Knowledge (XXG)

Dirichlet's theorem on arithmetic progressions

Source 📝

1667:. Il seroit peut-être nécessaire de démontrer rigoureusement une chose que nous avons supposée dans plusieurs endroits de cet article, savoir, qu'il y a une infinité de nombres premiers compris dans tous progression arithmétique, dont le premier terme & la raison sont premiers entr'eux, ou, ce qui revient au même, dans la formule 2mx + μ, lorsque 2m & μ n'ont point de commun diviseur. Cette proposition est assez difficile à démontrer, cependant on peut s'assurer qu'elle est vraie, en comparant la progression arithmétique dont il s'agit, à la progression ordinaire 1, 3, 5, 7, &c. Si on prend un grand nombre de termes de ces progressions, le même dans les deux, & qu'on les dispose, par exemple, de manière que le plus grand terme soit égal & à la même place de part & d'autre; on verra qu'en omettant de chaque côté les multiples de 3, 5, 7, &c. jusqu'à un certain nombre premier 1677:. It will perhaps be necessary to prove rigorously something that we have assumed at several places in this article, namely, that there is an infinitude of prime numbers included in every arithmetic progression, whose first term and common difference are co-prime, or, what amounts to the same thing, in the formula 2mx + μ, when 2m and μ have no common divisors at all. This proposition is rather difficult to prove, however one may be assured that it is true, by comparing the arithmetic progression being considered to the ordinary progression 1, 3, 5, 7, etc. If one takes a great number of terms of these progressions, the same in both, and if one arranges them, for example, in a way that the largest term be equal and at the same place in both; one will see that by omitting from each the multiples of 3, 5, 7, etc., up to a certain prime number 1625:− 1, as all of the first are sums of two squares, but the latter are thoroughly excluded from this property: reciprocal series formed from both classes, namely: 1/5 + 1/13 + 1/17 + 1/29 + etc. and 1/3 + 1/7 + 1/11 + 1/19 + 1/23 + etc. will both be equally infinite, which likewise is to be had from all types of prime numbers. Thus, if there be chosen from the prime numbers only those that are of the form 100n + 1, of which kind are 101, 401, 601, 701, etc., not only the set of these is infinite, but likewise the sum of the series formed from that , namely: 1/101 + 1/401 + 1/601 + 1/701 + 1/1201 + 1/1301 + 1/1601 + 1/1801 + 1/1901 + etc. likewise is infinite.) 1737:"Soit donnée une progression arithmétique quelconque A − C, 2A − C, 3A − C, etc., dans laquelle A et C sont premiers entre eux; soit donnée aussi une suite θ, λ, μ … ψ, ω, composée de k nombres premiers impairs, pris à volonté et disposés dans un order quelconque; si on appelle en général π le z terme de la suite naturelle des nombres premiers 3, 5, 7, 11, etc., je dis que sur π termes consécutifs de la progression proposée, il y en aura au moins un qui ne sera divisible par aucun des nombres premiers θ, λ, μ … ψ, ω." 2159: 1694:"XIX. … En général, a étant un nombre donné quelconque, tout nombres impair peut être représenté par la formule 4ax ± b, dans laquelle b est impair et moindre que 2a. Si parmi tous les valeurs possibles de b on retranche celles qui ont un commun diviseur avec a, les formes restantes 4ax ± b comprendront tous les nombres premiers partagé, … " 420: 1599:"Quoniam porro numeri primi praeter binarium quasi a natura in duas classes distinguuntur, prouti fuerint vel formae 4n + 1, vel formae 4n − 1, dum priores omnes sunt summae duorum quadratorum, posteriores vero ab hac proprietate penitus excluduntur: series reciprocae ex utraque classes formatae, scillicet: 1779:
term of the natural series of prime numbers 3, 5, 7, 11, etc., I claim that among the π consecutive terms of the proposed progression, there will be at least one of them that will not be divisible by any of the prime numbers θ, λ, μ … ψ, ω.) This assertion was proven false in 1858 by Anthanase Louis
1608:
ambae erunt pariter infinitae, id quod etiam de omnibus speciebus numerorum primorum est tenendum. Ita si ex numeris primis ii tantum excerpantur, qui sunt formae 100n + 1, cuiusmodi sunt 101, 401, 601, 701, etc., non solum multitudo eorum est infinita, sed etiam summa huius seriei ex illis
1869:
denotes a variable, surely prime numbers are contained — seems difficult enough, and incidentally, he points out a method that could perhaps lead to it; however, many preliminary and necessary investigations are seen by us before this may indeed reach the path to a rigorous
197:
of the prime numbers in the progression diverges and that different such arithmetic progressions with the same modulus have approximately the same proportions of primes. Equivalently, the primes are evenly distributed (asymptotically) among the congruence classes modulo
1846:
indefinitum, certo contineri numeros primos, satis difficilem videri, methodumque obiter addigitat, quae forsan illuc conducere possit; multae vero disquisitiones praeliminares necessariae nobis videntur, antequam hacce quidem via ad demonstrationem rigorosam pervenire
