Knowledge

Cusp (singularity)

Source đź“ť

36: 2324:. In general, such a projection is a curve whose singularities are self-crossing points and ordinary cusps. Self-crossing points appear when two different points of the curves have the same projection. Ordinary cusps appear when the tangent to the curve is parallel to the direction of projection (that is when the tangent projects on a single point). More complicated singularities occur when several phenomena occur simultaneously. For example, rhamphoid cusps occur for 101: 1256: 2301: 323:, in contrast to self-intersection points that involve more than one value. In some contexts, the condition on the directional derivative may be omitted, although, in this case, the singularity may look like a regular point. 501: 219: 2035: 1932: 434: 153: 2347:
of the restriction to a (smooth) spatial object of the projection. A cusp appears thus as a singularity of the contour of the image of the object (vision) or of its shadow (computer graphics).
311: 1707: 1569: 839: 889: 2232: 2187: 1162: 1062: 1618: 1357: 1199: 1110: 744: 1826: 927: 788: 1300: 2470: 1005: 966: 374: 1236: 65: 2893: 2622: 429: 2985: 2582: 2463: 2427: 2401: 148: 1512: 'beak-like') denoted originally a cusp such that both branches are on the same side of the tangent, such as for the curve of equation 3062: 2673: 2572: 3052: 87: 2751: 2456: 1941: 2898: 2809: 2819: 2746: 2496: 2716: 1847: 2612: 2344: 2975: 2939: 3092: 2638: 2551: 420: 579:. In some contexts, the definition of a cusp is restricted to the case of cusps of order two—that is, the case where 2949: 2587: 2393: 700: 664: 416: 3087: 2995: 125: 48: 2908: 2888: 2824: 2741: 2602: 124:
where a moving point must reverse direction. A typical example is given in the figure. A cusp is thus a type of
2643: 2313: 1640: 58: 52: 44: 2607: 2799: 606: 598: 2592: 1515: 660: 625: 241: 69: 2970: 2706: 2506: 2350: 1630: 2668: 2617: 1934:
We can now make a diffeomorphic change of variable (in this case we simply substitute polynomials with
795: 251: 848: 3057: 2918: 2829: 2577: 2192: 2147: 1935: 1260: 1115: 1014: 680: 621: 523: 2883: 1574: 1313: 2761: 2726: 2683: 2663: 1841: 1169: 1069: 714: 684: 668: 140: 1792: 900: 761: 2597: 2443: 2366: 2244: 2047: 1265: 2804: 2784: 2756: 975: 936: 335: 2913: 2860: 2731: 2546: 2541: 2423: 2397: 2340: 692: 408: 394: 327: 136: 609:
of the point in the ambient space, which maps the curve onto one of the above-defined cusps.
2903: 2789: 2766: 2329: 2325: 2305: 1211: 384: 3029: 2834: 2776: 2678: 2501: 2480: 2411: 2336: 2321: 618: 594: 380: 2701: 841:
i.e. there exists a diffeomorphic change of coordinate in source and target which takes
589:
The definitions for plane curves and implicitly-defined curves have been generalized by
3003: 2526: 2511: 2488: 2416: 1637:. The rhamphoid cusp and the ordinary cusp are non-diffeomorphic. A parametric form is 1629:, the term has been extended to all such singularities. These cusps are non-generic as 1509: 892: 707: 688: 672: 602: 398: 3081: 3044: 2814: 2794: 2721: 2516: 1419: 397:; however, not all singular points that have this property are cusps. The theory of 2980: 2954: 2944: 2934: 2736: 2556: 2385: 2317: 545: 541: 590: 2855: 2693: 1571:
As such a singularity is in the same differential class as the cusp of equation
696: 675:
of the plane and the diffeomorphisms of the line, i.e. diffeomorphic changes of
652: 573:
of the cusp, and is equal to the degree of the nonzero part of lowest degree of
513: 132: 109: 2850: 2357:
are other examples of curves having cusps that are visible in the real world.
