Knowledge (XXG)

Division ring

Source 📝

652:
algorithm remains applicable. The column rank of a matrix is the dimension of the right module generated by the columns, and the row rank is the dimension of the left module generated by the rows; the same proof as for the vector space case can be used to show that these ranks are the same and define
608:
Working in coordinates, elements of a finite-dimensional right module can be represented by column vectors, which can be multiplied on the right by scalars, and on the left by matrices (representing linear maps); for elements of a finite-dimensional left module, row vectors must be used, which can be
1193:
called "fields" in an older usage. In many languages, a word meaning "body" is used for division rings, in some languages designating either commutative or noncommutative division rings, while in others specifically designating commutative division rings (what we now call fields in English). A more
143:, the word equivalent to "field" ("corps") is used for both commutative and noncommutative cases, and the distinction between the two cases is made by adding qualificatives such as "corps commutatif" (commutative field) or "corps gauche" (skew field). 609:
multiplied on the left by scalars, and on the right by matrices. The dual of a right module is a left module, and vice versa. The transpose of a matrix must be viewed as a matrix over the opposite division ring
576:
over a field. Doing so, one must specify whether one is considering right or left modules, and some care is needed in properly distinguishing left and right in formulas. In particular, every module has a
997: 805: 877: 933: 687:
over its center. Division rings can be roughly classified according to whether or not they are finite dimensional or infinite dimensional over their centers. The former are called
1026: 832: 1140: 1048: 489: 1118: 1095: 902: 605:
are not defined over noncommutative division algebras, and everything that requires this concept cannot be generalized to noncommutative division algebras.
1311:
Within the English language area the terms "skew field" and "sfield" were mentioned 1948 by Neal McCoy as "sometimes used in the literature", and since 1965
883:
with complex coefficients, wherein multiplication is defined as follows: instead of simply allowing coefficients to commute directly with the indeterminate
1169: 644:; the fact that linear maps by definition commute with scalar multiplication is most conveniently represented in notation by writing them on the 139:
Historically, division rings were sometimes referred to as fields, while fields were called "commutative fields". In some languages, such as
482: 1489: 1442: 1380: 1390: 1209:
the scope of the base term (here "field"). Thus a field is a particular type of skew field, and not all skew fields are fields.
940: 1153: 129: 1434: 1349: 1073: 774: 507:
All fields are division rings, and every non-field division ring is noncommutative. The best known example is the ring of
475: 344: 1481: 1224: 839: 910: 696: 435: 1428: 637: 578: 47: 39: 1521:
Grillet's Abstract Algebra, section VIII.5's characterization of division rings via their free modules.
1173:: The only finite-dimensional associative division algebras over the reals are the reals themselves, the 880: 593:
need not to be right invertible, and if it is, its right inverse can differ from its left inverse. (See
519:
coefficients in the constructions of the quaternions, one obtains another division ring. In general, if
1003: 1536: 649: 641: 586: 582: 563: 422: 414: 386: 381: 372: 329: 271: 42:
by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element
1212:
While division rings and algebras as discussed here are assumed to have associative multiplication,
1195: 709: 595: 440: 430: 281: 181: 173: 164: 151: 125: 1320: 815: 1515: 657: 246: 237: 195: 35: 1365:
Grillet, Pierre Antoine. Abstract algebra. Vol. 242. Springer Science & Business Media, 2007
1485: 1438: 1240: 1202: 1068: 1055: 590: 546: 1227:
is an algebraic structure similar to a division ring, except that it has only one of the two
1125: 1033: 585:
can be used. So, everything that can be defined with these tools works on division algebras.
1495: 1448: 1228: 1213: 684: 683:
of a division ring is commutative and therefore a field. Every division ring is therefore a
680: 542: 266: 699:
forms a four-dimensional algebra over its center, which is isomorphic to the real numbers.
1499: 1452: 1324: 1058:), then the resulting ring of Laurent series is a noncommutative division ring known as a 761: 640:. Linear maps between finite-dimensional modules over a division ring can be described by 512: 358: 352: 339: 319: 310: 276: 213: 140: 555:
is a division ring; every division ring arises in this fashion from some simple module.