275: 1671:, il doit rester des deux côtés le même nombre de termes, ou même il en restera moins dans la progression 1, 3, 5, 7, &c. Mais comme dans celle-ci, il reste nécessairement des nombres premiers, il en doit rester aussi dans l'autre." 1681:, there should remain in both the same number of terms, or even there will remain fewer of them in the progression 1, 3, 5, 7, etc. But as in this , there necessarily remain prime numbers, there shall also remain some in the other .) 1985:[Proof of the theorem that every unbounded arithmetic progression, whose first term and common difference are integers without common factors, contains infinitely many prime numbers], 184: 797:, the same must be true for the primes in arithmetic progressions. It is natural to ask about the way the primes are shared between the various arithmetic progressions for a given value of 1983:"Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält" 1171: 914: 2205: 1063: 997: 415:{\displaystyle {\frac {1}{3}}+{\frac {1}{7}}+{\frac {1}{11}}+{\frac {1}{19}}+{\frac {1}{23}}+{\frac {1}{31}}+{\frac {1}{43}}+{\frac {1}{47}}+{\frac {1}{59}}+{\frac {1}{67}}+\cdots } 1581:+ 1 signum negativum" (On the sum of series of prime numbers arranged 1/3 − 1/5 + 1/7 + 1/11 − 1/13 − 1/17 + 1/19 + 1/23 − 1/29 + 1/31 etc., where the prime numbers of the form 4 1221: 468: + 2 except for the only even prime 2. The following table lists several arithmetic progressions with infinitely many primes and the first few ones in each of them. 864: 1286:, and that the ratio is infinite. In 1775, Euler stated the theorem for the cases of a + nd, where a = 1. This special case of Dirichlet's theorem can be proven using 1272: 1087: 1233:
When compared to each other, progressions with a quadratic nonresidue remainder have typically slightly more elements than those with a quadratic residue remainder (
265:
0, 1, 2, 4, 5, 7, 10, 11, 14, 16, 17, 19, 20, 25, 26, 31, 32, 34, 37, 40, 41, 44, 47, 49, 52, 55, 56, 59, 62, 65, 67, 70, 76, 77, 82, 86, 89, 91, 94, 95, ...
1573:
Leonhard Euler, "De summa seriei ex numeris primis formatae 1/3 − 1/5 + 1/7 + 1/11 − 1/13 − 1/17 + 1/19 + 1/23 − 1/29 + 1/31 etc. ubi numeri primi formae 4
484: 258: 236: 243:
3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, ...
193:
that there are infinitely many prime numbers. Stronger forms of Dirichlet's theorem state that for any such arithmetic progression, the sum of the
2191: 2286: 1923: 1478:
Shiu showed that any arithmetic progression satisfying the hypothesis of Dirichlet's theorem will in fact contain arbitrarily long runs of
1506: 1617:(Since, further, prime numbers larger than two are divided as if by Nature into two classes, according as they were either of the form 4 2240: 2099: 2014: 2198: 1491: 1431: 1245:
In 1737, Euler related the study of prime numbers to what is known now as the Riemann zeta function: he showed that the value
2214: 2177: 1978: 1309: 214: 2291: 2087: 1378:) can be proven by analyzing the splitting behavior of primes in cyclotomic extensions, without making use of calculus ( 1496: 1394:
generalizes Dirichlet's theorem to higher-degree polynomials. Whether or not even simple quadratic polynomials such as
103: 1304: 1501: 1440:(1944) concerns the size of the smallest prime in a given arithmetic progression. Linnik proved that the progression 826: 1420: 1093: 875: 444:
are often ignored because half the numbers are even and the other half is the same numbers as a sequence with 2
189:
and Dirichlet's theorem states that this sequence contains infinitely many prime numbers. The theorem extends
2167:
There are infinitely many prime numbers in all arithmetic progressions with first term and difference coprime
1821: 1423:
generalizes these two conjectures, i.e. generalizes to more than one polynomial with degree larger than one.
1427: 1413: 1359: 1003: 937: 2225: 1391: 1363: 1329: 194: 95: 1511: 2255: 2045: 2003:
Algebraic number theory. Translated from the 1992 German original and with a note by Norbert Schappacher
1325: 1295: 1291: 1287: 1982: 1179: 1658: 1650: 1402: 1355: 1299: 794: 788: 834: 2230: 1437: 1234: 190: 73: 1689: 17: 2265: 2141: 2062: 1317: 80: 2043:(1949), "An elementary proof of Dirichlet's theorem about primes in an arithmetic progression", 1998: 1248: 2260: 2235: 2095: 2010: 1949: 1919: 1732: 1594: 1562: 1546: 1532: 1069: 1801: 2245: 2133: 2117: 2105: 2070: 2054: 2028: 1937: 1889: 1788: 1655:
Histoire de l'Académie royale des sciences, avec les mémoires de mathématique et de physique
1472: 1343: 426: 2024: 1933: 2109: 2091: 2074: 2032: 2020: 2006: 1941: 1929: 1775:
odd prime numbers, taken at will and arranged in any order; if one calls in general π the
1771:
are prime among themselves ; let there be given also a series θ, λ, μ … ψ, ω composed of
1593:(St. Petersburg, Russia: Imperial Academy of Sciences, 1785), vol. 2, pp. 240–256; 2173: 1952: 1911: 1849:(The illustrious Le Gendre himself admits the proof of the theorem — among the form 72:
is also a positive integer. In other words, there are infinitely many primes that are
2280: 31: 2145: 809:
their terms). The answer is given in this form: the number of feasible progressions
2121: 2040: 1406: 1335: 57: 39: 2183: 1612:
1/101 + 1/401 + 1/601 + 1/701 + 1/1201 + 1/1301 + 1/1601 + 1/1801 + 1/1901 + etc.
