Knowledge

Dominance order

Source 📝

20: 1597: 282: 817: 1438: = 6, the partitions and have associated sequences (0,3,4,5,6,6,6) and (0,2,4,6,6,6,6), whose componentwise maximum (0,3,4,6,6,6,6) does not correspond to any partition. To show that any two partitions of 1095: 1425: 1328: 1527: 624: 181: 912: 1251: 995: 1174: 581: 96: 688: 1330:
The componentwise minimum of two nondecreasing concave integer sequences is also nondecreasing and concave. Therefore, for any two partitions of
1002: 1357: 1256: 1464: 1775: 1585: 1726: 1702: 1780: 277:{\displaystyle p\trianglelefteq q{\text{ if and only if }}p_{1}+\cdots +p_{k}\leq q_{1}+\cdots +q_{k}{\text{ for all }}k\geq 1.} 1790: 586: 837: 1540:
in the preceding example, their conjugate partitions are and with meet , which is self-conjugate; therefore, the join of
1218: 933: 1106: 36: 32: 1659:
Similarly, there is a dominance order on the set of standard Young bitableaux, which plays a role in the theory of
540: 76: 24: 304: 1785: 84: 1620:
are certain ways to fill Young diagrams with numbers, and a partial order on them (sometimes called the
1564: 560: 88: 1577: 52: 1600:
The dominance order on standard Young tableaux for the partition 6 = 4 + 2
1434:, because the componentwise maximum of two concave sequences need not be concave. For example, for 19: 39:
indicate that the upper node dominates the lower node. While this particular partial ordering is
1712: 1428: 1343: 92: 1672: 1722: 1698: 831: 393: 1584: ≥ 7, it shares some properties with distributive lattices: for example, its 287:
In this definition, partitions are extended by appending zero parts at the end as necessary.
1752: 1736: 1690: 1624:) can be defined in terms of the dominance order on the Young diagrams. For a Young tableau 1551: 667: 371: 654: 637: 633: 1617: 1769: 1757: 1740: 1609: 493: 72: 1677: 812:{\displaystyle {\hat {p}}=(0,p_{1},p_{1}+p_{2},\ldots ,p_{1}+p_{2}+\cdots +p_{n}).} 670:
of this lattice. To explicitly describe the lattice operations, for each partition
379: 40: 1596: 1648:
are first truncated to their sub-tableaux containing entries up to a given value
1563:, such as the minimal height and the maximal covering number, and classified the 43:, this is not true for the dominance ordering on partitions of any number  508:
and then appending it either to the end of the immediately preceding row
1090:{\displaystyle 2{\hat {p}}_{i}\geq {\hat {p}}_{i-1}+{\hat {p}}_{i+1};} 547:′, whose Young diagram is the transpose of the Young diagram of 1716: 1442:
have a join, one uses the conjugation antiautomorphism: the join of
1420:{\displaystyle \operatorname {min} ({\hat {p}}_{i},{\hat {q}}_{i}).} 1323:{\displaystyle {\hat {r}}\leq {\hat {p}},{\hat {r}}\leq {\hat {q}}.} 1595: 18: 1522:{\displaystyle p\lor q=(p^{\prime }\land q^{\prime })^{\prime }.} 374:(and is equivalent to lexicographical ordering) if and only if 147:, with the parts arranged in the weakly decreasing order, then 632:
The dominance ordering determines the inclusions between the
1511: 1501: 1488: 608: 595: 504:
is obtained from it by first removing the last box of row
1640:
as a partition, and moreover the same must hold whenever
922:
are characterized among all integer sequences of length
1179:
By the definition of the dominance ordering, partition
619:{\displaystyle q^{\prime }\trianglelefteq p^{\prime }.} 1195:
