Knowledge

Direct image functor

Source 📝

1109: 961: 441: 1335: 1646: 313: 944: 1504: 251: 1207: 553: 1238: 1367: 1710: 824:
Forming sheaf categories and direct image functors itself defines a functor from the category of topological spaces to the category of categories: given continuous maps
1551: 910: 1683: 1264: 1740: 1760: 1104:{\displaystyle \mathrm {Hom} _{\mathbf {Sh} (X)}(f^{-1}{\mathcal {G}},{\mathcal {F}})=\mathrm {Hom} _{\mathbf {Sh} (Y)}({\mathcal {G}},f_{*}{\mathcal {F}})} 343: 1887: 1855: 383: 143:, which is known as the direct image functor. Similar constructions exist in many other algebraic and geometric contexts, including that of 1713: 780:
preserves the property of being quasi-coherent, so we obtain the direct image functor between categories of quasi-coherent sheaves.
204: 191: 336: 1284: 1559: 260: 1775: 915: 329: 161: 1442: 1147: 688:
If dealing with sheaves of sets instead of sheaves of abelian groups, the same definition applies. Similarly, if
216: 1165: 770: 482: 677: 1377: 766: 144: 132: 1882: 1212: 877: 181: 319: 152: 574: 1340: 1688: 1652: 48: 40: 1417:
One can show that there is a similar expression as above for higher direct images: for a sheaf
1851: 1524: 883: 788: 56: 1658: 1515: 1390: 1243: 1865: 1718: 373:
be a continuous map of topological spaces, and let Sh(–) denote the category of sheaves of
1861: 1847: 1763: 1400: 873: 1553:
of quasi-compact and quasi-separated schemes, one likewise has the right derived functor
1745: 148: 63: 17: 1876: 1396: 1136: 800: 374: 1796:"Section 26.24 (01LA): Functoriality for quasi-coherent modules—The Stacks project" 715: 36: 28: 1819: 1795: 44: 122: 1820:"Section 48.3 (0A9D): Right adjoint of pushforward—The Stacks project" 436:{\displaystyle f_{*}:\operatorname {Sh} (X)\to \operatorname {Sh} (Y)} 784: 1712:. This is closely related, but not generally equivalent to, the 1399:, but usually not right exact. Hence one can consider the right 562:, and is called the direct image sheaf or pushforward sheaf of 1219: 1184: 1093: 1073: 1025: 1015: 931: 921: 43:
to the relative case. It is of fundamental importance in
1330:{\displaystyle \mathrm {Spec} \,S\to \mathrm {Spec} \,R} 1748: 1721: 1691: 1661: 1562: 1527: 1445: 1343: 1287: 1246: 1215: 1168: 964: 918: 886: 485: 386: 263: 219: 1521:
In the context of algebraic geometry and a morphism