1971: 1471:
An analogue of Dirichlet's theorem holds in the framework of dynamical systems (
1328:
to the distribution of primes. The theorem represents the beginning of rigorous
1987:
Abhandlungen der Königlichen Preußischen Akademie der Wissenschaften zu Berlin
1893: 806: 1967: 1957: 1918:, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, 1452:
ranges through the positive integers) contains a prime of magnitude at most
789:
Prime number theorem § Prime number theorem for arithmetic progressions
1798:
The Development of Prime Number Theory: From Euclid to Hardy and Littlewood
1826:"Ill. Le Gendre ipse fatetur, demonstrationem theorematis, sub tali forma 1700:
being any given number, all odd numbers can be represented by the formula
1362:) at 1 is nonzero. The proof of this statement requires some calculus and 2005:, Grundlehren der Mathematischen Wissenschaften , vol. 322, Berlin: 805:
of those, essentially, if we do not distinguish two progressions sharing
2137: 2066: 46: 43: 1790:
Examen d'une proposition de Legendre relative à la théorie des nombres
1374:= 1 (i.e., concerning the primes that are congruent to 1 modulo some 2058: 1561:(Washington, D.C.: The Mathematical Association of America, 2007), 2164: 1820:(Leipzig, (Germany): Gerhard Fleischer, Jr., 1801), Section 297, 2187: 1354:
Dirichlet's theorem is proved by showing that the value of the
793:
Since the primes thin out, on average, in accordance with the
1416:
generalizes Dirichlet's theorem to more than one polynomial.
1324:. The proof is modeled on Euler's earlier work relating the 1537:
Commentarii Academiae Scientiarum Imperialis Petropolitanae
1290:. The general form of the theorem was first conjectured by 825:
do not have a common factor > 1 — is given by
774: 757: 740: 723: 706: 689: 672: 655: 638: 621: 604: 587: 570: 553: 536: 519: 502: 253: 231: 1968:"Dirichlet's Theorem on Primes in Arithmetic Progressions" 27:
Theorem on the number of primes in arithmetic sequences
2170:
English translation of the original paper at the arXiv
1880:
Shiu, D. K. L. (2000). "Strings of congruent primes".
1535:[Various observations about infinite series]. 1405:) attain infinitely many prime values is an important 869:
Further, the proportion of primes in each of those is
1251: 1182: 1096: 1072: 1006: 940: 878: 837: 278: 106: 269:
The strong form of Dirichlet's theorem implies that
213:
The theorem is named after the German mathematician
1716:one removes those that have a common divisor with 1266: 1215: 1165: 1081: 1057: 991: 908: 858: 414: 178: 179:{\displaystyle a,\ a+d,\ a+2d,\ a+3d,\ \dots ,\ } 1865:denote given integers prime among themselves 1585:− 1 have a positive sign, whereas of the form 4 720:13, 37, 61, 73, 97, 109, 157, 181, 193, 229, ... 1739:(Let there be given any arithmetic progression 1653:(Investigations of interdeterminate analysis), 1274:reduces to a ratio of two infinite products, Π 771:11, 23, 47, 59, 71, 83, 107, 131, 167, 179, ... 2251:Dirichlet's theorem on arithmetic progressions 1688:(Paris, France: Duprat, 1798), Introduction, 754:7, 19, 31, 43, 67, 79, 103, 127, 139, 151, ... 737:5, 17, 29, 41, 53, 89, 101, 113, 137, 149, ... 