Knowledge (XXG)

Distance-hereditary graph

Source đź“ť

417:. This can be seen by building up the graph by adding pendant vertices, false twins, and true twins, at each step building up a corresponding set of chords representing the graph. Adding a pendant vertex corresponds to adding a chord near the endpoints of an existing chord so that it crosses only that chord; adding false twins corresponds to replacing a chord by two parallel chords crossing the same set of other chords; and adding true twins corresponds to replacing a chord by two chords that cross each other but are nearly parallel and cross the same set of other chords. 259: 20: 428:. Bipartite distance-hereditary graphs can be built up from a single vertex by adding only pendant vertices and false twins, since any true twin would form a triangle, but the pendant vertex and false twin operations preserve bipartiteness. Every bipartite distance-hereditary graph is 253:
They are the graphs that do not have as isometric subgraphs any cycle of length five or more, or any of three other graphs: a 5-cycle with one chord, a 5-cycle with two non-crossing chords, and a 6-cycle with a chord connecting opposite
324:
They are the graphs that have rank-width one, where the rank-width of a graph is defined as the minimum, over all hierarchical partitions of the vertices of the graph, of the maximum rank among certain submatrices of the graph's
731:
present a simple direct algorithm for maximum weighted independent sets in distance-hereditary graphs, based on parsing the graph into pendant vertices and twins, correcting a previous attempt at such an algorithm by
284:
Replace any vertex of the graph by a pair of vertices, each of which has as its neighbors the neighbors of the replaced vertex together with the other vertex of the pair. The new pair of vertices are called
147:
They are the graphs in which every induced path is a shortest path, or equivalently the graphs in which every non-shortest path has at least one edge connecting two non-consecutive path vertices.
478:
for more general classes of graphs. Thus, it is possible in polynomial time to find the maximum clique or maximum independent set in a distance-hereditary graph, or to find an optimal
352:
of five or more vertices), domino (six-vertex cycle plus a diagonal edge between two opposite vertices), or gem (five-vertex cycle plus two diagonals incident to the same vertex).
1128:
Gioan, Emeric; Paul, Christophe (2012), "Split decomposition and graph-labelled trees: Characterizations and fully dynamic algorithms for totally decomposable graphs",
455:
of any vertex in a distance-hereditary graph is a cograph. The transitive closure of the directed graph formed by choosing any set of orientations for the edges of any
459:
is distance-hereditary; the special case in which the tree is oriented consistently away from some vertex forms a subclass of distance-hereditary graphs known as the
277:
Replace any vertex of the graph by a pair of vertices, each of which has the same set of neighbors as the replaced vertex. The new pair of vertices are called
1266:
Hsieh, Sun-yuan; Ho, Chin-wen; Hsu, Tsan-sheng; Ko, Ming-tat (2002), "Efficient algorithms for the Hamiltonian problem on distance-hereditary graphs",
1310: 1066: 1541: 505:
Several other optimization problems can also be solved more efficiently using algorithms specifically designed for distance-hereditary graphs. As
439:
The graphs that can be built from a single vertex by pendant vertices and true twins, without any false twin operations, are special cases of the
321:, forms two smaller graphs by replacing each of the two sides of the partition by a single vertex, and recursively partitions these two subgraphs. 1029: 1287: 267:
They are the graphs that can be built up from a single vertex by a sequence of the following three operations, as shown in the illustration:
1386:, SIAM Monographs on Discrete Mathematics and Applications, vol. 2, Philadelphia: Society for Industrial and Applied Mathematics, 377:, a graph in which every two induced paths between the same pair of vertices both have odd length or both have even length. Every even 737: 451:, which are therefore distance-hereditary; the cographs are exactly the disjoint unions of diameter-2 distance-hereditary graphs. The 1114:
Espelage, W.; Gurski, F.; Wanke, E. (2001), "How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time",
1416:
MĂĽller, Haiko; Nicolai, Falk (1993), "Polynomial time algorithms for Hamiltonian problems on bipartite distance-hereditary graphs",
1399: 1316: 1271: 1119: 1072: 950: 946: 913: 867: 548:
Olaru and Sachs showed the α-perfection of the graphs in which every cycle of length five or more has a pair of crossing diagonals (
474:
Because distance-hereditary graphs are perfect, some optimization problems can be solved in polynomial time for them despite being
317:. In this decomposition, one finds a partition of the graph into two subsets, such that the edges separating the two subsets form a 908:
Cornelsen, Sabine; Di Stefano, Gabriele (2005), "Treelike comparability graphs: characterization, recognition, and applications",
447:. The graphs that can be built from a single vertex by false twin and true twin operations, without any pendant vertices, are the 333: 471:
Distance-hereditary graphs can be recognized, and parsed into a sequence of pendant vertex and twin operations, in linear time.