377:on a topological space. The direct image functor 1754: 1734: 1704: 1677: 1640: 1545: 1498: 1361: 1329: 1258: 1232: 1201: 1103: 938: 904: 547: 435: 307: 245: 1641:{\displaystyle Rf_{*}:D_{qcoh}(X)\to D_{qcoh}(Y)} 308:{\displaystyle (R)f_{!}\leftrightarrows (R)f^{!}} 661:of abelian groups, and the direct image functor 1162:. This follows from the fact that the stalk of 1655:of quasi-coherent sheaves. In this situation, 1376:on quasi-coherent sheaves identifies with the 939:{\displaystyle {\mathcal {F}},{\mathcal {G}}} 337: 8: 1499:{\displaystyle U\mapsto H^{q}(f^{-1}(U),F)} 1266:and zero otherwise (here the closedness of 783:A similar definition applies to sheaves on 246:{\displaystyle f^{*}\leftrightarrows f_{*}} 1436:) is the sheaf associated to the presheaf 344: 330: 157: 1747: 1726: 1720: 1696: 1690: 1669: 1660: 1614: 1583: 1570: 1561: 1526: 1469: 1456: 1444: 1342: 1323: 1309: 1302: 1288: 1286: 1245: 1224: 1218: 1217: 1214: 1202:{\displaystyle (f_{*}{\mathcal {F}})_{y}} 1193: 1183: 1182: 1176: 1167: 1092: 1091: 1085: 1072: 1071: 1049: 1048: 1037: 1024: 1023: 1014: 1013: 1004: 978: 977: 966: 963: 930: 929: 920: 919: 917: 885: 521: 490: 484: 391: 385: 299: 277: 262: 237: 224: 218: 548:{\displaystyle f_{*}F(U):=F(f^{-1}(U)).} 1787: 791:. There, instead of the above preimage 754:-modules to the category of sheaves of 622:in an obvious way, we indeed have that 160: 1120:is the inclusion of a closed subspace 880:, which means that for any continuous 1651:as a functor between the (unbounded) 1403:of the direct image. They are called 7: 589:gives rise to a morphism of sheaves 1150:between the category of sheaves on 718:, we obtain a direct image functor 653:the unique continuous map, then Sh( 117:is given by the global sections of 107:, such that the global sections of 1846:, Universitext, Berlin, New York: 1337:determined by a ring homomorphism 1319: 1316: 1313: 1310: 1298: 1295: 1292: 1289: 1281:is the morphism of affine schemes 1233:{\displaystyle {\mathcal {F}}_{y}} 1044: 1041: 1038: 973: 970: 967: 747:) from the category of sheaves of 192:direct image with compact support 121:. This assignment gives rise to a 25: 1714:exceptional inverse image functor 954:, there is a natural isomorphism: 1369:, then the direct image functor 1053: 1050: 982: 979: 558:This turns out to be a sheaf on 1154:and the category of sheaves on 1888:Theory of continuous functions 1685:always admits a right adjoint 1635: 1629: 1607: 1604: 1598: 1537: 1493: 1484: 1478: 1462: 1449: 1353: 1306: 1190: 1169: 1098: 1068: 1063: 1057: 1030: 997: 992: 986: 896: 539: 536: 530: 514: 505: 499: 430: 424: 415: 412: 406: 292: 286: 283: 270: 264: 230: 139:to the category of sheaves on 1: 454:to its direct image presheaf 1395:The direct image functor is 1362:{\displaystyle \phi :R\to S} 872:The direct image functor is 77:, we can define a new sheaf 1705:{\displaystyle f^{\times }} 1904: 1776:Proper base change theorem 1388: 468:, defined on open subsets 205:exceptional inverse image 162:Image functors for sheaves 1139:. Actually, in this case 1842:Iversen, Birger (1986), 1824:stacks.math.columbia.edu 1800:stacks.math.columbia.edu 1546:{\displaystyle f:X\to Y} 905:{\displaystyle f:X\to Y} 761:-modules. Moreover, if 678:global sections functor 41:global sections functor 18:Direct image of a sheaf 1756: 1736: 1706: 1679: 1678:{\displaystyle Rf_{*}} 1642: 1547: 1500: 1378:restriction of scalars 1363: 1331: 1260: 1259:{\displaystyle y\in X} 1234: 1203: 1105: 940: 906: 549: 437: 309: 247: 145:quasi-coherent sheaves 1844:Cohomology of sheaves 1757: 1737: 1735:{\displaystyle f^{!}} 1707: 1680: 1643: 1548: 1501: 1364: 1332: 1261: 1235: 1204: 1106: 941: 907: 878:inverse image functor 765:is now a morphism of 550: 438: 310: 248: 39:that generalizes the 35:is a construction in 1746: 1719: 1689: 1659: 1560: 1525: 1443: 1405:higher direct images 1385:Higher direct images 1341: 1285: 1244: 1213: 1166: 962: 916: 884: 483: 384: 320:Base change theorems 261: 217: 33:direct image functor 1869:, esp. section II.4 714:) is a morphism of 575:morphism of sheaves 1752: 1732: 1702: 1675: 1653:derived categories 1638: 1543: 1496: 1359: 1327: 1256: 1230: 1199: 1101: 936: 902: 657:) is the category 545: 433: 305: 243: 93:direct image sheaf 49:algebraic geometry 1857:978-3-540-16389-3 1755:{\displaystyle f} 354: 353: 97:pushforward sheaf 57:topological space 16:(Redirected from 1895: 1868: 1834: 1833: 1831: 1830: 1816: 1810: 1809: 1807: 1806: 1792: 1761: 1759: 1758: 1753: 1741: 1739: 1738: 1733: 1731: 1730: 1711: 1709: 1708: 1703: 1701: 1700: 1684: 1682: 1681: 1676: 1674: 1673: 1647: 1645: 1644: 1639: 1628: 1627: 1597: 1596: 1575: 1574: 1552: 1550: 1549: 1544: 1516:sheaf cohomology 1505: 1503: 1502: 1497: 1477: 1476: 1461: 1460: 1401:derived functors 1391:Coherent duality 1380:functor along φ. 1368: 1366: 1365: 1360: 1336: 1334: 1333: 1328: 1322: 1301: 1265: 1263: 1262: 1257: 1239: 1237: 1236: 1231: 1229: 1228: 1223: 1222: 1208: 1206: 1205: 1200: 1198: 1197: 1188: 1187: 1181: 1180: 1110: 1108: 1107: 1102: 1097: 1096: 1090: 1089: 1077: 1076: 1067: 1066: 1056: 1047: 1029: 1028: 1019: 1018: 1012: 1011: 996: 995: 985: 976: 946:respectively on 945: 943: 942: 937: 935: 934: 925: 924: 911: 909: 908: 903: 799:), one uses the 641:is a point, and 554: 552: 551: 546: 529: 528: 495: 494: 442: 440: 439: 434: 396: 395: 346: 339: 332: 314: 312: 311: 306: 304: 303: 282: 281: 252: 250: 249: 244: 242: 241: 229: 228: 158: 51:. Given a sheaf 21: 1903: 1902: 1898: 1897: 1896: 1894: 1893: 1892: 1873: 1872: 1858: 1848:Springer-Verlag 1841: 1838: 1837: 1828: 1826: 1818: 1817: 1813: 1804: 1802: 1794: 1793: 1789: 1784: 1772: 1744: 1743: 1722: 1717: 1716: 1692: 1687: 1686: 1665: 1657: 1656: 1610: 1579: 1566: 1558: 1557: 1523: 1522: 1465: 1452: 1441: 1440: 1431: 1413: 1393: 1387: 