is term-by-term less than or equal to the associated (
907:{\displaystyle p_{i}={\hat {p}}_{i}-{\hat {p}}_{i-1}.} 1467: 1360: 1259: 1246:{\displaystyle r\trianglelefteq p,r\trianglelefteq q} 1221: 1109: 1005: 936: 840: 691: 589: 563: 184: 990:{\displaystyle {\hat {p}}_{i}\leq {\hat {p}}_{i+1};} 300:, (1,...,1) is the smallest and (n) is the largest. 1521: 1427:The natural idea to use a similar formula for the 1419: 1322: 1245: 1169:{\displaystyle {\hat {p}}_{0}=0,{\hat {p}}_{n}=n.} 1168: 1089: 989: 926: + 1 by the following three properties: 906: 811: 618: 575: 276: 551:. This operation reverses the dominance ordering: 1554:has determined many invariants of the lattice 8: 1099:The initial term is 0 and the final term is 97:representation theory of the symmetric group 1721:. Vol. 2. Cambridge University Press. 1450:is the conjugate partition of the meet of 492:(Brylawski, Prop. 2.3). Starting from the 1756: 1697:. Oxford University Press. pp. 5–7. 1510: 1500: 1487: 1466: 1405: 1394: 1393: 1383: 1372: 1371: 1359: 1306: 1305: 1291: 1290: 1276: 1275: 1261: 1260: 1258: 1220: 1151: 1140: 1139: 1123: 1112: 1111: 1108: 1072: 1061: 1060: 1044: 1033: 1032: 1022: 1011: 1010: 1004: 972: 961: 960: 950: 939: 938: 935: 889: 878: 877: 867: 856: 855: 845: 839: 797: 778: 765: 746: 733: 720: 693: 692: 690: 666:, and the operation of conjugation is an 607: 594: 588: 562: 260: 254: 235: 222: 203: 194: 183: 1695:Symmetric functions and Hall polynomials 167:is less than or equal to the sum of the 918:+1)-tuples associated to partitions of 386:≤ 6. See image at right for an example. 826:can be recovered from its associated ( 657:under the dominance ordering, denoted 1588:takes on only values 0, 1, −1. 1354: + 1)-tuple has components 7: 291:Properties of the dominance ordering 1741:"The lattice of integer partitions" 1628:to dominate another Young tableau 1608:can be graphically represented by 576:{\displaystyle p\trianglelefteq q} 155:in the dominance order if for any 14: 1622:dominance order on Young tableaux 830:+1)-tuple by applying the step 1 23:Example of dominance ordering of 512:− 1, or to the end of row 83:that plays an important role in 1187:if and only if the associated ( 303:The dominance ordering implies 91:, especially in the context of 1507: 1480: 1411: 1399: 1377: 1367: 1311: 1296: 1281: 1266: 1145: 1117: 1066: 1038: 1016: 966: 944: 883: 861: 803: 707: 698: 1: 1758:10.1016/0012-365X(73)90094-0 636:of the conjugacy classes of 366:The poset of partitions of 1807: 196: if and only if  1776:Enumerative combinatorics 1718:Enumerative Combinatorics 1199: + 1)-tuple of 1191: + 1)-tuple of 532:all have the same length. 528:of the Young diagram of 500:, the Young diagram of 323:, then for the smallest 305:lexicographical ordering 296:Among the partitions of 143:,...) are partitions of 1781:Algebraic combinatorics 1693:(1979). "section I.1". 