1452: 820: 1418: 1351: 486:, they inherit polynomial time algorithms for circle graphs; for instance, it is possible determine in polynomial time the 1268:
Computing and Combinatorics: 8th Annual International Conference, COCOON 2002 Singapore, August 15–17, 2002, Proceedings
1206: 1130: 69: 54:
are the same as they are in the original graph. Thus, any induced subgraph inherits the distances of the larger graph.
960:; Makowski, J. A.; Rotics, U. (2000), "Linear time solvable optimization problems on graphs on bounded clique width", 452: 989:
D'Atri, Alessandro; Moscarini, Marina (1988), "Distance-hereditary graphs, Steiner trees, and connected domination",
736:. Because distance-hereditary graphs are perfectly orderable, they can be optimally colored in linear time by using 991: 366: 510: 318: 299: 517:
with the maximum possible number of leaves) can be found in polynomial time on a distance-hereditary graph. A
1536: 1531: 1169: 460: 429: 495: 1346: 1201: 295: 851: 1485:
Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969)
32: 1305:
Hui, Peter; Schaefer, Marcus; Ĺ tefankoviÄŤ, Daniel (2004), "Train tracks and confluent drawings", in
1065:; Meng, Jeremy Yu (2006), "Delta-confluent drawings", in Healy, Patrick; Nikolov, Nikola S. (eds.), 258: 150:
They are the graphs in which every cycle of length five or more has at least two crossing diagonals.
1062: 499: 456: 425: 314: 1157: 1139: 1102: 1076: 1022:"A simple paradigm for graph recognition: application to cographs and distance hereditary graphs" 977: 933: 410: 877:
Cogis, O.; Thierry, E. (2005), "Computing maximum stable sets for distance-hereditary graphs",
1395: 1283: 942: 863: 518: 1021: 1461: 1427: 1387: 1360: 1334: 1275: 1246: 1215: 1181: 1149: 1086: 1038: 1000: 969: 917: 886: 829: 341: 337: 326: 51: 1492: 1475: 1439: 1409: 1374: 1297: 1258: 1229: 1193: 1098: 1050: 1012: 929: 900: 843: 521:
or Hamiltonian path of any distance-hereditary graph can also be found in polynomial time.
19: 1488: 1471: 1435: 1405: 1370: 1293: 1254: 1225: 1189: 1094: 1046: 1008: 957: 925: 896: 839: 741: 440: 421: 48: 1058: 856: 479: 143:
Distance-hereditary graphs can also be characterized in several other equivalent ways:
1042: 490:
of any circle graph and therefore of any distance-hereditary graph. Additionally, the
1525: 1431: 1365: 1306: 1220: 834: 604: 514: 433: 403: 370: 362: 105: 62: 1106: 981: 937: 1161: 491: 483: 414: 374: 28: 68:
It has been known for some time that the distance-hereditary graphs constitute an
1508: 891: 818:
Bandelt, Hans-JĂĽrgen; Mulder, Henry Martyn (1986), "Distance-hereditary graphs",
687:, Information System on Graph Classes and their Inclusions, retrieved 2016-09-30. 684: 1447: 921: 444: 378: 349: 1466: 1338: 1185: 1153: 1116:
Proc. 27th Int. Worksh. Graph-Theoretic Concepts in Computer Science (WG 2001)
910:
Proc. 30th Int. Worksh. Graph-Theoretic Concepts in Computer Science (WG 2004)
345: 1279: 1250: 1391: 1237:
Howorka, Edward (1977), "A characterization of distance-hereditary graphs",
487: 1172:; Rotics, Udi (2000), "On the clique-width of some perfect graph classes", 262:
Three operations by which any distance-hereditary graph can be constructed.