703:19, 29, 59, 79, 89, 109, 139, 149, 179, 199, … 652:11, 31, 41, 61, 71, 101, 131, 151, 181, 191, … 584:17, 41, 73, 89, 97, 113, 137, 193, 233, 241, … 2199: 2090:, vol. 7, New York; Heidelberg; Berlin: 1533:"Variae observationes circa series infinitas" 8: 1731:, 2nd ed. (Paris, France: Courcier, 1808), 1166:{\displaystyle q+q-1,2q+q-1,3q+q-1,\dots \ } 686:7, 17, 37, 47, 67, 97, 107, 127, 137, 157, … 635:7, 23, 31, 47, 71, 79, 103, 127, 151, 167, … 618:5, 13, 29, 37, 53, 61, 101, 109, 149, 157, … 456: + 1 produces the same primes as 3 1589:+ 1 a negative sign.) in: Leonhard Euler, 1577:− 1 habent signum positivum, formae autem 4 909:{\displaystyle {\frac {1}{\varphi (d)}}.\ } 669:3, 13, 23, 43, 53, 73, 83, 103, 113, 163, … 601:3, 11, 19, 43, 59, 67, 83, 107, 131, 139, … 247:They correspond to the following values of 2206: 2192: 2184: 42:theorem, states that for any two positive 1793:(Paris, France: Mallet-Bachelier, 1859). 1313: 1250: 1181: 1095: 1071: 1005: 939: 879: 877: 836: 396: 383: 370: 357: 344: 331: 318: 305: 292: 279: 277: 105: 1724:include all prime numbers among them … ) 1634: 1379: 1294:in his attempted unsuccessful proofs of 567:5, 11, 17, 23, 29, 41, 47, 53, 59, 71, … 550:7, 13, 19, 31, 37, 43, 61, 67, 73, 79, … 516:5, 13, 17, 29, 37, 41, 53, 61, 73, 89, … 470: 1559:The Early Mathematics of Leonhard Euler 1523: 1339: 533:3, 7, 11, 19, 23, 31, 43, 47, 59, 67, … 1916:Introduction to analytic number theory 1464:. Subsequent researchers have reduced 1058:{\displaystyle q+2,2q+2,3q+2,\dots \ } 992:{\displaystyle q+1,2q+1,3q+1,\dots \ } 499:3, 5, 7, 11, 13, 17, 19, 23, 29, 31, … 2160:Scans of the original paper in German 1605:1/3 + 1/7 + 1/11 + 1/19 + 1/23 + etc. 1430:, Dirichlet's theorem generalizes to 1367: 464: + 5 produces the same as 3 7: 1800:(Berlin, Germany: Springer, 2000); 2122:"Closed orbits in homology classes" 1712:. If among all possible values of 1651:"Recherches d'analyse indéterminée" 2241:Dirichlet-multinomial distribution 1602:1/5 + 1/13 + 1/17 + 1/29 + etc. et 481:First 10 of infinitely many primes 25: 18:Dirichlet's theorem on primes 1507:Dirichlet's approximation theorem 1729:Essai sur la Théorie des Nombres 1686:Essai sur la Théorie des Nombres 1216:{\displaystyle q,2q,3q,\dots \ } 1842:numeros inter se primos datos, 1230: − 1) of the primes. 2215:Peter Gustav Lejeune Dirichlet 2178:Wolfram Demonstrations Project 1261: 1255: 894: 888: 859:{\displaystyle \varphi (d).\ } 847: 841: 452: = 0. For example, 6 215:Peter Gustav Lejeune Dirichlet 1: 2088:Graduate Texts in Mathematics 2287:Theorems about prime numbers 1432:Chebotarev's density theorem 931: − 1 progressions 56:, there are infinitely many 38:, also called the Dirichlet 2120:; Katsuda, Atsushi (1990), 2082:Serre, Jean-Pierre (1973), 1818:Disquisitiones arithmeticae 1659:see especially p. 552. 1492:Bombieri–Vinogradov theorem 1305:Disquisitiones Arithmeticae 2308: 1802:see especially p. 50. 1547:Theorema 7 on pp. 172–174. 786: 86:. The numbers of the form 2221: 1894:10.1112/s0024610799007863 1720:, the remaining formulas 1267:{\displaystyle \zeta (1)} 1226:contains a proportion 1/( 217:, who proved it in 1837. 1780:Dupré (1808–1869). See: 1531:Euler, Leonhard (1737). 1082:{\displaystyle \dots \ } 827:Euler's totient function 225:The primes of the form 4 1796:Narkiewicz, Władysław, 1497:Brun–Titchmarsh theorem 1475:and A. Katsuda, 1990). 