1567:of small length. While 1532:For the two partitions 85:algebraic combinatorics 1636:must dominate that of 1601: 1523: 1421: 1324: 1247: 1170: 1091: 991: 908: 813: 620: 577: 278: 79:of a positive integer 48: 1791:Representation theory 1652:, for each choice of 1599: 1524: 1422: 1325: 1248: 1171: 1092: 992: 909: 814: 680: + 1)-tuple 621: 578: 279: 89:representation theory 35:are partitions of 6, 22: 16:Discrete math concept 1745:Discrete Mathematics 1465: 1358: 1346:is the partition of 1257: 1219: 1215:are partitions then 1107: 1003: 934: 838: 689: 587: 561: 543:(or dual) partition 182: 159:≥ 1, the sum of the 53:discrete mathematics 1713:Stanley, Richard P. 1183:precedes partition 262: for all  93:symmetric functions 1661:standard monomials 1602: 1519: 1417: 1350:whose associated ( 1320: 1243: 1166: 1087: 987: 904: 809: 638:nilpotent matrices 616: 573: 274: 65:majorization order 61:dominance ordering 49: 47: > 6. 1737:Brylawski, Thomas 1691:Macdonald, Ian G. 1402: 1380: 1314: 1299: 1284: 1269: 1148: 1120: 1069: 1041: 1019: 969: 947: 886: 864: 701: 645:Lattice structure 263: 197: 171:largest parts of 163:largest parts of 1798: 1762: 1760: 1732: 1708: 1616:boxes. Standard 1552:Thomas Brylawski 1528: 1526: 1525: 1520: 1515: 1514: 1505: 1504: 1492: 1491: 1426: 1424: 1423: 1418: 1410: 1409: 1404: 1403: 1395: 1388: 1387: 1382: 1381: 1373: 1329: 1327: 1326: 1321: 1316: 1315: 1307: 1301: 1300: 1292: 1286: 1285: 1277: 1271: 1270: 1262: 1252: 1250: 1249: 1244: 1175: 1173: 1172: 1167: 1156: 1155: 1150: 1149: 1141: 1128: 1127: 1122: 1121: 1113: 1096: 1094: 1093: 1088: 1083: 1082: 1071: 1070: 1062: 1055: 1054: 1043: 1042: 1034: 1027: 1026: 1021: 1020: 1012: 996: 994: 993: 988: 983: 982: 971: 970: 962: 955: 954: 949: 948: 940: 913: 911: 910: 905: 900: 899: 888: 887: 879: 872: 871: 866: 865: 857: 850: 849: 818: 816: 815: 810: 802: 801: 783: 782: 770: 769: 751: 750: 738: 737: 725: 724: 703: 702: 694: 668:antiautomorphism 634:Zariski closures 625: 623: 622: 617: 612: 611: 599: 598: 582: 580: 579: 574: 535:Every partition 372:linearly ordered 283: 281: 280: 275: 264: 261: 259: 258: 240: 239: 227: 226: 208: 207: 198: 195: 69:natural ordering 31: = 6, 1806: 1805: 1801: 1800: 1799: 1797: 1796: 1795: 1766: 1765: 1735: 1729: 1711: 1705: 1689: 1686: 1673:Young's lattice 1669: 1632:, the shape of 1594: 1592:Generalizations 1586:Möbius function 1575: 1562: 1506: 1496: 1483: 1463: 1462: 1392: 1370: 1356: 1355: 1255: 1254: 1253:if and only if 1217: 1216: 1138: 1110: 1105: 1104: 1059: 1031: 1009: 1001: 1000: 959: 937: 932: 931: 930:Nondecreasing, 914:Moreover, the ( 876: 854: 841: 836: 835: 793: 774: 761: 742: 729: 716: 687: 686: 665: 647: 603: 590: 585: 584: 583:if and only if 559: 558: 491: 482: 466:and either (1) 453: 444: 435: 426: 417: 408: 400:if and only if 382:if and only if 362: 353: 344: 335: 293: 250: 231: 218: 199: 180: 179: 142: 135: 124: 117: 105: 57:dominance order 17: 12: 11: 5: 1804: 1802: 1794: 1793: 1788: 1786:Lattice theory 1783: 1778: 1768: 1767: 1764: 1763: 1733: 1727: 1709: 1703: 1685: 1682: 1681: 1680: 1675: 1668: 1665: 1618:Young tableaux 1610:Young diagrams 1604:Partitions of 1593: 1590: 1571: 1558: 1530: 1529: 1518: 1513: 1509: 1503: 1499: 1495: 1490: 1486: 1482: 1479: 1476: 1473: 1470: 1416: 1413: 1408: 1401: 1398: 1391: 1386: 1379: 1376: 1369: 1366: 1363: 1319: 1313: 1310: 1304: 1298: 1295: 1289: 1283: 1280: 1274: 1268: 1265: 1242: 1239: 1236: 1233: 1230: 1227: 1224: 1177: 1176: 1165: 1162: 1159: 1154: 1147: 1144: 1137: 1134: 1131: 1126: 1119: 1116: 1097: 1086: 1081: 1078: 1075: 1068: 1065: 1058: 1053: 1050: 1047: 1040: 1037: 1030: 1025: 1018: 1015: 1008: 997: 986: 981: 978: 975: 968: 965: 958: 953: 946: 943: 903: 898: 895: 892: 885: 882: 875: 870: 863: 860: 853: 848: 844: 