: 1591: 1585: 1564: 1552: 1550: 1530: 1507: 1502: 1481: 1473: 1457: 1442: 1429: 1417: 1407: 1400: 1392: 1368: 1360: 1344: 1334: 1327: 1313: 1303: 1297: 1280: 1271:and take the square root. This gives the 1256: 1197: 1192: 1181: 1176: 1162: 1135: 1129: 1118: 1112: 1111: 1104: 1085: 1075: 1074: 1059: 1053: 1013: 1003: 990: 981: 958: 944: 924: 905: 896: 881: 871: 856: 846: 839: 822: 759: 746: 738: 696: 592: 582: 552: 542: 532: 505: 405: 379: 365: 330: 298: 242: 194: 171: 166:, is a function of the wave's wavelength 151: 2341:, the energy dependence of higher-order 2167:is the tension force in the string, and 2488:R. G. Dean and R. A. Dalrymple (1991). 2467:. Philadelphia: Saunders. p. 118. 2422: 1669: 1658: 1504: 1448: 1424: 1385:Practical work with matter waves occurs 1351: 1258: 1189: 1170: 983: 874: 863: 446:{\displaystyle \omega (k)=v(k)\cdot k.} 2608:10.1146/annurev.fluid.36.050802.122118 2430:F. A. Jenkins and H. E. White (1957). 1729:phase and group velocity of electrons 2391:of all types of waves and particles. 1929:{\displaystyle \omega ={\sqrt {gk}},} 86:describe the frequency-dependence of 7: 1824: 1816: 939:in vacuum varies with wavenumber ( 25: 2438:. New York: McGraw-Hill. p.  2308:Phonon § Dispersion relation 2109: 1893:The dispersion relation for deep 1886: 1878: 2588:Annual Review of Fluid Mechanics 2516:Proceedings of the Royal Society 2345:(HOLZ) lines in convergent beam 2339:transmission electron microscope 1193: 1182: 969:{\displaystyle k=2\pi /\lambda } 390:{\displaystyle k=2\pi /\lambda } 1180: 809:De Broglie dispersion relations 801:and thus both are equal to the 680:Electromagnetic waves in vacuum 59: 1628: 1622: 1291: 1285: 1082: 1068: 833: 827: 614: 596: 522: 510: 431: 425: 416: 410: 350:{\displaystyle \omega =2\pi f} 309: 303: 274: 268: 253: 247: 234:, are related by the identity 220:{\displaystyle v=v(\lambda ).} 211: 205: 1: 2553:Westfall, Richard S. (1983). 642:is the amplitude of the wave, 2666:Angular frequency calculator 1525:factor is very small so for 1150:for energy and momentum for 2112:group velocities are equal. 2105: 1889:green dot to traverse half. 1882: 1874: 1768:Frequency versus wavenumber 716:{\displaystyle \omega =ck.} 315:{\displaystyle f(\lambda )} 38:causes different colors to 2697: 2660:Poster on CBED simulations 2305: 2093: 2007:and the group velocity is 1858: 1787: 127: 1545:not too large, we expand 2643:10.1103/PhysRev.104.1760 2385:Kramers–Kronig relations 2383:The universality of the 1861:Dispersion (water waves) 1518:{\displaystyle \hbar /c} 1046:energy–momentum relation 179:{\displaystyle \lambda } 134:Dispersion (water waves) 84:Kramers–Kronig relations 2274:Electron band structure 2263:{\displaystyle \alpha } 932:{\displaystyle \omega } 815:de Broglie matter waves 58:describe the effect of 2532:10.1098/rspa.1977.0064 2434:Fundamentals of optics 2264: 2241: 2154: 2113: 2080: 1998: 1930: 1890: 1837: 1739: 1708: 1606: 1539: 1519: 1489: 1376: 1265: 1264:{\displaystyle \hbar } 1205: 1140: 1023: 970: 933: 913: 792: 717: 626: 447: 391: 351: 316: 284: 221: 180: 160: 52:electrical engineering 43: 2518:. A 354 (1677): 197. 