1483:
Sachs, Horst (1970), "On the Berge conjecture concerning perfect graphs",
973: 1512: 482:
of any distance-hereditary graph. Because distance-hereditary graphs are
44: 1090: 494:
of any distance-hereditary graph is at most three. As a consequence, by
475: 448: 1081: 556:, α-perfection is an equivalent form of definition of perfect graphs. 1004: 1144: 257: 84:
The original definition of a distance-hereditary graph is a graph
18: 61:, although an equivalent class of graphs was already shown to be 1349:(1972), "Normal hypergraphs and the perfect graph conjecture", 274:
connected by a single edge to an existing vertex of the graph.
72:, but no intersection model was known until one was given by 1020:
Damiand, Guillaume; Habib, Michel; Paul, Christophe (2001),
862:, SIAM Monographs on Discrete Mathematics and Applications, 1204:; Maffray, Frédéric (1990), "Completely separable graphs", 391:
formed by connecting pairs of vertices at distance at most
294:
They are the graphs that can be completely decomposed into
57:
Distance-hereditary graphs were named and first studied by
409:
Every distance-hereditary graph can be represented as the
1514:
Information System on Graph Classes and their Inclusions
1327:
International Journal of Foundations of Computer Science
1174:
International Journal of Foundations of Computer Science
332:
They are the HHDG-free graphs, meaning that they have a
781: 612: 153:
They are the graphs in which, for every four vertices
1075:, vol. 3843, Springer-Verlag, pp. 165–176, 608: 502:
algorithms exist for many problems on these graphs.
1319:, vol. 3383, Springer-Verlag, pp. 318–328 1274:, vol. 2387, Springer-Verlag, pp. 51–75, 1122:, vol. 2204, Springer-Verlag, pp. 117–128 916:, vol. 3353, Springer-Verlag, pp. 46–57, 785: 757: 696: 672: 660: 648: 588: 506: 855: 611:and (for bipartite distance-hereditary graphs) by 719:but it was discovered to be erroneous by Damiand. 1325:Kloks, T. (1996), "Treewidth of circle graphs", 708: 740:to find a perfect ordering and then applying a 603:. A closely related decomposition was used for 16:Graph whose induced subgraphs preserve distance 769: 715:. An earlier linear time bound was claimed by 169:, at least two of the three sums of distances 1312:Proc. 12th Int. Symp. Graph Drawing (GD 2004) 1068:Proc. 13th Int. Symp. Graph Drawing (GD 2005) 801: 733: 716: 584: 580: 565: 536: 8: 797: 728: 373:. Every distance-hereditary graph is also a 463:, which are also called chordal cographs. 