822:The partition 820: 819: 808: 805: 800: 796: 792: 789: 786: 781: 777: 773: 768: 764: 760: 757: 754: 749: 745: 741: 736: 732: 728: 723: 719: 715: 712: 709: 706: 700: 697: 661: 649:Partitions of 646: 643: 642: 641: 629: 628: 627: 626: 615: 610: 606: 602: 597: 593: 572: 569: 566: 553: 552: 533: 487: 478: 449: 440: 431: 422: 413: 404: 387: 364: 358: 349: 340: 331: 301: 292: 289: 285: 284: 273: 270: 267: 257: 253: 249: 246: 243: 238: 234: 230: 225: 221: 217: 214: 211: 206: 202: 193: 190: 187: 140: 133: 122: 115: 104: 101: 75:on the set of 15: 13: 10: 9: 6: 4: 3: 2: 1803: 1792: 1789: 1787: 1784: 1782: 1779: 1777: 1774: 1773: 1771: 1759: 1754: 1750: 1746: 1742: 1738: 1734: 1730: 1728:0-521-56069-1 1724: 1720: 1719: 1714: 1710: 1706: 1704:0-19-853530-9 1700: 1696: 1692: 1688: 1687: 1683: 1679: 1676: 1674: 1671: 1670: 1666: 1664: 1662: 1657: 1655: 1651: 1647: 1643: 1639: 1635: 1631: 1627: 1623: 1619: 1615: 1611: 1607: 1598: 1591: 1589: 1587: 1583: 1579: 1574: 1570: 1566: 1561: 1557: 1553: 1549: 1547: 1543: 1539: 1535: 1516: 1497: 1493: 1484: 1477: 1474: 1471: 1468: 1461: 1460: 1459: 1457: 1453: 1449: 1445: 1441: 1437: 1433: 1430: 1414: 1406: 1396: 1389: 1384: 1374: 1364: 1361: 1353: 1349: 1345: 1341: 1337: 1333: 1317: 1308: 1302: 1293: 1287: 1278: 1272: 1263: 1240: 1237: 1234: 1231: 1228: 1225: 1222: 1214: 1210: 1206: 1202: 1198: 1194: 1190: 1186: 1182: 1163: 1160: 1157: 1152: 1142: 1135: 1132: 1129: 1124: 1114: 1102: 1098: 1084: 1079: 1076: 1073: 1063: 1056: 1051: 1048: 1045: 1035: 1028: 1023: 1013: 1006: 998: 984: 979: 976: 973: 963: 956: 951: 941: 929: 928: 927: 925: 921: 917: 901: 896: 893: 890: 880: 873: 868: 858: 851: 846: 842: 833: 829: 825: 806: 798: 794: 790: 787: 784: 779: 775: 771: 766: 762: 758: 755: 752: 747: 743: 739: 734: 730: 726: 721: 717: 713: 710: 704: 695: 685: 684: 683: 681: 679: 674:consider the 673: 669: 664: 660: 656: 652: 644: 639: 635: 631: 630: 613: 604: 600: 591: 570: 567: 564: 557: 556: 555: 554: 550: 546: 542: 538: 534: 531: 527: 523: 519: 515: 511: 507: 503: 499: 495: 494:Young diagram 490: 486: 481: 477: 473: 469: 465: 461: 457: 452: 448: 443: 439: 434: 430: 425: 421: 416: 412: 407: 403: 399: 395: 392: 388: 385: 381: 377: 373: 369: 365: 361: 357: 352: 348: 343: 339: 334: 330: 326: 322: 319: ≠  318: 314: 310: 306: 302: 299: 295: 294: 290: 288: 271: 268: 265: 255: 251: 247: 244: 241: 236: 232: 228: 223: 219: 215: 212: 209: 204: 200: 191: 188: 185: 178: 177: 176: 174: 170: 166: 162: 158: 154: 150: 146: 139: 132: 128: 121: 114: 110: 102: 100: 98: 94: 90: 86: 82: 78: 74: 73:partial order 70: 66: 62: 58: 54: 46: 42: 38: 34: 30: 26: 21: 1751:(3): 201–2. 1748: 1744: 1717: 1694: 1678:Majorization 1660: 1658: 1653: 1649: 1645: 1641: 1637: 1633: 1629: 1625: 1621: 1613: 1605: 1603: 1581: 1578:distributive 1572: 1568: 1559: 1555: 1550: 1545: 1541: 1537: 1533: 1531: 1455: 1454:′ and 1451: 1447: 1443: 1439: 1435: 1431: 1351: 1347: 1339: 1335: 1331: 1212: 1208: 1204: 1200: 1196: 1192: 1188: 1184: 1180: 1178: 1100: 923: 919: 915: 827: 823: 821: 677: 676:associated ( 675: 671: 662: 658: 650: 648: 548: 544: 536: 529: 525: 521: 520:if the rows 517: 513: 509: 505: 501: 497: 488: 484: 479: 475: 471: 467: 463: 459: 455: 450: 446: 441: 437: 432: 428: 423: 419: 414: 410: 405: 401: 397: 396:a partition 390: 389:A partition 383: 375: 367: 359: 355: 350: 346: 341: 337: 