1474: 1174: 1103: 1080: 1051: 887: 559: 400: 1530: 1424: 1076:. This concept can be generalized to the ring of Laurent series over any fixed field 532: 251: 208: 1395: 1385: 1354: 1332: 1158: 808: 573: 460: 391: 225: 133: 757: 673: 633: 602: 516: 450: 445: 334: 324: 298: 291: 147: 1272:
1948, Rings and Ideals. Northampton, Mass., Mathematical Association of America
1328: 1178: 1162: 716: 508: 200: 155: 1480:. Encyclopedia of Mathematics and Its Applications. Vol. 57. Cambridge: 1469: 1297:
Brauer, Richard (1932), "Über die algebraische Struktur von Schiefkörpern",
455: 261: 218: 186: 32: 1520: 1217: 589:
and their products are defined similarly. However, a matrix that is left
256: 760:, is a noncommutative division ring. When this subfield is the field of 20: 190: 132:
asserts that all finite division rings are commutative and therefore
1316: 695:. Every field is one dimensional over its center. The ring of 1157:: All finite division rings are commutative and therefore 992:{\displaystyle z^{i}\alpha :=\sigma ^{i}(\alpha )z^{i}} 1282:
Artin, Emil (1965), Serge Lang; John T. Tate (eds.),
1128: 1106: 1083: 1036: 1006: 943: 913: 890: 842: 818: 777: 636:; that is, it has a basis, and all bases of a module 800:{\displaystyle \sigma :\mathbb {C} \to \mathbb {C} } 1473: 1134: 1112: 1089: 1042: 1020: 991: 927: 896: 871: 826: 799: 101:, but this notation is avoided, as one may have 1299:Journal für die reine und angewandte Mathematik 1194:complete comparison is found in the article on 1476:Skew fields. Theory of general division rings 483: 8: 1516:Proof of Wedderburn's Theorem at Planet Math 596:Generalized inverse § One-sided inverse 562:may be formulated, and remains correct, for 1437:. Vol. 131 (2nd ed.). Springer. 490: 476: 160: 16:Algebraic structure also called skew field 1374:Simple commutative rings are fields. See 1201:The name "skew field" has an interesting 1127: 1105: 1082: 1035: 1014: 1013: 1005: 983: 964: 948: 942: 921: 920: 912: 889: 872:{\displaystyle \mathbb {C} ((z,\sigma ))} 844: 843: 841: 820: 819: 817: 793: 792: 785: 784: 776: 1074:standard multiplication of formal series 666:is a division ring if and only if every 660:over which every module is free: a ring 1252: 928:{\displaystyle \alpha \in \mathbb {C} } 163: 1430:A first course in noncommutative rings 50:, that is, an element usually denoted 632:Every module over a division ring is 503:Relation to fields and linear algebra 7: 719:form a noncommutative division ring. 648:side of vectors as scalars are. The 1406: 1375: 1344: 1323:is documented, as a suggestion by 1205:feature: a modifier (here "skew") 756:belong to a fixed subfield of the 150:. That is, they have no two-sided 14: 1050:is a non-trivial automorphism of 1021:{\displaystyle i\in \mathbb {Z} } 124:A commutative division ring is a 1214:nonassociative division algebras 638:have the same number of elements 764:, this is the division ring of 1259:In this article, rings have a 976: 970: 866: 863: 851: 848: 789: 722:The subset of the quaternions 1: 1435:Graduate Texts in Mathematics 827:{\displaystyle \mathbb {C} } 656:Division rings are the only 1154:Wedderburn's little theorem 130:Wedderburn's little theorem 1553: 1482:Cambridge University Press 1335:as lecture title in 1928. 