1465: 1382:McKee, Terry A.; McMorris, F. R. (1999), 1364: 1219: 1143: 1080: 890: 833: 712: 600: 73: 1450:(2005), "Rank-width and vertex-minors", 854:; Le, Van Bang; Spinrad, Jeremy (1999), 1487:, Gordon and Breach, pp. 377–384, 782:Courcelle, Makowski & Rotics (2000) 636: 576: 529: 96:belong to a connected induced subgraph 58: 613:Hui, Schaefer & Ĺ tefankoviÄŤ (2004) 553: 753: 549: 361:Every distance-hereditary graph is a 7: 1239:The Quarterly Journal of Mathematics 685:Bipartite distance-hereditary graphs 609:Eppstein, Goodrich & Meng (2006) 1384:Topics in Intersection Graph Theory 786:Espelage, Gurski & Wanke (2001) 758:Brandstädt, Le & Spinrad (1999) 673:Brandstädt, Le & Spinrad (1999) 661:Brandstädt, Le & Spinrad (1999) 649:Brandstädt, Le & Spinrad (1999) 624: 589:Brandstädt, Le & Spinrad (1999) 14: 1317:Lecture Notes in Computer Science 1272:Lecture Notes in Computer Science 1120:Lecture Notes in Computer Science 1073:Lecture Notes in Computer Science 914:Lecture Notes in Computer Science 697:Cornelsen & Di Stefano (2005) 413:of chords on a circle, forming a 709:Damiand, Habib & Paul (2001) 357:Relation to other graph families 334:forbidden graph characterization 1453:Journal of Combinatorial Theory 821:Journal of Combinatorial Theory 420:A distance-hereditary graph is 381:of a distance-hereditary graph 136:is the same as the distance in 124:, so that the distance between 88:such that, if any two vertices 80:Definition and characterization 1542:Intersection classes of graphs 1419:Information Processing Letters 675:, Theorem 10.6.14, p.164. 591:, Theorem 10.1.1, p. 147. 1: 1043:10.1016/S0304-3975(00)00234-6 507:D'Atri & Moscarini (1988) 1509:"Distance-hereditary graphs" 1432:10.1016/0020-0190(93)90100-N 1366:10.1016/0012-365X(72)90006-4 1221:10.1016/0166-218X(90)90131-U 1207:Discrete Applied Mathematics 1131:Discrete Applied Mathematics 1030:Theoretical Computer Science 892:10.1016/j.disopt.2005.03.004 835:10.1016/0095-8956(86)90043-2 770:Golumbic & Rotics (2000) 329:determined by the partition. 70:intersection class of graphs 65:in 1970 by Olaru and Sachs. 23:A distance-hereditary graph. 962:Theory of Computing Systems 922:10.1007/978-3-540-30559-0_4 802:MĂĽller & Nicolai (1993) 734:Hammer & Maffray (1990) 717:Hammer & Maffray (1990) 585:Hammer & Maffray (1990) 581:Bandelt & Mulder (1986) 566:McKee & McMorris (1999) 537:Hammer & Maffray (1990) 319:complete bipartite subgraph 1558: 1467:10.1016/j.jctb.2005.03.003 729:Cogis & Thierry (2005) 43:) is a graph in which the 41:completely separable graph 1339:10.1142/S0129054196000099 1186:10.1142/S0129054100000260 1154:10.1016/j.dam.2011.05.007 992:SIAM Journal on Computing 367:perfectly orderable graph 300:complete bipartite graphs 37:distance-hereditary graph 1280:10.1007/3-540-45655-4_10 1170:Golumbic, Martin Charles 511:connected dominating set 461:trivially perfect graphs 250:are equal to each other. 1392:10.1137/1.9780898719802 858:Graph Classes: A Survey 713:Gioan & Paul (2012) 601:Gioan & Paul (2012) 74:Gioan & Paul (2012) 1251:10.1093/qmath/28.4.417 1202:Hammer, Peter Ladislaw 552:, Theorem 5). By 365:, more specifically a 336:according to which no 263: 120:must be a subgraph of 24: 974:10.1007/s002249910009 879:Discrete Optimization 424:if and only if it is 261: 22: 1352:Discrete Mathematics 1063:Goodrich, Michael T. 385:(that is, the graph 340:can be a house (the 33:discrete mathematics 1091:10.1007/11618058_16 852:Brandstädt, Andreas 798:Hsieh et al. (2002) 651:, pp. 70–71 and 82. 