2354: 1634: 1206:
The cusps are then given by the zero-level-sets of the representatives of the
676: 412: 225: 100: 2448: 2711: 248:, changes sign (the direction of the tangent is the direction of the slope 17: 1785:
divides the cubic terms. It follows that the third order taylor series of
2371: 496:{\displaystyle {\begin{aligned}x&=at^{m}\\y&=S(t),\end{aligned}}} 1771:
To see where these extra divisibility conditions come from, assume that
3034: 3019: 2123: 526: 245: 214:{\displaystyle {\begin{aligned}x&=f(t)\\y&=g(t),\end{aligned}}} 2300: 663:
from the plane to the line. The space of all such smooth functions is
3014: 2332:) for which the tangent is parallel to the direction of projection. 1418:
Having a degenerate quadratic part, i.e. the quadratic terms in the
2299: 1254: 121: 99: 2452: 1759:), and a final non-divisibility condition (giving type exactly 1255: 317:
in the sense that they involve only one value of the parameter
553:(degree of the nonzero term of the lowest degree) larger than 29: 383:, cusps are points where the terms of lowest degree of the 2030:{\displaystyle (L\pm Q/2)^{2}-Q^{4}/4\to x_{1}^{2}+P_{1}} 415:), a linear change of coordinates allows the curve to be 1484:
does not divide the cubic terms in the Taylor series of
2195: 2150: 1944: 1850: 1795: 1725:
to have a degenerate quadratic part (this gives type
1643: 1577: 1518: 1316: 1268: 1214: 1172: 1118: 1072: 1017: 978: 939: 903: 851: 798: 764: 717: 432: 338: 254: 151: 2292:, i.e. the zero-level-set will be a rhamphoid cusp. 3043: 2994: 2963: 2927: 2876: 2869: 2843: 2775: 2692: 2656: 2631: 2565: 2534: 2525: 2487: 1927:{\displaystyle L^{2}\pm LQ=(L\pm Q/2)^{2}-Q^{4}/4.} 2415: 2343:, the curve that is projected is the curve of the 2226: 2181: 2029: 1926: 1820: 1701: 1612: 1563: 1351: 1294: 1230: 1193: 1156: 1104: 1056: 999: 960: 921: 883: 833: 782: 738: 495: 368: 305: 213: 27:Point on a curve where motion must move backwards 255: 57:but its sources remain unclear because it lacks 1750:), another divisibility condition (giving type 601:: a curve has a cusp at a point if there is a 2464: 1009:since the diffeomorphic change of coordinate 8: 845:into one of these forms. These simple forms 2873: 2531: 2471: 2457: 2449: 706:One such family of equivalence classes is 2444:Physicists See The Cosmos In A Coffee Cup 2218: 2205: 2200: 2194: 2173: 2160: 2155: 2149: 2021: 2008: 2003: 1988: 1982: 1969: 1957: 1943: 1916: 1910: 1897: 1885: 1855: 1849: 1800: 1794: 1702:{\displaystyle x=t^{2},\,y=ax^{4}+x^{5}.} 1690: 1677: 1663: 1654: 1642: 1595: 1582: 1576: 1549: 1536: 1523: 1517: 1334: 1321: 1315: 1286: 1273: 1267: 1219: 1213: 1185: 1177: 1171: 1136: 1123: 1117: 1090: 1077: 1071: 1016: 991: 983: 977: 952: 944: 938: 913: 908: 902: 869: 856: 850: 816: 803: 797: 774: 769: 763: 727: 722: 716: 454: 433: 431: 337: 278: 253: 152: 150: 88:Learn how and when to remove this message 2308:of light rays in the bottom of a teacup. 