1456:for absolute constants 1428:algebraic number theory 1421:Schinzel's hypothesis H 1403:Landau's fourth problem 1370:). The particular case 1308:— but it was proved by 460: + 1, while 6 2226:Dirichlet distribution 2084:A course in arithmetic 1816:Carl Friedrich Gauss, 1502:Siegel–Walfisz theorem 1392:Bunyakovsky conjecture 1364:analytic number theory 1330:analytic number theory 1288:cyclotomic polynomials 1268: 1217: 1167: 1083: 1059: 993: 910: 860: 416: 180: 96:arithmetic progression 2256:Dirichlet convolution 2046:Annals of Mathematics 1953:"Dirichlet's Theorem" 1708:is odd and less than 1621:+ 1, or of the form 4 1557:Sandifer, C. Edward, 1326:Riemann zeta function 1296:quadratic reciprocity 1269: 1218: 1168: 1084: 1060: 994: 911: 861: 417: 181: 2292:Zeta and L-functions 1696:(XIX. … In general, 1657:, pp. 465–559; 1637:, §I.10, Exercise 1. 1615:etiam est infinita." 1609:formatae, scillicet: 1414:Dickson's conjecture 1356:Dirichlet L-function 1282:–1), for all primes 1249: 1180: 1094: 1070: 1004: 938: 876: 835: 795:prime number theorem 276: 104: 2231:Dirichlet character 2176:by Jay Warendorff, 2174:Dirichlet's Theorem 1979:Dirichlet, P. G. L. 1882:J. London Math. Soc 1824:From pp. 507–508: 1735:From p. 404: 1661:From p. 552: 1597:From p. 241: 472: 448:, if we start with 36:Dirichlet's theorem 2266:Dirichlet integral 2138:10.1007/BF02699875 1950:Weisstein, Eric W. 1692:From p. 12: 1591:Opuscula analytica 1358:(of a non-trivial 1264: 1213: 1163: 1079: 1055: 989: 923:is a prime number 906: 856: 471: 412: 229:+ 3 are (sequence 176: 2274: 2273: 2261:Dirichlet problem 2236:Dirichlet process 2118:Sunada, Toshikazu 1925:978-0-387-90163-3 1787:Dupré, A. (1859) 1763:, etc., in which 1649:Le Gendre (1785) 1512:Green–Tao theorem 1212: 1162: 1078: 1054: 988: 905: 898: 855: 780: 779: 404: 391: 378: 365: 352: 339: 326: 313: 300: 287: 175: 166: 148: 130: 115: 16:(Redirected from 2299: 2246:Dirichlet series 2208: 2201: 2194: 2185: 2148: 2126:Publ. Math. IHÉS 2112: 2077: 2035: 1999:Neukirch, Jürgen 1994: 1966:Chris Caldwell, 1963: 1962: 1944: 1898: 1897: 1877: 1871: 1834:, designantibus 1814: 1808: 1727:A. M. Legendre, 1684:A. M. Legendre, 1644: 1638: 1632: 1626: 1595:see p. 241. 1571: 1565: 1555: 1549: 1545:; specifically, 1544: 1528: 1438:Linnik's theorem 1400: 1344:elementary proof 1336:Atle Selberg 1273: 1271: 1270: 1265: 1235:Chebyshev's bias 1222: 1220: 1219: 1214: 1210: 1172: 1170: 1169: 1164: 1160: 1088: 1086: 1085: 1080: 1076: 1064: 1062: 1061: 1056: 1052: 998: 996: 995: 990: 986: 919:For example, if 915: 913: 912: 907: 903: 899: 897: 880: 865: 863: 862: 857: 853: 473: 427:divergent series 421: 419: 418: 413: 405: 397: 392: 384: 379: 371: 366: 358: 353: 345: 340: 332: 327: 319: 314: 306: 301: 293: 288: 280: 256: 234: 191:Euclid's theorem 185: 183: 182: 177: 173: 164: 146: 128: 113: 21: 2307: 2306: 2302: 2301: 2300: 2298: 2297: 2296: 2277: 2276: 2275: 2270: 2217: 2212: 2156: 2116: 2102: 2092:Springer-Verlag 2081: 2059:10.2307/1969454 2039: 2017: 2007:Springer-Verlag 1997: 1977: 1948: 1947: 1926: 1912:Apostol, Tom M. 1910: 1907: 1902: 1901: 1879: 1878: 1874: 1815: 1811: 1645: 1641: 1635:Neukirch (1999) 1633: 1629: 1572: 1568: 1556: 1552: 1530: 1529: 1525: 1520: 1488: 1482:prime numbers. 1395: 1388: 1386:Generalizations 1352: 1247: 1246: 1243: 1178: 1177: 1092: 1091: 1068: 1067: 1002: 1001: 936: 935: 884: 874: 873: 833: 832: 791: 785: 477: 274: 273: 252: 230: 223: 102: 101: 28: 23: 22: 15: 12: 11: 5: 2305: 2303: 2295: 2294: 2289: 2279: 2278: 2272: 2271: 2269: 2268: 2263: 2258: 2253: 2248: 2243: 2238: 2233: 2228: 2222: 2219: 2218: 2213: 2211: 2210: 2203: 2196: 2188: 2182: 2181: 2171: 2162: 2155: 2154:External links 2152: 2151: 2150: 2114: 2100: 2079: 2053:(2): 297–304, 2037: 2015: 1995: 1975: 1964: 1945: 1924: 1906: 1903: 1900: 1899: 1888:(2): 359–373. 