1375: 1339: 1338: 1283: 1282: 1242: 1241: 1216: 1211: 1210: 1189: 1172: 1164: 1163: 1145: 1134: 1081: 1036: 1000: 965: 960: 959: 914: 913: 882: 881: 868: 862: 855: 821: 779: 771:quasi-separated 759: 752: 745: 734: 724: 712: 701: 686: 667: 635: 628: 613: 602: 595: 517: 486: 481: 480: 460: 387: 382: 381: 359: 350: 295: 273: 259: 258: 253: 233: 220: 215: 214: 198: 175: 130: 113: 83: 23: 22: 15: 12: 11: 5: 1901: 1899: 1891: 1890: 1885: 1875: 1874: 1871: 1870: 1856: 1836: 1835: 1811: 1786: 1785: 1783: 1780: 1779: 1778: 1771: 1768: 1751: 1729: 1725: 1699: 1695: 1672: 1668: 1664: 1649: 1648: 1637: 1634: 1631: 1626: 1623: 1620: 1617: 1613: 1609: 1606: 1603: 1600: 1595: 1592: 1589: 1586: 1582: 1578: 1573: 1569: 1565: 1542: 1539: 1536: 1533: 1530: 1508: 1507: 1495: 1492: 1489: 1486: 1483: 1480: 1475: 1472: 1468: 1464: 1459: 1455: 1451: 1448: 1429: 1411: 1386: 1383: 1382: 1381: 1373: 1358: 1355: 1352: 1349: 1346: 1326: 1321: 1318: 1315: 1312: 1308: 1305: 1300: 1297: 1294: 1291: 1275: 1255: 1252: 1249: 1227: 1221: 1196: 1192: 1186: 1179: 1175: 1171: 1143: 1132: 1113: 1112: 1100: 1095: 1088: 1084: 1080: 1075: 1070: 1065: 1062: 1059: 1055: 1052: 1046: 1043: 1040: 1035: 1032: 1027: 1022: 1017: 1010: 1007: 1003: 999: 994: 991: 988: 984: 981: 975: 972: 969: 956: 955: 933: 928: 923: 901: 898: 895: 892: 889: 870: 866: 860: 853: 820: 817: 777: 773:schemes, then 757: 750: 743: 732: 722: 710: 699: 685: 682: 665: 634: 631: 629:is a functor. 626: 611: 600: 593: 556: 555: 544: 541: 538: 535: 532: 527: 524: 520: 516: 513: 510: 507: 504: 501: 498: 493: 489: 458: 446:sends a sheaf 444: 443: 432: 429: 426: 423: 420: 417: 414: 411: 408: 405: 402: 399: 394: 390: 375:abelian groups 358: 355: 352: 351: 349: 348: 341: 334: 326: 323: 322: 316: 315: 302: 298: 294: 291: 288: 285: 280: 276: 272: 269: 266: 255: 254: 240: 236: 232: 227: 223: 211: 210: 201: 200: 196: 188: 187: 182:inverse image 178: 177: 173: 165: 164: 135:of sheaves on 128: 111: 81: 64:continuous map 24: 14: 13: 10: 9: 6: 4: 3: 2: 1900: 1889: 1886: 1884: 1881: 1880: 1878: 1867: 1863: 1859: 1853: 1849: 1845: 1840: 1839: 1825: 1821: 1815: 1812: 1801: 1797: 1791: 1788: 1781: 1777: 1774: 1773: 1769: 1767: 1765: 1749: 1727: 1723: 1715: 1697: 1693: 1670: 1666: 1662: 1654: 1632: 1624: 1621: 1618: 1615: 1611: 1601: 1593: 1590: 1587: 1584: 1580: 1576: 1571: 1567: 1563: 1556: 1555: 1554: 1540: 1534: 1531: 1528: 1519: 1517: 1513: 1490: 1487: 1481: 1473: 1470: 1466: 1457: 1453: 1446: 1439: 1438: 1437: 1435: 1428: 1424: 1420: 1415: 1410: 1406: 1402: 1398: 1392: 1384: 1379: 1372: 1356: 1350: 1347: 1344: 1324: 1303: 1280: 1276: 1273: 1269: 1253: 1250: 1247: 1225: 1194: 1177: 1173: 1161: 1158:supported on 1157: 1153: 1149: 1142: 1138: 1131: 1127: 1123: 