1741:divide the cubic terms (this gives type 2189:and change coordinates so that we have 613:Classification in differential geometry 2894:Clifford's theorem on special divisors 2068:. The divisibility condition for type 752:is a non-negative integer. A function 7: 1564:{\displaystyle x^{2}-x^{4}-y^{5}=0.} 3063:Vector bundles on algebraic curves 2986:Weber's theorem (Algebraic curves) 2583:Hasse's theorem on elliptic curves 2573:Counting points on elliptic curves 2304:An ordinary cusp occurring as the 1359:i.e. the zero-level-set of a type 25: 1391:and assume, for simplicity, that 834:{\displaystyle x^{2}\pm y^{k+1},} 306:{\displaystyle \lim(g'(t)/f'(t))} 2335:In many cases, and typically in 1775:has a degenerate quadratic part 931:-singularities. Notice that the 884:{\displaystyle x^{2}\pm y^{k+1}} 34: 2674:Hurwitz's automorphisms theorem 2227:{\displaystyle x_{2}^{2}+P_{2}} 2182:{\displaystyle x_{1}^{2}+P_{1}} 1620:which is a singularity of type 1157:{\displaystyle x^{2}-y^{2n+1}.} 1057:{\displaystyle (x,y)\to (x,-y)} 687:. This action splits the whole 2899:Gonality of an algebraic curve 2810:Differential of the first kind 2422:. Cambridge University Press. 2122:(the zero-level-set here is a 1996: 1966: 1945: 1894: 1873: 1613:{\displaystyle x^{2}-y^{5}=0,} 1352:{\displaystyle x^{2}-y^{3}=0,} 1051: 1036: 1033: 1030: 1018: 483: 477: 354: 342: 300: 297: 291: 275: 269: 258: 201: 195: 175: 169: 120:in old texts, is a point on a 1: 3053:Birkhoff–Grothendieck theorem 2752:Nagata's conjecture on curves 2623:Schoof–Elkies–Atkin algorithm 2497:Five points determine a conic 1194:{\displaystyle A_{2n}^{\pm }} 1105:{\displaystyle x^{2}+y^{k+1}} 739:{\displaystyle A_{k}^{\pm },} 224:a cusp is a point where both 2613:Supersingular elliptic curve 2312:Cusps appear naturally when 1821:{\displaystyle L^{2}\pm LQ,} 922:{\displaystyle A_{k}^{\pm }} 783:{\displaystyle A_{k}^{\pm }} 2820:Riemann's existence theorem 2747:Hilbert's sixteenth problem 2639:Elliptic curve cryptography 2552:Fundamental pair of periods 1426:form a perfect square, say 1295:{\displaystyle y^{2}=x^{3}} 1240:equivalence classes, where 792:if it lies in the orbit of 3109: 2950:Moduli of algebraic curves 2394:Cambridge University Press 2283:then we have exactly type 2144:we complete the square on 2113:then we have type exactly 1164:So we can drop the ± from 1000:{\displaystyle A_{2n}^{-}} 961:{\displaystyle A_{2n}^{+}} 326:For a curve defined by an 244:, in the direction of the 2418:Geometric Differentiation 1415:can be characterised by: 369:{\displaystyle F(x,y)=0,} 126:singular point of a curve 2717:Cayley–Bacharach theorem 2644:Elliptic curve primality 2390:Curves and Singularities 1383:be a smooth function of 599:differentiable functions 565:is sometimes called the 43:This article includes a 2976:Riemann–Hurwitz formula 2940:Gromov–Witten invariant 2800:Compact Riemann surface 2588:Mazur's torsion theorem 72:more precise citations. 