1872: 1809: 1807: 1806: 1805: 1804: 1794: 1782: 1781: 1725: 1690:pp. 9–16. 1682: 1639: 1627: 1566: 1550: 1522: 1521: 1519: 1516: 1515: 1514: 1509: 1504: 1499: 1494: 1487: 1484: 1387: 1384: 1351: 1348: 1263: 1260: 1257: 1254: 1242: 1239: 1209: 1206: 1203: 1200: 1197: 1194: 1191: 1188: 1185: 1174: 1173: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1135: 1132: 1129: 1126: 1123: 1120: 1117: 1114: 1111: 1108: 1105: 1102: 1099: 1089: 1075: 1065: 1051: 1048: 1045: 1042: 1039: 1036: 1033: 1030: 1027: 1024: 1021: 1018: 1015: 1012: 1009: 999: 985: 982: 979: 976: 973: 970: 967: 964: 961: 958: 955: 952: 949: 946: 943: 927:, each of the 917: 916: 902: 896: 893: 890: 887: 883: 867: 866: 852: 849: 846: 843: 840: 817:— those where 784: 781: 778: 777: 772: 769: 761: 760: 755: 752: 744: 743: 738: 735: 727: 726: 721: 718: 710: 709: 704: 701: 693: 692: 687: 684: 676: 675: 670: 667: 659: 658: 653: 650: 642: 641: 636: 633: 625: 624: 619: 616: 608: 607: 602: 599: 591: 590: 585: 582: 574: 573: 568: 565: 557: 556: 551: 548: 540: 539: 534: 531: 523: 522: 517: 514: 506: 505: 500: 497: 489: 488: 482: 479: 423: 422: 411: 408: 403: 400: 395: 390: 387: 382: 377: 374: 369: 364: 361: 356: 351: 348: 343: 338: 335: 330: 325: 322: 317: 312: 309: 304: 299: 296: 291: 286: 283: 267: 266: 245: 244: 222: 219: 187: 186: 172: 169: 163: 160: 157: 154: 151: 145: 142: 139: 136: 133: 127: 124: 121: 118: 112: 109: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2304: 2293: 2290: 2288: 2285: 2284: 2282: 2267: 2264: 2262: 2259: 2257: 2254: 2252: 2249: 2247: 2244: 2242: 2239: 2237: 2234: 2232: 2229: 2227: 2224: 2223: 2220: 2216: 2209: 2204: 2202: 2197: 2195: 2190: 2189: 2186: 2179: 2175: 2172: 2169: 2168: 2163: 2161: 2158: 2157: 2153: 2147: 2143: 2139: 2135: 2131: 2127: 2123: 2119: 2115: 2111: 2107: 2103: 2101:3-540-90040-3 2097: 2093: 2089: 2085: 2080: 2076: 2072: 2068: 2064: 2060: 2056: 2052: 2048: 2047: 2042: 2041:Selberg, Atle 2038: 2034: 2030: 2026: 2022: 2018: 2016:3-540-65399-6 2012: 2008: 2004: 2000: 1996: 1992: 1988: 1984: 1980: 1976: 1973: 1969: 1965: 1960: 1959: 1954: 1951: 1946: 1943: 1939: 1935: 1931: 1927: 1921: 1917: 1913: 1909: 1908: 1904: 1895: 1891: 1887: 1883: 1876: 1873: 1868: 1864: 1860: 1856: 1852: 1848: 1843: 1839: 1835: 1831: 1827: 1823: 1819: 1813: 1810: 1803: 1799: 1795: 1792: 1791: 1786: 1785: 1784: 1783: 1778: 1774: 1770: 1766: 1762: 1758: 1754: 1750: 1746: 1742: 1738: 1734: 1730: 1726: 1723: 1719: 1715: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1683: 1680: 1676: 1672: 1668: 1664: 1660: 1656: 1652: 1648: 1647: 1643: 1640: 1636: 1631: 1628: 1624: 1620: 1616: 1613: 1610: 1606: 1603: 1600: 1596: 1592: 1588: 1584: 1580: 1576: 1570: 1567: 1564: 1560: 1554: 1551: 1548: 1542: 1538: 1534: 1527: 1524: 1517: 1513: 1510: 1508: 1505: 1503: 1500: 1498: 1495: 1493: 1490: 1489: 1485: 1483: 1481: 1476: 1474: 1469: 1467: 1463: 1459: 1455: 1451: 1447: 1444: +  1443: 1439: 1435: 1433: 1429: 1424: 1422: 1417: 1415: 1410: 1408: 1404: 1398: 1393: 1385: 1383: 1381: 1380:Neukirch 1999 1377: 1373: 1369: 1365: 1361: 1357: 1349: 1347: 1345: 1341: 1337: 1333: 1331: 1327: 1323: 1321: 1315: 1311: 1307: 1306: 1302:noted in his 1301: 1297: 1293: 1289: 1285: 1281: 1277: 1258: 1252: 1240: 1238: 1236: 1231: 1229: 1224: 1207: 1204: 1201: 1198: 1195: 1192: 