1119: 1115: 1114: 1086: 1082: 1078: 1060: 1033: 1020: 1008: 1005: 1001: 989: 958: 957: 953: 949: 926: 899: 893: 890: 887: 879: 875: 874:right adjoint 871: 865: 859: 851: 847: 843: 839: 835: 831: 827: 823: 822: 818: 816: 814: 810: 806: 802: 801:fiber product 798: 794: 790: 789:étale sheaves 786: 781: 776: 772: 768: 767:quasi-compact 764: 760: 753: 746: 739: 735: 728: 721: 717: 716:ringed spaces 713: 706: 702: 695: 691: 683: 681: 679: 675: 671: 664: 660: 656: 652: 648: 644: 640: 632: 630: 625: 621: 617: 610: 606: 599: 592: 588: 584: 580: 576: 571: 569: 565: 561: 542: 533: 525: 522: 518: 511: 508: 502: 496: 491: 487: 479: 478: 477: 475: 471: 467: 463: 457: 453: 449: 427: 421: 418: 409: 403: 400: 397: 392: 388: 380: 379: 378: 376: 372: 368: 364: 356: 347: 342: 340: 335: 333: 328: 327: 325: 324: 321: 318: 317: 300: 296: 289: 278: 274: 267: 257: 256: 238: 234: 225: 221: 213: 212: 209: 208: 203: 202: 199: 195: 190: 189: 186: 185: 180: 179: 176: 172: 169:direct image 167: 166: 163: 159: 156: 154: 150: 149:étale sheaves 146: 142: 138: 134: 127: 124: 120: 116: 110: 106: 102: 98: 94: 91:, called the 90: 86: 80: 76: 72: 68: 65: 61: 58: 55:defined on a 54: 50: 46: 42: 38: 34: 30: 19: 1883:Sheaf theory 1843: 1827:. Retrieved 1823: 1814: 1803:. Retrieved 1799: 1790: 1650: 1520: 1511: 1509: 1433: 1426: 1425:, the sheaf 1422: 1418: 1416: 1408: 1407:and denoted 1404: 1394: 1370: 1278: 1271: 1267: 1159: 1155: 1151: 1140: 1129: 1125: 1121: 1117: 951: 947: 912:and sheaves 863: 857: 849: 845: 841: 837: 833: 829: 825: 812: 808: 804: 796: 792: 782: 774: 762: 755: 748: 741: 737: 730: 726: 719: 708: 704: 697: 693: 689: 687: 673: 669: 662: 658: 654: 650: 646: 642: 638: 636: 623: 619: 615: 608: 604: 597: 590: 586: 582: 578: 572: 567: 563: 559: 557: 473: 469: 465: 461: 455: 451: 447: 445: 370: 366: 362: 360: 206: 193: 183: 170: 168: 140: 136: 125: 118: 114: 108: 104: 100: 96: 92: 88: 84: 78: 74: 70: 66: 59: 52: 37:sheaf theory 32: 26: 1148:equivalence 848:, we have ( 676:equals the 29:mathematics 1877:Categories 1829:2022-09-20 1805:2022-09-20 1782:References 1397:left exact 1389:See also: 819:Properties 787:, such as 357:Definition 1742:, unless 1698:× 1671:∗ 1608:→ 1572:∗ 1538:→ 1471:− 1450:↦ 1354:→ 1345:ϕ 1307:→ 1274:is used). 1251:∈ 1178:∗ 1087:∗ 1006:− 897:→ 523:− 492:∗ 422:⁡ 416:→ 404:⁡ 393:∗ 284:⇆ 239:∗ 231:⇆ 226:∗ 131:from the 1770:See also 1762:is also 1514:denotes 684:Variants 573:Since a 133:category 45:topology 1866:0842190 876:to the 736:) → Sh( 633:Example 174:∗ 123:functor 95:or the 1864:  1854:  1764:proper 1510:where 1146:is an 566:along 153:scheme 103:along 62:and a 31:, the 1137:exact 1128:then 811:over 785:topoi 725:: Sh( 703:) → ( 668:: Sh( 618:) on 596:(φ): 151:on a 1852:ISBN 836:and 807:and 769:and 672:) → 607:) → 570:. 