2593:Modular elliptic curve 2309: 2228: 2183: 2031: 1938:linear parts) so that 1928: 1822: 1703: 1614: 1565: 1353: 1302: 1296: 1232: 1231:{\displaystyle A_{2n}} 1195: 1158: 1106: 1058: 1001: 962: 923: 885: 835: 784: 756:is said to be of type 740: 497: 370: 307: 242:directional derivative 215: 105: 2507:Rational normal curve 2320:in three-dimensional 2303: 2229: 2184: 2032: 1929: 1823: 1721:-singularity we need 1704: 1615: 1566: 1354: 1297: 1258: 1233: 1196: 1159: 1107: 1059: 1002: 963: 924: 886: 836: 785: 741: 597:to curves defined by 498: 371: 308: 216: 103: 3058:Stable vector bundle 2919:Weil reciprocity law 2909:Riemann–Roch theorem 2889:Brill–Noether theory 2825:Riemann–Roch theorem 2742:Genus–degree formula 2603:Mordell–Weil theorem 2578:Division polynomials 2193: 2148: 1942: 1936:linearly independent 1848: 1793: 1641: 1575: 1516: 1314: 1266: 1261:semicubical parabola 1212: 1170: 1116: 1070: 1066:in the source takes 1015: 976: 970:are the same as the 937: 901: 849: 796: 762: 715: 622:real-valued function 430: 336: 252: 149: 2870:Structure of curves 2762:Quartic plane curve 2684:Hyperelliptic curve 2664:De Franchis theorem 2608:Nagell–Lutz theorem 2210: 2165: 2013: 1842:complete the square 1190: 996: 957: 918: 779: 732: 693:equivalence classes 315:local singularities 141:parametric equation 116:, sometimes called 104:A cusp at (0, 1/2) 3093:Singularity theory 2877:Divisors on curves 2669:Faltings's theorem 2618:Schoof's algorithm 2598:Modularity theorem 2310: 2224: 2196: 2179: 2151: 2027: 1999: 1924: 1818: 1699: 1610: 1561: 1368:-singularity. Let 1349: 1303: 1292: 1228: 1191: 1173: 1154: 1102: 1054: 997: 979: 958: 940: 919: 904: 881: 831: 780: 765: 736: 718: 493: 491: 366: 303: 240:are zero, and the 211: 209: 106: 45:list of references 3075: 3074: 3071: 3070: 2971:Hasse–Witt matrix 2914:Weierstrass point 2861:Smooth completion 2830:TeichmĂĽller space 2732:Cubic plane curve 2652: 2651: 2566:Arithmetic theory 2547:Elliptic integral 2542:Elliptic function 2429:978-0-521-39063-7 2403:978-0-521-42999-3 2341:computer graphics 2330:undulation points 2326:inflection points 891:are said to give 409:analytic function 401:implies that, if 395:linear polynomial 393:are a power of a 328:implicit equation 98: 97: 90: 16:(Redirected from 3100: 3088:Algebraic curves 2904:Jacobian variety 2874: 2777:Riemann surfaces 2767:Real plane curve 2727:Cramer's paradox 2707:BĂ©zout's theorem 2532: 2481:algebraic curves 2473: 2466: 2459: 2450: 2433: 2421: 2407: 2367:Cusp catastrophe 2291: 2282: 2274:does not divide 2273: 2264: 2255: 2247:(order five) in 2242: 2233: 2231: 2230: 2225: 2223: 2222: 2209: 2204: 2188: 2186: 2185: 2180: 2178: 2177: 2164: 2159: 2143: 2134: 2121: 2112: 2104:does not divide 2103: 2094: 2085: 2076: 2067: 2058: 2050:(order four) in 2045: 2036: 2034: 2033: 2028: 2026: 2025: 2012: 2007: 1992: 1987: 1986: 1974: 1973: 1961: 1933: 1931: 1930: 1925: 1920: 1915: 1914: 1902: 1901: 1889: 1860: 1859: 1839: 1835: 1832:is quadratic in 1831: 1827: 1825: 1824: 1819: 1805: 1804: 1788: 1784: 1780: 1774: 1767: 1758: 1749: 1737: 1733: 1724: 1720: 1708: 1706: 1705: 1700: 1695: 1694: 1682: 1681: 1659: 1658: 1628: 1619: 1617: 1616: 1611: 1600: 1599: 1587: 1586: 1570: 1568: 1567: 1562: 1554: 1553: 1541: 1540: 1528: 1527: 1498: 1483: 1463: 1459: 1455: 1440: 1425: 1414: 1410: 1407:-singularity of 