1189: 1186: 1183: 1157: 1154: 1151: 1148: 1145: 1142: 1139: 1136: 1133: 1130: 1127: 1124: 1121: 1118: 1115: 1112: 1109: 1106: 1103: 1100: 1097: 1090: 1073: 1066: 1049: 1046: 1043: 1040: 1037: 1034: 1031: 1028: 1025: 1022: 1019: 1016: 1013: 1010: 1007: 1000: 983: 980: 977: 974: 971: 968: 965: 962: 959: 956: 953: 950: 947: 944: 941: 934: 933: 932: 930: 926: 922: 900: 891: 885: 881: 872: 871: 870: 850: 844: 838: 831: 830: 829: 828: 824: 820: 816: 812: 808: 804: 800: 796: 790: 782: 776: 773: 770: 767: 763: 762: 759: 756: 753: 750: 746: 745: 742: 739: 736: 733: 729: 728: 725: 722: 719: 716: 712: 711: 708: 705: 702: 699: 695: 694: 691: 688: 685: 682: 678: 677: 674: 671: 668: 665: 661: 660: 657: 654: 651: 648: 644: 643: 640: 637: 634: 631: 627: 626: 623: 620: 617: 614: 610: 609: 606: 603: 600: 597: 593: 592: 589: 586: 583: 580: 576: 575: 572: 569: 566: 563: 559: 558: 555: 552: 549: 546: 542: 541: 538: 535: 532: 529: 525: 524: 521: 518: 515: 512: 508: 507: 504: 501: 498: 495: 491: 490: 486: 483: 480: 475: 474: 469: 467: 463: 459: 455: 451: 447: 443: 439: 436: +  435: 430: 428: 409: 406: 401: 398: 393: 388: 385: 380: 375: 372: 367: 362: 359: 354: 349: 346: 341: 336: 333: 328: 323: 320: 315: 310: 307: 302: 297: 294: 289: 284: 281: 272: 271: 270: 264: 263: 262: 260: 255: 250: 242: 241: 240: 238: 233: 228: 220: 218: 216: 211: 209: 206:s coprime to 205: 201: 196: 192: 170: 167: 161: 158: 155: 152: 149: 143: 140: 137: 134: 131: 125: 122: 119: 116: 110: 107: 100: 99: 98: 97: 93: 90: +  89: 85: 82: 79: 75: 71: 67: 64: +  63: 59: 55: 51: 48: 45: 41: 37: 33: 32:number theory 19: 2250: 2166: 2129: 2125: 2083: 2050: 2044: 2002: 1990: 1986: 1956: 1915: 1885: 1881: 1875: 1866: 1862: 1858: 1854: 1850: 1845: 1841: 1837: 1833: 1829: 1825: 1822:pp. 507–508. 1817: 1812: 1797: 1789: 1776: 1772: 1768: 1764: 1760: 1756: 1752: 1748: 1744: 1740: 1736: 1733:p. 404. 1728: 1721: 1717: 1713: 1709: 1705: 1701: 1697: 1693: 1685: 1678: 1674: 1670: 1666: 1662: 1654: 1642: 1630: 1622: 1618: 1614: 1611: 1607: 1604: 1601: 1598: 1590: 1586: 1582: 1578: 1574: 1569: 1563:p. 253. 1558: 1553: 1540: 1536: 1526: 1479: 1477: 1470: 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1436: 1425: 1418: 1411: 1407:open problem 1401:(known from 1396: 1389: 1375: 1371: 1353: 1334: 1319: 1303: 1283: 1279: 1275: 1244: 1232: 1227: 1225: 1176:(all except 1175: 928: 924: 920: 918: 868: 822: 818: 814: 810: 802: 798: 792: 783:Distribution 765: 748: 731: 714: 697: 680: 663: 646: 629: 612: 595: 578: 561: 544: 527: 510: 493: 465: 461: 457: 453: 449: 445: 441: 437: 433: 431: 424: 268: 251:: (sequence 248: 246: 226: 224: 212: 207: 203: 199: 188: 91: 87: 83: 77: 69: 65: 61: 60:of the form 53: 49: 40:prime number 35: 29: 2165:Dirichlet: 1972:Prime Pages 1704:, in which 1480:consecutive 1382:, §VII.6). 801:(there are 478:progression 202:containing 195:reciprocals 2281:Categories 2110:0256.12001 2075:0036.30603 2033:0956.11021 1942:0335.10001 1905:References 1543:: 160–188. 1368:Serre 1973 1342:) gave an 1318:Dirichlet 807:almost all 787:See also: 476:Arithmetic 432:Sequences 1958:MathWorld 1473:T. Sunada 1360:character 1310:Dirichlet 1253:ζ 1208:… 1158:… 1149:− 1128:− 1107:− 1074:… 1050:… 984:… 886:φ 839:φ 487:sequence 440:with odd 410:⋯ 168:… 74:congruent 52:and  2146:26251216 2132:: 5–32, 2001:(1999), 1981:(1837), 1914:(1976), 1847:liceat." 