361:Let 147:and 47:and 1427:R f 1421:on 1409:R f 1277:If 1270:in 1240:if 1209:is 1135:is 1116:If 803:of 692:: ( 637:If 585:on 577:φ: 476:by 472:of 464:on 450:on 99:of 87:on 27:In 1879:: 1862:MR 1860:, 1850:, 1822:. 1798:. 1766:. 1518:. 1414:. 1124:⊆ 950:, 850:gf 844:→ 840:: 832:→ 828:: 815:. 707:, 696:, 680:. 674:Ab 659:Ab 649:→ 645:: 581:→ 509::= 419:Sh 401:Sh 369:→ 365:: 207:Rf 155:. 73:→ 69:: 1832:. 1808:. 1750:f 1728:! 1724:f 1694:f 1667:f 1663:R 1636:) 1633:Y 1630:( 1625:h 1622:o 1619:c 1616:q 1612:D 1605:) 1602:X 1599:( 1594:h 1591:o 1588:c 1585:q 1581:D 1577:: 1568:f 1564:R 1541:Y 1535:X 1532:: 1529:f 1512:H 1506:, 1494:) 1491:F 1488:, 1485:) 1482:U 1479:( 1474:1 1467:f 1463:( 1458:q 1454:H 1447:U 1434:F 1432:( 1430:∗ 1423:X 1419:F 1412:∗ 1374:∗ 1371:f 1357:S 1351:R 1348:: 1325:R 1320:c 1317:e 1314:p 1311:S 1304:S 1299:c 1296:e 1293:p 1290:S 1279:f 1272:Y 1268:X 1254:X 1248:y 1226:y 1220:F 1195:y 1191:) 1185:F 1174:f 1170:( 1160:X 1156:Y 1152:X 1144:∗ 1141:f 1133:∗ 1130:f 1126:Y 1122:X 1118:f 1111:. 1099:) 1094:F 1083:f 1079:, 1074:G 1069:( 1064:) 1061:Y 1058:( 1054:h 1051:S 1045:m 1042:o 1039:H 1034:= 1031:) 1026:F 1021:, 1016:G 1009:1 1002:f 998:( 993:) 990:X 987:( 983:h 980:S 974:m 971:o 968:H 952:Y 948:X 932:G 927:, 922:F 900:Y 894:X 891:: 888:f 869:. 867:∗ 864:f 861:∗ 858:g 856:= 854:∗ 852:) 846:Z 842:Y 838:g 834:Y 830:X 826:f 813:Y 809:X 805:U 797:U 795:( 793:f 778:∗ 775:f 763:f 758:Y 756:O 751:X 749:O 744:Y 742:O 740:, 738:Y 733:X 731:O 729:, 727:X 723:∗ 720:f 711:Y 709:O 705:Y 700:X 698:O 694:X 690:f 670:X 666:∗ 663:f 655:Y 651:Y 647:X 643:f 639:Y 627:∗ 624:f 620:Y 616:G 614:( 612:∗ 609:f 605:F 603:( 601:∗ 598:f 594:∗ 591:f 587:X 583:G 579:F 568:f 564:F 560:Y 543:. 540:) 537:) 534:U 531:( 526:1 519:f 515:( 512:F 506:) 503:U 500:( 497:F 488:f 474:Y 470:U 466:Y 462:F 459:∗ 456:f 452:X 448:F 431:) 428:Y 425:( 413:) 410:X 407:( 398:: 389:f 371:Y 367:X 363:f 345:e 338:t 331:v 301:! 297:f 293:) 290:R 287:( 279:! 275:f 271:) 268:R 265:( 235:f 222:f 197:! 194:f 184:f 171:f 141:Y 137:X 129:∗ 126:f 119:F 115:F 112:∗ 109:f 105:f 101:F 89:Y 85:F 82:∗ 79:f 75:Y 71:X 67:f 60:X 53:F 20:)

Index

Direct image of a sheaf
mathematics
sheaf theory
global sections functor
topology
algebraic geometry
topological space
continuous map
functor
category
quasi-coherent sheaves
étale sheaves
scheme
Image functors for sheaves
direct image f
inverse image f
direct image with compact support f!
exceptional inverse image Rf
Base change theorems
v
t
e
abelian groups
morphism of sheaves
global sections functor
ringed spaces
quasi-compact
quasi-separated
topoi
étale sheaves

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.