1406: 1397: 1390: 1386: 1382: 1367: 1358: 1356: 1355: 1350: 1339: 1338: 1326: 1325: 1301: 1299: 1298: 1293: 1291: 1290: 1278: 1277: 1246: 1239: 1237: 1235: 1234: 1229: 1227: 1226: 1202: 1200: 1198: 1197: 1192: 1189: 1184: 1163: 1161: 1160: 1155: 1150: 1149: 1128: 1127: 1111: 1109: 1108: 1103: 1101: 1100: 1082: 1081: 1065: 1063: 1061: 1060: 1055: 1008: 1006: 1004: 1003: 998: 995: 990: 969: 967: 965: 964: 959: 956: 951: 930: 928: 926: 925: 920: 917: 912: 890: 888: 887: 882: 880: 879: 861: 860: 844: 840: 838: 837: 832: 827: 826: 808: 807: 791: 789: 787: 786: 781: 778: 773: 755: 751: 747: 745: 743: 742: 737: 731: 726: 658: 650: 646: 642: 585: 578: 564: 558: 552: 539: 521: 511: 502: 500: 499: 494: 492: 459: 458: 423:of the cusp, as 406: 392: 385:Taylor expansion 375: 373: 372: 367: 322: 312: 310: 309: 304: 290: 282: 268: 239: 233: 220: 218: 217: 212: 210: 93: 86: 82: 79: 73: 68:this article by 59:inline citations 38: 37: 30: 21: 3108: 3107: 3103: 3102: 3101: 3099: 3098: 3097: 3078: 3077: 3076: 3067: 3039: 3030:Delta invariant 3008: 2990: 2959: 2923: 2884:Abel–Jacobi map 2865: 2839: 2835:Torelli theorem 2805:Dessin d'enfant 2785:Belyi's theorem 2771: 2757:PlĂĽcker formula 2688: 2679:Hurwitz surface 2648: 2627: 2561: 2535:Analytic theory 2527:Elliptic curves 2521: 2502:Projective line 2489:Rational curves 2483: 2477: 2440: 2430: 2410: 2404: 2383: 2380: 2363: 2345:critical points 2337:computer vision 2322:Euclidean space 2316:into a plane a 2298: 2290: 2284: 2281: 2275: 2272: 2266: 2263: 2257: 2254: 2248: 2241: 2235: 2214: 2191: 2190: 2169: 2146: 2145: 2142: 2136: 2133: 2127: 2120: 2114: 2111: 2105: 2102: 2096: 2093: 2087: 2084: 2078: 2075: 2069: 2066: 2060: 2057: 2051: 2044: 2038: 2017: 1978: 1965: 1940: 1939: 1906: 1893: 1851: 1846: 1845: 1837: 1833: 1829: 1796: 1791: 1790: 1786: 1782: 1776: 1772: 1766: 1760: 1757: 1751: 1748: 1742: 1735: 1732: 1726: 1722: 1719: 1713: 1686: 1673: 1650: 1639: 1638: 1627: 1621: 1591: 1578: 1573: 1572: 1545: 1532: 1519: 1514: 1513: 1485: 1470: 1461: 1457: 1442: 1427: 1423: 1412: 1408: 1405: 1399: 1392: 1388: 1384: 1369: 1366: 1360: 1330: 1317: 1312: 1311: 1282: 1269: 1264: 1263: 1253: 1247:is an integer. 1241: 1215: 1210: 1209: 1207: 1168: 1167: 1165: 1132: 1119: 1114: 1113: 1086: 1073: 1068: 1067: 1013: 1012: 1010: 974: 973: 971: 935: 934: 932: 899: 898: 896: 865: 852: 847: 846: 842: 812: 799: 794: 793: 760: 759: 757: 753: 749: 713: 712: 710: 673:diffeomorphisms 656: 648: 644: 629: 615: 595:Vladimir Arnold 580: 574: 560: 554: 548: 530: 517: 507: 490: 489: 467: 461: 460: 450: 440: 428: 427: 411:(for example a 402: 388: 334: 333: 318: 283: 261: 250: 249: 235: 229: 208: 207: 185: 179: 178: 159: 147: 146: 94: 83: 77: 74: 63: 49:related reading 39: 35: 28: 23: 22: 15: 12: 11: 5: 3106: 3104: 3096: 3095: 3090: 3080: 3079: 3073: 3072: 3069: 3068: 3066: 3065: 3060: 3055: 3049: 3047: 3045:Vector bundles 3041: 3040: 3038: 3037: 3032: 3027: 3022: 3017: 3012: 3006: 3000: 2998: 2992: 2991: 2989: 2988: 2983: 2978: 2973: 2967: 2965: 2961: 2960: 2958: 2957: 2952: 2947: 2942: 2937: 2931: 2929: 2925: 2924: 