2306:Further information: 2265: 2242: 2155: 2103: 2094:Further information: 2081: 1999: 1931: 1897:is often written as 1872: 1859:Further information: 1838: 1788:Further information: 1738: 1709: 1607: 1540: 1520: 1497:Then we see that the 1490: 1377: 1266: 1206: 1141: 1024: 971: 934: 914: 793: 718: 686:electromagnetic waves 672:Plane waves in vacuum 627: 448: 392: 352: 317: 285: 222: 181: 161: 33: 2681:Equations of physics 2378:Pierre-Simon Laplace 2347:electron diffraction 2254: 2182: 2123: 2014: 1950: 1904: 1810: 1716:Schrödinger equation 1616: 1549: 1529: 1501: 1391: 1279: 1255: 1161: 1148:de Broglie relations 1052: 980: 943: 923: 821: 737: 695: 504: 404: 364: 329: 297: 241: 193: 170: 150: 103:Elementary particles 56:dispersion relations 18:Dispersion relations 2635:1956PhRv..104.1760T 2600:2004AnRFM..36....1C 2524:1977RSPSA.354..197J 1800:index of refraction 1790:Dispersion (optics) 1778:dispersion relation 138:Acoustic dispersion 130:Dispersion (optics) 2355:dispersion surface 2260: 2237: 2150: 2114: 2076: 1994: 1926: 1891: 1833: 1740: 1704: 1602: 1535: 1515: 1485: 1372: 1261: 1201: 1136: 1042:special relativity 1039:de Broglie applied 1019: 966: 929: 909: 788: 713: 622: 456:where we now view 443: 387: 347: 312: 280: 217: 176: 156: 44: 2499:978-981-02-0420-4 2389:scattering theory 2206: 2145: 2144: 2090:Waves on a string 2061: 2048: 1989: 1988: 1974: 1921: 1831: 1763: 1762: 1698: 1661: 1570: 1538:{\displaystyle k} 1479: 1467: 1427: 1366: 1354: 1222:angular frequency 1115: 1078: 903: 866: 777: 754: 571: 460:as a function of 324:angular frequency 264: 159:{\displaystyle v} 70:of a wave to its 48:physical sciences 16:(Redirected from 2688: 2647: 2646: 2629:(6): 1760–1770. 2618: 2612: 2611: 2583: 2577: 2576: 2560: 2550: 2544: 2543: 2511: 2505: 2503: 2485: 2479: 2478: 2460: 2454: 2453: 2437: 2427: 2411:Waves in plasmas 2406:Ultrashort pulse 2359:dynamical effect 2323:acoustic phonons 2280:levels of energy 2269: 2267: 2266: 2261: 2246: 2244: 2243: 2238: 2233: 2232: 2217: 2216: 2207: 2199: 2194: 2193: 2159: 2157: 2156: 2151: 2146: 2137: 2136: 2111: 2107: 2096:Vibrating string 2085: 2083: 2082: 2077: 2072: 2071: 2062: 2054: 2049: 2047: 2039: 2031: 2026: 2025: 2003: 2001: 2000: 1995: 1990: 1981: 1980: 1975: 1967: 1962: 1961: 1935: 1933: 1932: 1927: 1922: 1914: 1888: 1884: 1880: 1876: 1865:Airy wave theory 1855:Deep water waves 1843:is known as the 1842: 1840: 1839: 1834: 1832: 1830: 1822: 1814: 1784:Waves and optics 1774:refractive index 1723: 1713: 1711: 1710: 1705: 1699: 1697: 1696: 1695: 1682: 1681: 1680: 1667: 1662: 1657: 1656: 1655: 1646: 1645: 1635: 1611: 1609: 1608: 1603: 1595: 1590: 1589: 1571: 1569: 1568: 1553: 1544: 1542: 1541: 1536: 1524: 1522: 1521: 1516: 1511: 1494: 1492: 1491: 1486: 1480: 1478: 