513:(or equivalently a 500:dynamic programming 496:Courcelle's theorem 315:split decomposition 411:intersection graph 264: 25: 1289:978-3-540-43996-7 1241:, Second Series, 519:Hamiltonian cycle 430:chordal bipartite 344:of a five-vertex 1549: 1517: 1495: 1478: 1469: 1442: 1412: 1377: 1368: 1341: 1320: 1300: 1261: 1245:(112): 417–420, 1232: 1223: 1196: 1164: 1147: 1123: 1109: 1084: 1053: 1026: 1015: 984: 940: 903: 894: 872: 861: 846: 837: 805: 795: 789: 779: 773: 767: 761: 751: 745: 726: 720: 706: 700: 694: 688: 682: 676: 670: 664: 658: 652: 646: 640: 634: 628: 622: 616: 598: 592: 574: 568: 563: 557: 546: 540: 534: 509:show, a minimum 443:and include the 441:Ptolemaic graphs 401: 397: 390: 384: 342:complement graph 338:induced subgraph 327:adjacency matrix 312: 249: 222: 195: 168: 164: 160: 156: 139: 135: 131: 127: 123: 119: 115: 111: 103: 99: 95: 91: 87: 52:induced subgraph 1557: 1556: 1552: 1551: 1550: 1548: 1547: 1546: 1522: 1521: 1507: 1504: 1499: 1482: 1446: 1415: 1402: 1381: 1345: 1324: 1304: 1290: 1265: 1236: 1200: 1168: 1127: 1113: 1059:Eppstein, David 1057: 1037:(1–2): 99–111, 1024: 1019: 1005:10.1137/0217032 988: 956: 907: 876: 870: 850: 817: 813: 808: 796: 792: 780: 776: 768: 764: 752: 748: 742:greedy coloring 727: 723: 707: 703: 695: 691: 683: 679: 671: 667: 659: 655: 647: 643: 635: 631: 623: 619: 599: 595: 575: 571: 564: 560: 547: 543: 535: 531: 527: 469: 399: 392: 386: 382: 359: 311: 302: 224: 197: 170: 166: 162: 158: 154: 137: 133: 129: 125: 121: 117: 113: 109: 101: 97: 93: 89: 85: 82: 39:(also called a 17: 12: 11: 5: 1555: 1553: 1545: 1544: 1539: 1537:Perfect graphs 1534: 1532:Graph families 1524: 1523: 1520: 1519: 1503: 1502:External links 1500: 1498: 1497: 1480: 1444: 1426:(5): 225–230, 1413: 1400: 1379: 1359:(3): 253–267, 1347:Lovász, LászlĂł 1343: 1333:(2): 111–120, 1322: 1302: 1288: 1263: 1234: 1214:(1–2): 85–99, 1198: 1180:(3): 423–443, 1166: 1138:(6): 708–733, 1125: 1111: 1055: 1017: 999:(3): 521–538, 986: 968:(2): 125–150, 954: 905: 885:(2): 185–188, 874: 868: 848: 828:(2): 182–208, 814: 812: 809: 807: 806: 790: 774: 762: 746: 721: 701: 689: 677: 665: 653: 641: 637:Howorka (1977) 629: 617: 593: 577:Howorka (1977) 569: 558: 541: 528: 526: 523: 480:graph coloring 468: 465: 358: 355: 354: 353: 330: 322: 306: 292: 291: 290: 289:of each other. 282: 281:of each other. 