332: 328: 324: 320: 316: 312: 308: 297: 286: 172: 168: 164: 160: 156: 152: 148: 144: 137: 130: 126: 119: 112: 108: 106: 80: 68: 64: 60: 56: 50: 44: 28: 27:of n. Here, 474:+ 1 or (2) 436:− 1, 378:≤ 5. It is 59:(synonyms: 1770:Categories 1684:References 832:difference 327:such that 311:dominates 307:, i.e. if 125:,...) and 103:Definition 77:partitions 25:partitions 1565:intervals 1512:′ 1502:′ 1494:∧ 1489:′ 1472:∨ 1458:′: 1400:^ 1378:^ 1365:⁡ 1312:^ 1303:≤ 1297:^ 1282:^ 1273:≤ 1267:^ 1238:⊴ 1226:⊴ 1146:^ 1118:^ 1067:^ 1049:− 1039:^ 1029:≥ 1017:^ 999:Concave, 967:^ 957:≤ 945:^ 894:− 884:^ 874:− 862:^ 788:⋯ 756:… 699:^ 609:′ 601:⊴ 596:′ 568:⊴ 541:conjugate 269:≥ 245:⋯ 229:≤ 213:⋯ 189:⊴ 151:precedes 1739:(1973). 1715:(1999). 1667:See also 1342:, their 524:through 458:≠ 454:for all 345:one has 1576:is not 655:lattice 653:form a 71:) is a 1725:  1701:  539:has a 394:covers 380:graded 41:graded 1548:is . 1432:fails 1203:. If 516:< 418:+ 1, 354:> 37:edges 33:nodes 1723:ISBN 1699:ISBN 1644:and 1580:for 1544:and 1536:and 1446:and 1429:join 1344:meet 1338:and 315:and 95:and 87:and 1753:doi 1612:on 1362:min 496:of 370:is 129:= ( 111:= ( 107:If 51:In 1772:: 1747:. 1743:. 1663:. 1656:. 1334:, 1211:, 1207:, 1103:, 834:, 682:: 483:= 470:= 445:= 427:= 409:= 336:≠ 272:1. 175:: 99:. 67:, 63:, 55:, 1761:. 1755:: 1749:6 1731:. 1707:. 1654:k 1650:k 1646:S 1642:T 1638:S 1634:T 1630:S 1626:T 1614:n 1606:n 1582:n 1573:n 1569:L 1560:n 1556:L 1546:q 1542:p 1538:q 1534:p 1517:. 1508:) 1498:q 1485:p 1481:( 1478:= 1475:q 1469:p 1456:q 1452:p 1448:q 1444:p 1440:n 1436:n 1415:. 1412:) 1407:i 1397:q 1390:, 1385:i 1375:p 1368:( 1352:n 1348:n 1340:q 1336:p 1332:n 1318:. 1309:q 1294:r 1288:, 1279:p 1264:r 1241:q 1235:r 1232:, 1229:p 1223:r 1213:r 1209:q 1205:p 1201:q 1197:n 1193:p 1189:n 1185:q 1181:p 1164:. 1161:n 1158:= 1153:n 1143:p 1136:, 1133:0 1130:= 1125:0 1115:p 1101:n 1085:; 1080:1 1077:+ 1074:i 1064:p 1057:+ 1052:1 1046:i 1036:p 1024:i 1014:p 1007:2 985:; 980:1 977:+ 974:i 964:p 952:i 942:p 924:n 920:n 916:n 902:. 897:1 891:i 881:p 869:i 859:p 852:= 847:i 843:p 828:n 824:p 807:. 804:) 799:n 795:p 791:+ 785:+ 780:2 776:p 772:+ 767:1 763:p 759:, 753:, 748:2 744:p 740:+ 735:1 731:p 727:, 722:1 718:p 714:, 711:0 708:( 705:= 696:p 678:n 672:p 663:n 659:L 651:n 640:. 614:. 605:p 592:q 571:q 565:p 549:p 545:p 537:p 530:q 526:k 522:i 518:k 514:i 510:k 506:k 502:p 498:q 489:k 485:q 480:i 476:q 472:i 468:k 464:k 462:, 460:i 456:j 451:j 447:q 442:j 438:p 433:k 429:q 424:k 420:p 415:i 411:q 406:i 402:p 398:q 391:p 384:n 376:n 368:n 363:. 360:i 356:q 351:i 347:p 342:i 338:q 333:i 329:p 325:i 321:q 317:p 313:q 309:p 298:n 266:k 256:k 252:q 248:+ 242:+ 237:1 233:q 224:k 220:p 216:+ 210:+ 205:1 201:p 192:q 186:p 173:q 169:k 165:p 161:k 157:k 153:q 149:p 145:n 141:2 138:q 136:, 134:1 131:q 127:q 123:2 120:p 118:, 116:1 113:p 109:p 81:n 45:n 29:n

Index


partitions
nodes
edges
graded
discrete mathematics
partial order
partitions
algebraic combinatorics
representation theory
symmetric functions
representation theory of the symmetric group
lexicographical ordering
linearly ordered
graded
covers
Young diagram
conjugate
Zariski closures
nilpotent matrices
lattice
antiautomorphism
difference
meet
join
Thomas Brylawski
intervals
distributive
Möbius function

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.