1477: 1472: 1468: 1466: 1462: 1461: 1451: 1443: 1430: 1428: 1423: 1422: 1421: 1412: 1411: 1401: 1381: 1379: 1378: 1373: 1367: 1365: 1364: 1359: 1355: 1350: 1349: 1348: 1339: 1338: 1328: 1318: 1317: 1308: 1307: 1298: 1270: 1268: 1267: 1262: 1246: 1241: 1229: 1219: 1210: 1208: 1207: 1202: 1196: 1185: 1145: 1143: 1142: 1137: 1134: 1133: 1128: 1124: 1123: 1122: 1117: 1116: 1113: 1109: 1108: 1090: 1089: 1080: 1079: 1076: 1064: 1063: 1028: 1026: 1025: 1020: 1018: 1017: 1008: 1007: 995: 994: 975: 973: 972: 967: 962: 938: 936: 935: 930: 918: 916: 915: 910: 904: 902: 901: 900: 887: 886: 885: 872: 867: 862: 861: 860: 851: 850: 840: 797: 795: 794: 789: 778: 776: 768: 760: 755: 747: 722: 720: 719: 714: 631: 629: 628: 623: 618: 617: 587: 586: 574: 573: 572: 567: 553: 537: 536: 452: 450: 449: 444: 396: 394: 393: 388: 383: 356: 354: 353: 348: 321: 319: 318: 313: 289: 287: 286: 281: 262: 226: 224: 223: 218: 185: 183: 182: 177: 165: 163: 162: 157: 105:, considered as 88:wave propagation 21: 2696: 2695: 2691: 2690: 2689: 2687: 2686: 2685: 2671: 2670: 2656: 2651: 2650: 2620: 2619: 2615: 2585: 2584: 2580: 2573: 2552: 2551: 2547: 2513: 2512: 2508: 2504:See page 64–66. 2500: 2487: 2486: 2482: 2475: 2462: 2461: 2457: 2450: 2429: 2428: 2424: 2419: 2397: 2367: 2335: 2333:Electron optics 2327:optical phonons 2310: 2304: 2276: 2252: 2251: 2224: 2208: 2185: 2180: 2179: 2121: 2120: 2098: 2092: 2063: 2040: 2032: 2017: 2012: 2011: 1953: 1948: 1947: 1902: 1901: 1867: 1857: 1823: 1815: 1808: 1807: 1792: 1786: 1770: 1687: 1683: 1672: 1668: 1647: 1637: 1636: 1614: 1613: 1581: 1560: 1547: 1546: 1527: 1526: 1499: 1498: 1453: 1452: 1444: 1438: 1437: 1413: 1403: 1402: 1389: 1388: 1340: 1330: 1329: 1323: 1322: 1309: 1299: 1277: 1276: 1253: 1252: 1247:, equal to the 1237: 1235: 1234:with magnitude 1225: 1215: 1159: 1158: 1110: 1100: 1099: 1095: 1094: 1081: 1055: 1050: 1049: 1035: 1009: 999: 986: 978: 977: 941: 940: 921: 920: 892: 888: 877: 873: 852: 842: 841: 819: 818: 811: 769: 761: 735: 734: 693: 692: 682: 674: 650: 588: 578: 554: 538: 528: 502: 501: 402: 401: 362: 361: 327: 326: 295: 294: 239: 238: 191: 190: 168: 167: 148: 147: 140: 128:Main articles: 126: 28: 23: 22: 15: 12: 11: 5: 2694: 2692: 2684: 2683: 2673: 2672: 2669: 2668: 2663: 2655: 2654:External links 2652: 2649: 2648: 2613: 2578: 2571: 2545: 2506: 2498: 2480: 2473: 2465:Modern Physics 2455: 2448: 2421: 2420: 2418: 2415: 2414: 2413: 2408: 2403: 2396: 2393: 2366: 2363: 2351:directly image 2334: 2331: 2319:Brillouin zone 2303: 2300: 2284:band structure 2275: 2272: 2259: 2248: 2247: 2236: 2231: 2227: 2223: 2220: 2215: 2211: 2205: 2202: 2197: 2192: 2188: 2161: 2160: 2149: 2143: 2140: 2134: 2131: 2128: 2091: 2088: 2087: 2086: 2075: 2070: 2066: 2060: 2057: 2052: 2046: 2043: 2038: 2035: 2029: 2024: 2020: 2005: 2004: 1993: 1987: 1984: 1978: 1973: 1970: 1965: 1960: 1956: 1937: 1936: 1925: 1920: 1917: 1912: 1909: 1856: 1853: 1849:phase velocity 1845:group velocity 1829: 1826: 