1381:simple commutative rings 1060:skew Laurent series ring 1135:{\displaystyle \sigma } 1043:{\displaystyle \sigma } 697:Hamiltonian quaternions 146:All division rings are 1220:are also of interest. 1165:gave a simple proof.) 1136: 1114: 1091: 1044: 1022: 993: 929: 898: 873: 828: 801: 653:the rank of a matrix. 615:in order for the rule 48:multiplicative inverse 1137: 1115: 1092: 1072:then it features the 1045: 1023: 994: 930: 899: 881:formal Laurent series 874: 829: 802: 566:over a division ring 511:. If one allows only 1327:, in a 1927 text by 1315:has an entry in the 1286:, New York: Springer 1126: 1104: 1081: 1034: 1004: 941: 911: 888: 840: 816: 775: 766:rational quaternions 708:As noted above, all 650:Gaussian elimination 583:Gaussian elimination 387:Group with operators 330:Complemented lattice 165:Algebraic structures 1099:given a nontrivial 879:denote the ring of 712:are division rings. 441:Composition algebra 201:Quasigroup and loop 1331:, and was used by 1319:. The German term 1132: 1110: 1087: 1040: 1018: 989: 925: 894: 869: 824: 797: 693:centrally infinite 81:may be defined as 1229:distributive laws 1170:Frobenius theorem 1113:{\displaystyle F} 1090:{\displaystyle F} 897:{\displaystyle z} 629:to remain valid. 547:endomorphism ring 500: 499: 1544: 1503: 1479: 1456: 1410: 1404: 1398: 1372: 1366: 1363: 1357: 1342: 1336: 1309: 1303: 1302: 1301:(166.4): 103–252 1294: 1288: 1287: 1284:Collected Papers 1279: 1273: 1270: 1264: 1262: 1257: 1143: 1141: 1139: 1138: 1133: 1121: 1119: 1117: 1116: 1111: 1098: 1096: 1094: 1093: 1088: 1071: 1049: 1047: 1046: 1041: 1029: 1027: 1025: 1024: 1019: 1017: 998: 996: 995: 990: 988: 987: 969: 968: 953: 952: 936: 934: 932: 931: 926: 924: 905: 903: 901: 900: 895: 878: 876: 875: 870: 847: 835: 833: 831: 830: 825: 823: 806: 804: 803: 798: 796: 788: 762:rational numbers 755: 751: 747: 743: 739: 689:centrally finite 685:division algebra 671: 665: 628: 614: 571: 554: 540: 530: 524: 492: 485: 478: 267:Commutative ring 196:Rack and quandle 161: 120: 116: 107: 100: 96: 76: 71: 62: 55: 45: 27:, also called a 1552: 1551: 1547: 1546: 1545: 1543: 1542: 1541: 1527: 1526: 1525: 1511: 1506: 1492: 1468: 1464: 1462:Further reading 1459: 1445: 1423: 1419: 1414: 1413: 1405: 1401: 1373: 1369: 1364: 1360: 1343: 1339: 1325:van der Waerden 1310: 1306: 1296: 1295: 1291: 1281: 1280: 1276: 1271: 1267: 1260: 1258: 1254: 1249: 1237: 1189:Division rings 1187: 1185:Related notions 1175:complex numbers 1150: 1124: 1123: 1122: 1102: 1101: 1100: 1079: 1078: 1077: 1063: 1056:the conjugation 1052:complex numbers 1032: 1031: 1002: 1001: 1000: 999:for each index 979: 960: 944: 939: 938: 909: 908: 907: 886: 885: 884: 838: 837: 814: 813: 812: 773: 772: 753: 749: 745: 741: 723: 705: 691:and the latter 667: 661: 616: 610: 567: 550: 536: 526: 520: 505: 496: 467: 466: 465: 436:Non-associative 418: 407: 406: 396: 376: 365: 364: 353:Map of lattices 349: 345:Boolean algebra 340:Heyting algebra 314: 303: 302: 296: 277:Integral domain 241: 230: 229: 223: 177: 114: 105: 102: 94: 82: 69: 60: 57: 51: 43: 17: 12: 11: 5: 1550: 1548: 1540: 1539: 1529: 1528: 1524: 1523: 1518: 1512: 1510: 1509:External