275: 272:pendant vertex 256: 255: 251: 151: 148: 81: 78: 59:Howorka (1977) 31:, a branch of 15: 13: 10: 9: 6: 4: 3: 2: 1554: 1543: 1540: 1538: 1535: 1533: 1530: 1529: 1527: 1516: 1515: 1510: 1506: 1505: 1501: 1494: 1490: 1486: 1481: 1477: 1473: 1468: 1463: 1460:(1): 79–100, 1459: 1455: 1454: 1449: 1445: 1441: 1437: 1433: 1429: 1425: 1421: 1420: 1414: 1411: 1407: 1403: 1401:0-89871-430-3 1397: 1393: 1389: 1385: 1380: 1376: 1372: 1367: 1362: 1358: 1354: 1353: 1348: 1344: 1340: 1336: 1332: 1328: 1323: 1318: 1314: 1313: 1308: 1303: 1299: 1295: 1291: 1285: 1281: 1277: 1273: 1269: 1264: 1260: 1256: 1252: 1248: 1244: 1240: 1235: 1231: 1227: 1222: 1217: 1213: 1209: 1208: 1203: 1199: 1195: 1191: 1187: 1183: 1179: 1175: 1171: 1167: 1163: 1159: 1155: 1151: 1146: 1141: 1137: 1133: 1132: 1126: 1121: 1117: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1083: 1082:cs.CG/0510024 1078: 1074: 1070: 1069: 1064: 1060: 1056: 1052: 1048: 1044: 1040: 1036: 1032: 1031: 1023: 1018: 1014: 1010: 1006: 1002: 998: 994: 993: 987: 983: 979: 975: 971: 967: 963: 959: 958:Courcelle, B. 955: 952: 951:9783540305590 948: 947:9783540241324 944: 939: 935: 931: 927: 923: 919: 915: 911: 906: 902: 898: 893: 888: 884: 880: 875: 871: 869:0-89871-432-X 865: 860: 859: 853: 849: 845: 841: 836: 831: 827: 823: 822: 816: 815: 810: 803: 799: 794: 791: 787: 783: 778: 775: 771: 766: 763: 759: 755: 750: 747: 743: 739: 735: 730: 725: 722: 718: 714: 710: 705: 702: 698: 693: 690: 686: 681: 678: 674: 669: 666: 662: 657: 654: 650: 645: 642: 638: 633: 630: 626: 621: 618: 614: 610: 606: 605:graph drawing 602: 597: 594: 590: 586: 582: 578: 573: 570: 567: 562: 559: 555: 554:Lovász (1972) 551: 545: 542: 538: 533: 530: 524: 522: 520: 516: 515:spanning tree 512: 508: 503: 501: 497: 493: 489: 485: 484:circle graphs 481: 477: 472: 466: 464: 462: 458: 454: 450: 446: 442: 437: 435: 431: 427: 426:triangle-free 423: 418: 416: 412: 407: 405: 404:chordal graph 396: 389: 380: 376: 372: 371:Meyniel graph 368: 364: 363:perfect graph 356: 351: 347: 343: 339: 335: 331: 328: 323: 320: 316: 310: 305: 301: 297: 293: 288: 283: 280: 276: 273: 269: 268: 266: 265: 260: 252: 247: 243: 239: 235: 231: 227: 220: 216: 212: 208: 204: 200: 193: 189: 185: 181: 177: 173: 152: 149: 146: 145: 144: 141: 107: 106:shortest path 79: 77: 75: 71: 66: 64: 60: 55: 53: 50: 46: 42: 38: 34: 30: 21: 1513: 1484: 1457: 1456:, Series B, 1451: 1448:Oum, Sang-il 1423: 1417: 1383: 1356: 1350: 1330: 1326: 1311: 1267: 1242: 1238: 1211: 1205: 1177: 1173: 1135: 1129: 1115: 1067: 1034: 1028: 996: 990: 965: 961: 909: 882: 878: 857: 825: 824:, Series B, 819: 793: 777: 765: 754:Kloks (1996) 749: 724: 704: 692: 680: 668: 656: 644: 632: 620: 596: 572: 561: 544: 532: 504: 498:, efficient 492:clique-width 473: 470: 453:neighborhood 445:block graphs 438: 419: 415:circle graph 408: 394: 387: 375:parity graph 360: 308: 303: 286: 278: 271: 245: 241: 237: 233: 229: 225: 218: 214: 210: 206: 202: 198: 191: 187: 183: 179: 175: 171: 142: 104:, then some 83: 67: 56: 40: 36: 29:graph theory 26: 1307:Pach, János 350:cycle graph 348:), hole (a 298:and stars ( 279:false twins 108:connecting 1526:Categories 811:References 744:algorithm. 