1821: 1818: 1785: 1782: 1769: 1766: 1765: 1764: 1761: 1760: 1731: 1730: 1703: 1694: 1690: 1686: 1679: 1675: 1671: 1665: 1660: 1654: 1650: 1644: 1640: 1633: 1630: 1627: 1624: 1621: 1612:and multiply: 1601: 1598: 1594: 1588: 1584: 1580: 1577: 1574: 1567: 1563: 1559: 1556: 1534: 1514: 1510: 1506: 1484: 1476: 1471: 1465: 1460: 1456: 1450: 1447: 1441: 1436: 1433: 1426: 1420: 1416: 1410: 1406: 1399: 1396: 1371: 1363: 1358: 1353: 1347: 1343: 1337: 1333: 1326: 1321: 1316: 1312: 1306: 1302: 1296: 1293: 1290: 1287: 1284: 1260: 1212: 1211: 1200: 1195: 1191: 1188: 1184: 1179: 1175: 1172: 1169: 1166: 1132: 1127: 1121: 1107: 1103: 1098: 1093: 1088: 1084: 1073: 1070: 1067: 1062: 1058: 1034: 1031: 1016: 1012: 1006: 1002: 998: 993: 989: 985: 965: 961: 957: 954: 951: 948: 928: 908: 899: 895: 891: 884: 880: 876: 870: 865: 859: 855: 849: 845: 838: 835: 832: 829: 826: 810: 807: 803:speed of light 799: 798: 787: 784: 781: 775: 772: 767: 764: 758: 753: 750: 745: 742: 724: 723: 712: 709: 706: 703: 700: 681: 678: 673: 670: 669: 668: 662: 656: 648: 643: 633: 632: 621: 616: 613: 610: 607: 604: 601: 598: 595: 591: 585: 581: 577: 570: 566: 563: 560: 557: 551: 548: 545: 541: 535: 531: 527: 524: 521: 518: 515: 512: 509: 485:group velocity 474:phase velocity 454: 453: 442: 439: 436: 433: 430: 427: 424: 421: 418: 415: 412: 409: 386: 382: 378: 375: 372: 369: 346: 343: 340: 337: 334: 311: 308: 305: 302: 291: 290: 279: 276: 273: 270: 267: 261: 258: 255: 252: 249: 246: 228: 227: 216: 213: 210: 207: 204: 201: 198: 175: 155: 125: 122: 118:group velocity 114:phase velocity 80:group velocity 76:phase velocity 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2693: 2682: 2679: 2678: 2676: 2667: 2664: 2661: 2658: 2657: 2653: 2644: 2640: 2636: 2632: 2628: 2624: 2617: 2614: 2609: 2605: 2601: 2597: 2593: 2589: 2582: 2579: 2574: 2572:9780521274357 2568: 2564: 2559: 2558: 2549: 2546: 2541: 2537: 2533: 2529: 2525: 2521: 2517: 2510: 2507: 2501: 2495: 2491: 2484: 2481: 2476: 2474:0-534-49340-8 2470: 2466: 2459: 2456: 2451: 2449:0-07-032330-5 2445: 2441: 2436: 2435: 2426: 2423: 2416: 2412: 2409: 2407: 2404: 2402: 2399: 2398: 2394: 2392: 2390: 2386: 2381: 2379: 2374: 2371: 2364: 2362: 2360: 2356: 2352: 2348: 2344: 2340: 2332: 2330: 2328: 2324: 2320: 2315: 2309: 2301: 2299: 2297: 2293: 2292:semiconductor 2289: 2285: 2281: 2273: 2271: 2257: 2234: 2229: 2225: 2221: 2218: 2213: 2209: 2203: 2200: 2195: 2190: 2186: 2178: 2177: 2176: 2173: 2170: 2166: 2147: 2141: 2138: 2132: 2129: 2126: 2119: 2118: 2117: 2102: 2097: 2089: 2073: 2068: 2064: 2058: 2055: 2050: 2044: 2041: 2036: 2033: 2027: 2022: 2018: 2010: 2009: 2008: 1991: 1985: 1982: 1976: 1971: 1968: 1963: 1958: 1954: 1946: 1945: 1944: 1942: 1923: 1918: 1915: 1910: 1907: 1900: 1899: 1898: 1896: 1871: 1866: 1862: 1854: 1852: 1850: 1846: 1827: 1819: 1805: 1801: 1797: 1791: 1783: 1781: 1779: 1775: 1767: 1759: 1757: 1753: 1749: 1745: 1737: 1733: 1732: 1728: 1725: 1724: 1721: 1720: 1719: 1717: 