links 1507: 1505: 1504: 1490: 1465: 1463: 1460: 1458: 1457: 1443: 1425:Lam, Tsit-Yuen 1420: 1418: 1415: 1412: 1411: 1399: 1367: 1358: 1337: 1304: 1289: 1274: 1265: 1251: 1250: 1248: 1245: 1244: 1243: 1241:Hua's identity 1236: 1233: 1186: 1183: 1149: 1146: 1145: 1144: 1131: 1109: 1086: 1039: 1016: 1012: 1009: 986: 982: 978: 975: 972: 967: 963: 959: 956: 951: 947: 923: 919: 916: 893: 868: 865: 862: 859: 856: 853: 850: 846: 822: 795: 791: 787: 783: 780: 769: 720: 713: 704: 701: 560:linear algebra 525:is a ring and 504: 501: 498: 497: 495: 494: 487: 480: 472: 469: 468: 464: 463: 458: 453: 448: 443: 438: 433: 427: 426: 425: 419: 413: 412: 409: 408: 405: 404: 401:Linear algebra 395: 394: 389: 384: 378: 377: 371: 370: 367: 366: 363: 362: 359:Lattice theory 355: 348: 347: 342: 337: 332: 327: 322: 316: 315: 309: 308: 305: 304: 295: 294: 289: 284: 279: 274: 269: 264: 259: 254: 249: 243: 242: 236: 235: 232: 231: 222: 221: 216: 211: 205: 204: 203: 198: 193: 184: 178: 172: 171: 168: 167: 77:. So, (right) 15: 13: 10: 9: 6: 4: 3: 2: 1549: 1538: 1535: 1534: 1532: 1522: 1519: 1517: 1514: 1513: 1508: 1501: 1497: 1493: 1491:0-521-43217-0 1487: 1483: 1478: 1477: 1471: 1467: 1466: 1461: 1454: 1450: 1446: 1444:0-387-95183-0 1440: 1436: 1432: 1431: 1426: 1422: 1421: 1416: 1409:, p. 10. 1408: 1403: 1400: 1397: 1393: 1392: 1387: 1383: 1382: 1377: 1371: 1368: 1362: 1359: 1356: 1352: 1351: 1350:Schur's Lemma 1346: 1341: 1338: 1334: 1330: 1326: 1322: 1318: 1314: 1308: 1305: 1300: 1293: 1290: 1285: 1278: 1275: 1269: 1266: 1256: 1253: 1246: 1242: 1239: 1238: 1234: 1232: 1230: 1226: 1221: 1219: 1215: 1210: 1208: 1204: 1199: 1197: 1192: 1184: 1182: 1180: 1176: 1172: 1171: 1166: 1164: 1160: 1159:finite fields 1156: 1155: 1148:Main theorems 1147: 1129: 1120:-automorphism 1107: 1084: 1075: 1070: 1066: 1061: 1057: 1053: 1037: 1010: 1007: 984: 980: 973: 965: 961: 957: 954: 949: 945: 917: 914: 891: 882: 860: 857: 854: 811:of the field 810: 781: 778: 770: 767: 763: 759: 738: 734: 730: 726: 721: 718: 714: 711: 707: 706: 702: 700: 698: 694: 690: 686: 682: 677: 675: 670: 664: 659: 654: 651: 647: 643: 639: 635: 630: 627: 624: 620: 613: 606: 604: 600: 598: 597: 592: 588: 584: 580: 575: 574:vector spaces 570: 565: 561: 556: 553: 548: 544: 543:Schur's lemma 539: 534: 533:simple module 529: 523: 518: 514: 510: 502: 493: 488: 486: 481: 479: 474: 473: 471: 470: 462: 459: 457: 454: 452: 449: 447: 444: 442: 439: 437: 434: 432: 429: 428: 424: 421: 420: 416: 411: 410: 403: 402: 398: 397: 393: 390: 388: 385: 383: 380: 379: 374: 369: 368: 361: 360: 356: 354: 351: 350: 346: 343: 341: 338: 336: 333: 331: 328: 326: 323: 321: 318: 317: 312: 307: 306: 301: 300: 293: 290: 288: 287:Division ring 285: 283: 280: 278: 275: 273: 270: 268: 265: 263: 260: 258: 255: 253: 250: 248: 245: 244: 239: 234: 233: 228: 227: 220: 217: 215: 212: 210: 209:Abelian group 207: 206: 202: 199: 197: 194: 192: 188: 185: 183: 180: 179: 175: 170: 169: 166: 162: 159: 157: 153: 149: 144: 142: 137: 135: 134:finite fields 131: 127: 122: 119: 113: 109: 99: 93: 89: 85: 80: 74: 68: 64: 54: 49: 41: 37: 34: 30: 26: 25:division ring 22: 1475: 1429: 1402: 1396:Google Books 1394:, p. 45, at 1391:exercise 3.4 1389: 1386:Google Books 1384:, p. 