2922: 2921: 2916: 2911: 2906: 2901: 2896: 2891: 2886: 2880: 2878: 2871: 2867: 2866: 2864: 2863: 2858: 2853: 2847: 2845: 2841: 2840: 2838: 2837: 2832: 2827: 2822: 2817: 2812: 2807: 2802: 2797: 2792: 2787: 2781: 2779: 2773: 2772: 2770: 2769: 2764: 2759: 2754: 2749: 2744: 2739: 2734: 2729: 2724: 2719: 2714: 2709: 2704: 2698: 2696: 2690: 2689: 2687: 2686: 2681: 2676: 2671: 2666: 2660: 2658: 2654: 2653: 2650: 2649: 2647: 2646: 2641: 2635: 2633: 2629: 2628: 2626: 2625: 2620: 2615: 2610: 2605: 2600: 2595: 2590: 2585: 2580: 2575: 2569: 2567: 2563: 2562: 2560: 2559: 2554: 2549: 2544: 2538: 2536: 2529: 2523: 2522: 2520: 2519: 2514: 2512:Riemann sphere 2509: 2504: 2499: 2493: 2491: 2485: 2484: 2478: 2476: 2475: 2468: 2461: 2453: 2447: 2446: 2439: 2438:External links 2436: 2435: 2434: 2428: 2408: 2402: 2384:Bruce, J. W.; 2379: 2376: 2375: 2374: 2369: 2362: 2359: 2297: 2294: 2288: 2279: 2270: 2261: 2252: 2239: 2221: 2217: 2213: 2208: 2203: 2199: 2176: 2172: 2168: 2163: 2158: 2154: 2140: 2131: 2118: 2109: 2100: 2091: 2082: 2073: 2064: 2055: 2042: 2024: 2020: 2016: 2011: 2006: 2002: 1998: 1995: 1991: 1985: 1981: 1977: 1972: 1968: 1964: 1960: 1956: 1953: 1950: 1947: 1923: 1919: 1913: 1909: 1905: 1900: 1896: 1892: 1888: 1884: 1881: 1878: 1875: 1872: 1869: 1866: 1863: 1858: 1854: 1817: 1814: 1811: 1808: 1803: 1799: 1764: 1755: 1746: 1730: 1717: 1710: 1709: 1698: 1693: 1689: 1685: 1680: 1676: 1672: 1669: 1666: 1662: 1657: 1653: 1649: 1646: 1625: 1609: 1606: 1603: 1598: 1594: 1590: 1585: 1581: 1560: 1557: 1552: 1548: 1544: 1539: 1535: 1531: 1526: 1522: 1506:rhamphoid cusp 1502: 1501: 1500: 1468: 1403: 1398:. Then a type 1364: 1348: 1345: 1342: 1337: 1333: 1329: 1324: 1320: 1289: 1285: 1281: 1276: 1272: 1259:A cusp in the 1252: 1249: 1225: 1222: 1218: 1188: 1183: 1180: 1176: 1153: 1148: 1145: 1142: 1139: 1135: 1131: 1126: 1122: 1099: 1096: 1093: 1089: 1085: 1080: 1076: 1053: 1050: 1047: 1044: 1041: 1038: 1035: 1032: 1029: 1026: 1023: 1020: 994: 989: 986: 982: 955: 950: 947: 943: 916: 911: 907: 878: 875: 872: 868: 864: 859: 855: 830: 825: 822: 819: 815: 811: 806: 802: 777: 772: 768: 735: 730: 725: 721: 689:function space 614: 611: 603:diffeomorphism 522:is a positive 504: 503: 488: 485: 482: 479: 476: 473: 470: 468: 466: 463: 462: 457: 453: 449: 446: 443: 441: 439: 436: 435: 399:Puiseux series 377: 376: 365: 362: 359: 356: 353: 350: 347: 344: 341: 313:). Cusps are 302: 299: 296: 293: 289: 286: 281: 277: 274: 271: 267: 264: 260: 257: 222: 221: 206: 203: 200: 197: 194: 191: 188: 186: 184: 181: 180: 177: 174: 171: 168: 165: 162: 160: 158: 155: 154: 135:defined by an 96: 95: 53:external links 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3105: 3094: 3091: 3089: 3086: 3085: 3083: 3064: 3061: 3059: 3056: 3054: 3051: 3050: 3048: 3046: 3042: 3036: 3033: 3031: 3028: 3026: 3023: 3021: 3018: 3016: 3013: 3011: 3009: 3002: 3001: 2999: 2997: 2996:Singularities 2993: 2987: 2984: 2982: 2979: 2977: 2974: 2972: 2969: 2968: 2966: 2962: 2956: 2953: 2951: 2948: 2946: 2943: 2941: 2938: 2936: 2933: 2932: 2930: 2926: 2920: 2917: 2915: 2912: 2910: 