1701: 1692: 1688: 1684: 1677: 1673: 1663: 1652: 1648: 1642: 1638: 1631: 1625: 1619: 1599: 1596: 1592: 1586: 1582: 1578: 1575: 1572: 1565: 1561: 1557: 1554: 1532: 1512: 1508: 1495: 1482: 1474: 1469: 1463: 1458: 1454: 1445: 1439: 1434: 1431: 1418: 1414: 1408: 1404: 1397: 1394: 1386: 1382: 1369: 1361: 1356: 1345: 1341: 1335: 1331: 1324: 1319: 1314: 1310: 1304: 1300: 1294: 1288: 1282: 1274: 1250: 1245: 1240: 1233: 1228: 1223: 1218: 1198: 1186: 1177: 1173: 1167: 1164: 1157: 1156: 1155: 1153: 1149: 1130: 1125: 1119: 1105: 1101: 1096: 1091: 1086: 1071: 1065: 1060: 1056: 1047: 1043: 1040: 1032: 1030: 1014: 1010: 1004: 1000: 996: 991: 987: 963: 959: 955: 952: 949: 946: 926: 906: 897: 893: 889: 882: 878: 868: 857: 853: 847: 843: 836: 830: 824: 816: 808: 806: 804: 785: 782: 779: 773: 770: 765: 762: 756: 751: 748: 743: 740: 733: 732: 731: 729: 710: 707: 704: 701: 698: 691: 690: 689: 687: 679: 677: 671: 666: 663: 660: 657: 654: 647: 644: 641: 638: 637: 636: 619: 611: 608: 605: 602: 599: 593: 589: 583: 579: 575: 568: 564: 561: 558: 555: 549: 546: 543: 539: 533: 529: 525: 519: 516: 513: 507: 500: 499: 498: 495: 493: 489: 486: 482: 478: 475: 471: 467: 464:. The use of 463: 459: 440: 437: 434: 428: 422: 419: 413: 407: 400: 399: 398: 384: 380: 376: 373: 370: 367: 360: 344: 341: 338: 335: 332: 325: 306: 300: 293:The function 277: 271: 265: 259: 256: 250: 244: 237: 236: 235: 233: 214: 208: 202: 199: 196: 189: 188: 187: 173: 153: 145: 139: 135: 131: 123: 121: 119: 115: 110: 108: 104: 100: 95: 93: 89: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 41: 37: 32: 19: 2626: 2622: 2616: 2591: 2587: 2581: 2556: 2548: 2515: 2509: 2489: 2483: 2464: 2458: 2433: 2425: 2401:Ellipsometry 2382: 2375: 2370:Isaac Newton 2368: 2350: 2336: 2311: 2277: 2249: 2174: 2168: 2164: 2162: 2115: 2006: 1940: 1938: 1892: 1793: 1777: 1771: 1755: 1751: 1747: 1741: 1726: 1496: 1383: 1272: 1251:. Divide by 1243: 1238: 1226: 1216: 1213: 1152:matter waves 1036: 812: 800: 727: 725: 683: 675: 664: 658: 652: 645: 639: 634: 496: 491: 487: 480: 476: 469: 465: 461: 457: 455: 292: 231: 229: 141: 111: 107:matter waves 96: 55: 45: 34:In a prism, 2321:are called 1895:water waves 1249:wave number 144:wave packet 92:attenuation 2417:References 2108:phase and 1727:Animation: 1232:wavevector 1033:Derivation 726:This is a 359:wavenumber 124:Dispersion 99:waveguides 68:wavenumber 64:wavelength 60:dispersion 36:dispersion 2623:Phys. Rev 2380:in 1776. 2343:Laue zone 2296:conductor 2288:insulator 2258:α 2222:α 2204:μ 2187:ω 2142:μ 2127:ω 2037:ω 1969:ω 1908:ω 1825:∂ 1820:ω 1817:∂ 1804:waveguide 1744:ĂĄngströms 1670:ℏ 1659:ℏ 1632:≈ 1620:ω 1573:≈ 1505:ℏ 1449:ℏ 1425:ℏ 1395:ω 1352:ℏ 1283:ω 1259:ℏ 1242:| = 1190:ℏ 1174:ω 1171:ℏ 988:ω 984:ℏ 964:λ 956:π 927:ω 875:ℏ 864:ℏ 837:≈ 825:ω 766:ω 749:ω 699:ω 609:ω 606:− 569:λ 559:− 547:π 435:⋅ 408:ω 385:λ 377:π 342:π 333:ω 307:λ 272:λ 260:λ 251:λ 209:λ 174:λ 72:frequency 2675:Category 2594:: 1–28. 