39, at 1379: 1370: 1361: 1355:Google Books 1353:, p. 33, at 1348: 1340: 1333:Emmy Noether 1321:Schiefkörper 1312: 1307: 1298: 1292: 1283: 1277: 1268: 1255: 1222: 1216:such as the 1211: 1206: 1200: 1190: 1188: 1168: 1167: 1152: 1151: 1064: 1059: 809:automorphism 765: 758:real numbers 740:, such that 736: 732: 728: 724: 692: 688: 678: 668: 662: 655: 645: 631: 625: 622: 618: 611: 607: 603:Determinants 601: 594: 568: 557: 551: 537: 527: 521: 506: 461:Hopf algebra 399: 392:Vector space 357: 297: 286: 226:Group theory 224: 189: / 158:and itself. 154:besides the 145: 138: 123: 117: 111: 103: 97: 91: 87: 83: 78: 72: 66: 58: 56:, such that 52: 28: 24: 18: 1537:Ring theory 1179:quaternions 717:quaternions 672:-module is 572:instead of 541:, then, by 515:instead of 509:quaternions 446:Lie algebra 431:Associative 335:Total order 325:Semilattice 299:Ring theory 1500:0840.16001 1470:Cohn, P.M. 1453:0980.16001 1417:References 1407:Lam (2001) 1376:Lam (2001) 1345:Lam (2001) 1329:Emil Artin 1225:near-field 1191:used to be 1177:, and the 1163:Ernst Witt 591:invertible 156:zero ideal 33:nontrivial 29:skew field 1313:skewfield 1218:octonions 1130:σ 1054:(such as 1038:σ 1011:∈ 974:α 962:σ 955:α 918:∈ 915:α 861:σ 790:→ 779:σ 456:Bialgebra 262:Near-ring 219:Lie group 187:Semigroup 38:in which 1531:Category 1472:(1995). 1427:(2001). 1235:See also 1203:semantic 703:Examples 646:opposite 642:matrices 587:Matrices 558:Much of 513:rational 292:Lie ring 257:Semiring 79:division 40:division 937:define 564:modules 423:Algebra 415:Algebra 320:Lattice 311:Lattice 115:  106:  95:  70:  61:  31:, is a 21:algebra 1498:  1488:  1451:  1441:  1207:widens 1196:fields 807:be an 752:, and 710:fields 681:center 581:, and 545:, the 451:Graded 382:Module 373:Module 272:Domain 191:Monoid 148:simple 141:French 46:has a 1247:Notes 1062:; if 658:rings 579:basis 535:over 531:is a 417:-like 375:-like 313:-like 282:Field 240:-like 214:Magma 182:Group 176:-like 174:Group 152:ideal 126:field 1486:ISBN 1439:ISBN 1388:and 906:for 836:Let 771:Let 715:The 679:The 674:free 634:free 621:) = 517:real 247:Ring 238:Ring 36:ring 23:, a 1496:Zbl 1449:Zbl 1317:OED 1161:. ( 1030:If 599:.) 549:of 252:Rng 136:. 75:= 1 19:In 1533:: 1494:. 1484:. 1447:. 1433:. 1378:, 1347:, 1231:. 1223:A 1198:. 1181:. 1069:id 1067:= 958::= 748:, 744:, 737:dk 735:+ 733:cj 731:+ 729:bi 727:+ 676:. 619:AB 128:. 121:. 110:≠ 90:= 86:/ 65:= 1502:. 1455:. 1263:. 1261:1 1142:. 1108:F 1097:, 1085:F 1065:σ 1028:. 1015:Z 1008:i 985:i 981:z 977:) 971:( 966:i 950:i 946:z 935:, 922:C 904:, 892:z 867:) 864:) 858:, 855:z 852:( 849:( 845:C 834:. 821:C 794:C 786:C 782:: 768:. 754:d 750:c 746:b 742:a 725:a 669:R 663:R 626:A 623:B 617:( 612:D 569:D 552:S 538:R 528:S 522:R 491:e 484:t 477:v 118:a 112:b 108:b 104:a 98:b 92:a 88:b 84:a 73:a 67:a 63:a 59:a 53:a 44:a

Index

algebra
nontrivial
ring
division
multiplicative inverse
field
Wedderburn's little theorem
finite fields
French
simple
ideal
zero ideal
Algebraic structures
Group
Group
Semigroup
Monoid
Rack and quandle
Quasigroup and loop
Abelian group
Magma
Lie group
Group theory
Ring
Ring
Rng
Semiring
Near-ring
Commutative ring
Domain

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.