1665:Remarque 1486:See also 1292:Legendre 221:Examples 94:form an 68:, where 47:integers 2067:1969454 2025:1697859 1993:: 45–71 1970:at the 1934:0434929 1870:proof.) 1722:4ax ± b 1702:4ax ± b 1338: ( 1322:-series 1316:) with 1312: ( 1241:History 775:A068231 758:A068229 741:A040117 724:A068228 707:A030433 690:A030432 673:A030431 656:A030430 639:A007522 622:A007521 605:A007520 588:A007519 571:A007528 554:A002476 537:A002145 520:A002144 503:A065091 257:in the 254:A095278 235:in the 232:A002145 44:coprime 2144:  2108:  2098:  2073:  2065:  2031:  2023:  2013:  1940:  1932:  1922:  1675:Remark 1663:"34. 1468:to 5. 1211:  1161:  1077:  1053:  987:  904:  854:  813:  811:modulo 174:  165:  147:  129:  114:  81:modulo 58:primes 2142:S2CID 2063:JSTOR 1673:(34. 1646:See: 1518:Notes 1350:Proof 1300:Gauss 1298:— as 1278:/ Π ( 425:is a 2096:ISBN 2011:ISBN 1920:ISBN 1861:and 1767:and 1460:and 1448:(as 1419:The 1412:The 1390:The 1340:1949 1314:1837 821:and 768:+ 11 485:OEIS 259:OEIS 237:OEIS 2134:doi 2106:Zbl 2071:Zbl 2055:doi 2029:Zbl 1938:Zbl 1890:doi 1857:, 1755:, 3 1747:, 2 1426:In 1399:+ 1 1237:). 751:+ 7 734:+ 5 717:+ 1 700:+ 9 683:+ 7 666:+ 3 649:+ 1 632:+ 7 615:+ 5 598:+ 3 581:+ 1 564:+ 5 547:+ 1 530:+ 3 513:+ 1 496:+ 1 210:. 76:to 30:In 2283:: 2140:, 2130:71 2128:, 2124:, 2104:, 2094:, 2086:, 2069:, 2061:, 2051:50 2049:, 2027:, 2021:MR 2019:, 2009:, 1991:48 1989:, 1955:. 1936:, 1930:MR 1928:, 1886:61 1884:. 1853:+ 1851:kt 1838:, 1830:+ 1828:kt 1759:− 1751:− 1743:− 1710:2a 1539:. 1454:cd 1446:nd 1434:. 1409:. 1346:. 1332:. 1223:) 764:12 747:12 730:12 713:12 696:10 679:10 662:10 645:10 434:dn 429:. 402:67 389:59 376:47 363:43 350:31 337:23 324:19 311:11 261:) 239:) 204:a' 92:nd 66:nd 34:, 2207:e 2200:t 2193:v 2180:. 2149:. 2136:: 2113:. 2078:. 2057:: 2036:. 1974:. 1961:. 1896:. 1892:: 1867:t 1863:l 1859:k 1855:l 1844:t 1840:l 1836:k 1832:l 1777:z 1773:k 1769:C 1765:A 1761:C 1757:A 1753:C 1749:A 1745:C 1741:A 1718:a 1714:b 1706:b 1698:a 1679:p 1669:p 1623:n 1619:n 1587:n 1583:n 1579:n 1575:n 1541:9 1466:L 1462:L 1458:c 1450:n 1442:a 1397:x 1376:n 1372:a 1366:( 1320:L 1284:p 1280:p 1276:p 1262:) 1259:1 1256:( 1228:q 1205:, 1202:q 1199:3 1196:, 1193:q 1190:2 1187:, 1184:q 1155:, 1152:1 1146:q 1143:+ 1140:q 1137:3 1134:, 1131:1 1125:q 1122:+ 1119:q 1116:2 1113:, 1110:1 1104:q 1101:+ 1098:q 1047:, 1044:2 1041:+ 1038:q 1035:3 1032:, 1029:2 1026:+ 1023:q 1020:2 1017:, 1014:2 1011:+ 1008:q 981:, 978:1 975:+ 972:q 969:3 966:, 963:1 960:+ 957:q 954:2 951:, 948:1 945:+ 942:q 929:q 925:q 921:d 901:. 895:) 892:d 889:( 882:1 851:. 848:) 845:d 842:( 823:d 819:a 815:d 803:d 799:d 766:n 749:n 732:n 715:n 698:n 681:n 664:n 647:n 630:n 628:8 613:n 611:8 596:n 594:8 579:n 577:8 562:n 560:6 545:n 543:6 528:n 526:4 511:n 509:4 494:n 492:2 466:n 462:n 458:n 454:n 450:n 446:d 442:d 438:a 407:+ 399:1 394:+ 386:1 381:+ 373:1 368:+ 360:1 355:+ 347:1 342:+ 334:1 329:+ 321:1 316:+ 308:1 303:+ 298:7 295:1 290:+ 285:3 282:1 249:n 227:n 208:d 200:d 171:, 162:, 159:d 156:3 153:+ 150:a 144:, 141:d 138:2 135:+ 132:a 126:, 123:d 120:+ 117:a 111:, 108:a 88:a 84:d 78:a 70:n 62:a 54:d 50:a 20:)

Index

Dirichlet's theorem on primes
number theory
prime number
coprime
integers
primes
congruent
modulo
arithmetic progression
Euclid's theorem
reciprocals
Peter Gustav Lejeune Dirichlet
A002145
OEIS
A095278
OEIS
divergent series
OEIS
A065091
A002144
A002145
A002476
A007528
A007519
A007520
A007521
A007522
A030430
A030431
A030432

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.