2540:98158162 2395:See also 1146:use the 483:and the 2631:Bibcode 2596:Bibcode 2520:Bibcode 2365:History 2357:. This 2314:phonons 2302:Phonons 1230:is the 1220:is the 655:(0, 0), 635:where 46:In the 40:refract 2569:  2538:  2496:  2471:  2446:  2250:where 2163:where 1939:where 1796:optics 1236:| 1214:where 728:linear 263:  136:, and 2536:S2CID 2567:ISBN 2494:ISBN 2469:ISBN 2444:ISBN 1863:and 1224:and 813:For 684:For 357:and 116:and 90:and 78:and 50:and 2639:doi 2627:104 2604:doi 2563:276 2528:doi 2440:223 2294:or 66:or 2677:: 2637:. 2625:. 2602:. 2592:36 2590:. 2565:. 2534:. 2526:. 2442:. 2298:. 2290:, 1851:. 1275:: 1154:, 1048:: 651:= 492:dk 488:dω 186:: 132:, 120:. 94:. 54:, 2645:. 2641:: 2633:: 2610:. 2606:: 2598:: 2575:. 2542:. 2530:: 2522:: 2502:. 2477:. 2452:. 2235:, 2230:4 2226:k 2219:+ 2214:2 2210:k 2201:T 2196:= 2191:2 2169:ÎĽ 2165:T 2148:, 2139:T 2133:k 2130:= 2110:â—Ź 2106:â—Ź 2074:. 2069:p 2065:v 2059:2 2056:1 2051:= 2045:k 2042:d 2034:d 2028:= 2023:g 2019:v 1992:, 1986:k 1983:g 1977:= 1972:k 1964:= 1959:p 1955:v 1941:g 1924:, 1919:k 1916:g 1911:= 1887:â—Ź 1883:â–  1879:â—Ź 1875:â–  1828:k 1756:c 1752:c 1748:c 1702:. 1693:0 1689:m 1685:2 1678:2 1674:k 1664:+ 1653:2 1649:c 1643:0 1639:m 1629:) 1626:k 1623:( 1600:, 1597:2 1593:/ 1587:2 1583:x 1579:+ 1576:1 1566:2 1562:x 1558:+ 1555:1 1533:k 1513:c 1509:/ 1483:. 1475:2 1470:) 1464:c 1459:0 1455:m 1446:k 1440:( 1435:+ 1432:1 1419:2 1415:c 1409:0 1405:m 1398:= 1370:. 1362:2 1357:) 1346:2 1342:c 1336:0 1332:m 1325:( 1320:+ 1315:2 1311:c 1305:2 1301:k 1295:= 1292:) 1289:k 1286:( 1244:k 1239:k 1227:k 1217:ω 1199:, 1194:k 1187:= 1183:p 1178:, 1168:= 1165:E 1131:2 1126:) 1120:2 1114:c 1106:0 1102:m 1097:( 1092:+ 1087:2 1083:) 1077:c 1072:p 1069:( 1066:= 1061:2 1057:E 1015:2 1011:c 1005:0 1001:m 997:= 992:0 960:/ 953:2 950:= 947:k 907:. 898:0 894:m 890:2 883:2 879:k 869:+ 858:2 854:c 848:0 844:m 834:) 831:k 828:( 786:, 783:c 780:= 774:k 771:d 763:d 757:= 752:k 744:= 741:v 711:. 708:k 705:c 702:= 665:t 659:x 653:A 649:0 646:A 640:A 620:, 615:) 612:t 603:x 600:k 597:( 594:i 590:e 584:0 580:A 576:= 565:t 562:v 556:x 550:i 544:2 540:e 534:0 530:A 526:= 523:) 520:t 517:, 514:x 511:( 508:A 490:/ 481:k 479:/ 477:ω 470:k 468:( 466:ω 462:k 458:f 441:. 438:k 432:) 429:k 426:( 423:v 420:= 417:) 414:k 411:( 381:/ 374:2 371:= 368:k 345:f 339:2 336:= 310:) 304:( 301:f 278:. 275:) 269:( 266:f 257:= 254:) 248:( 245:v 232:f 215:. 212:) 206:( 203:v 200:= 197:v 154:v 20:)

Index

Dispersion relations

dispersion
refract
physical sciences
electrical engineering
dispersion
wavelength
wavenumber
frequency
phase velocity
group velocity
Kramers–Kronig relations
wave propagation
attenuation
waveguides
Elementary particles
matter waves
phase velocity
group velocity
Dispersion (optics)
Dispersion (water waves)
Acoustic dispersion
wave packet
angular frequency
wavenumber
phase velocity
group velocity
electromagnetic waves
speed of light

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