625:Oum (2005) 550:Sachs 1970 467:Algorithms 346:path graph 287:true twins 270:Add a new 1145:0810.1823 760:, p. 170. 488:treewidth 422:bipartite 254:vertices. 49:connected 45:distances 1107:13478178 982:15402031 938:14166894 449:cographs 1493:0272668 1476:2156341 1440:1228792 1410:1672910 1375:0302480 1309:(ed.), 1298:2064504 1259:0485544 1230:1055593 1194:1792124 1162:6528410 1099:2244510 1051:1846920 1013:0941943 930:2158633 901:2155518 844:0859310 663:, p.45. 476:NP-hard 434:modular 402:) is a 313:) by a 296:cliques 63:perfect 47:in any 1491:  1474:  1438:  1408:  1398:  1373:  1296:  1286:  1257:  1228:  1192:  1160:  1105:  1097:  1049:  1011:  980:  945:  936:  928:  899:  866:  842:  738:LexBFS 369:and a 223:, and 165:, and 1158:S2CID 1140:arXiv 1103:S2CID 1077:arXiv 1025:(PDF) 978:S2CID 934:S2CID 525:Notes 379:power 1396:ISBN 1284:ISBN 943:ISBN 864:ISBN 457:tree 432:and 236:) + 209:) + 182:) + 128:and 112:and 92:and 35:, a 1462:doi 1428:doi 1388:doi 1361:doi 1335:doi 1276:doi 1247:doi 1216:doi 1182:doi 1150:doi 1136:160 1087:doi 1039:doi 1035:263 1001:doi 970:doi 918:doi 887:doi 830:doi 607:by 398:in 132:in 116:in 100:of 27:In 1528:: 1511:, 1489:MR 1472:MR 1470:, 1458:95 1436:MR 1434:, 1424:46 1422:, 1406:MR 1404:, 1394:, 1371:MR 1369:, 1355:, 1329:, 1315:, 1294:MR 1292:, 1282:, 1270:, 1255:MR 1253:, 1243:28 1226:MR 1224:, 1212:27 1210:, 1190:MR 1188:, 1178:11 1176:, 1156:, 1148:, 1134:, 1118:, 1101:, 1095:MR 1093:, 1085:, 1071:, 1061:; 1047:MR 1045:, 1033:, 1027:, 1009:MR 1007:, 997:17 995:, 976:, 966:33 964:, 949:, 941:, 932:, 926:MR 924:, 912:, 897:MR 895:, 881:, 840:MR 838:, 826:41 800:; 784:; 756:; 711:; 587:; 583:; 579:; 436:. 406:. 307:1, 244:, 232:, 217:, 205:, 196:, 190:, 178:, 161:, 157:, 140:. 76:. 1518:. 1496:. 1479:. 1464:: 1443:. 1430:: 1390:: 1378:. 1363:: 1357:2 1342:. 1337:: 1331:7 1321:. 1301:. 1278:: 1262:. 1249:: 1233:. 1218:: 1197:. 1184:: 1165:. 1152:: 1142:: 1124:. 1110:. 1089:: 1079:: 1054:. 1041:: 1016:. 1003:: 985:. 972:: 953:. 920:: 904:. 889:: 883:2 873:. 847:. 832:: 804:. 788:. 772:. 699:. 639:. 627:. 615:. 539:. 400:G 395:i 393:2 388:G 383:G 309:q 304:K 248:) 246:w 242:v 240:( 238:d 234:x 230:u 228:( 226:d 221:) 219:x 215:v 213:( 211:d 207:w 203:u 201:( 199:d 194:) 192:x 188:w 186:( 184:d 180:v 176:u 174:( 172:d 167:x 163:w 159:v 155:u 138:G 134:H 130:v 126:u 122:H 118:G 114:v 110:u 102:G 98:H 94:v 90:u 86:G

Index


graph theory
discrete mathematics
distances
connected
induced subgraph
Howorka (1977)
perfect
intersection class of graphs
Gioan & Paul (2012)
shortest path

cliques
complete bipartite graphs
split decomposition
complete bipartite subgraph
adjacency matrix
forbidden graph characterization
induced subgraph
complement graph
path graph
cycle graph
perfect graph
perfectly orderable graph
Meyniel graph
parity graph
power
chordal graph
intersection graph
circle graph

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