2907: 2905: 2902: 2900: 2897: 2895: 2892: 2890: 2887: 2885: 2882: 2881: 2879: 2875: 2872: 2868: 2862: 2859: 2857: 2854: 2852: 2849: 2848: 2846: 2844:Constructions 2842: 2836: 2833: 2831: 2828: 2826: 2823: 2821: 2818: 2816: 2815:Klein quartic 2813: 2811: 2808: 2806: 2803: 2801: 2798: 2796: 2795:Bolza surface 2793: 2791: 2790:Bring's curve 2788: 2786: 2783: 2782: 2780: 2778: 2774: 2768: 2765: 2763: 2760: 2758: 2755: 2753: 2750: 2748: 2745: 2743: 2740: 2738: 2735: 2733: 2730: 2728: 2725: 2723: 2722:Conic section 2720: 2718: 2715: 2713: 2710: 2708: 2705: 2703: 2702:AF+BG theorem 2700: 2699: 2697: 2695: 2691: 2685: 2682: 2680: 2677: 2675: 2672: 2670: 2667: 2665: 2662: 2661: 2659: 2655: 2645: 2642: 2640: 2637: 2636: 2634: 2630: 2624: 2621: 2619: 2616: 2614: 2611: 2609: 2606: 2604: 2601: 2599: 2596: 2594: 2591: 2589: 2586: 2584: 2581: 2579: 2576: 2574: 2571: 2570: 2568: 2564: 2558: 2555: 2553: 2550: 2548: 2545: 2543: 2540: 2539: 2537: 2533: 2530: 2528: 2524: 2518: 2517:Twisted cubic 2515: 2513: 2510: 2508: 2505: 2503: 2500: 2498: 2495: 2494: 2492: 2490: 2486: 2482: 2474: 2469: 2467: 2462: 2460: 2455: 2454: 2451: 2445: 2442: 2441: 2437: 2431: 2425: 2420: 2419: 2413: 2412:Porteous, Ian 2409: 2405: 2399: 2395: 2391: 2387: 2386:Giblin, Peter 2382: 2381: 2377: 2373: 2370: 2368: 2365: 2364: 2360: 2358: 2356: 2352: 2348: 2346: 2342: 2338: 2333: 2331: 2327: 2323: 2319: 2315: 2307: 2302: 2295: 2293: 2287: 2278: 2269: 2260: 2251: 2246: 2238: 2219: 2215: 2211: 2206: 2201: 2197: 2174: 2170: 2166: 2161: 2156: 2152: 2139: 2130: 2125: 2117: 2108: 2099: 2090: 2081: 2072: 2063: 2054: 2049: 2041: 2022: 2018: 2014: 2009: 2004: 2000: 1993: 1989: 1983: 1979: 1975: 1970: 1962: 1958: 1954: 1951: 1948: 1937: 1921: 1917: 1911: 1907: 1903: 1898: 1890: 1886: 1882: 1879: 1876: 1870: 1867: 1864: 1861: 1856: 1852: 1844:to show that 1843: 1815: 1812: 1809: 1806: 1801: 1797: 1779: 1769: 1763: 1754: 1745: 1740: 1729: 1716: 1696: 1691: 1687: 1683: 1678: 1674: 1670: 1667: 1664: 1660: 1655: 1651: 1647: 1644: 1636: 1632: 1624: 1607: 1604: 1601: 1596: 1592: 1588: 1583: 1579: 1558: 1555: 1550: 1546: 1542: 1537: 1533: 1529: 1524: 1520: 1511: 1507: 1503: 1496: 1492: 1488: 1481: 1477: 1473: 1469: 1467: 1456:is linear in 1453: 1449: 1445: 1438: 1434: 1430: 1421: 1420:Taylor series 1417: 1416: 1402: 1395: 1380: 1376: 1372: 1363: 1346: 1343: 1340: 1335: 1331: 1327: 1322: 1318: 1309: 1308:ordinary cusp 1305: 1304: 1287: 1283: 1279: 1274: 1270: 1262: 1257: 1250: 1248: 1244: 1223: 1220: 1216: 1204: 1186: 1181: 1178: 1174: 1151: 1146: 1143: 1140: 1137: 1133: 1129: 1124: 1120: 1097: 1094: 1091: 1087: 1083: 1078: 1074: 1048: 1045: 1042: 1039: 1027: 1024: 1021: 992: 987: 984: 980: 953: 948: 945: 941: 914: 909: 905: 895:for the type 894: 876: 873: 870: 866: 862: 857: 853: 828: 823: 820: 817: 813: 809: 804: 800: 775: 770: 766: 733: 728: 723: 719: 709: 704: 702: 698: 694: 690: 686: 682: 678: 674: 670: 666: 662: 654: 640: 636: 632: 627: 623: 620: 612: 610: 608: 604: 600: 596: 592: 587: 583: 577: 572: 568: 563: 559:. The number 557: 551: 547: 543: 537: 533: 528: 525: 520: 515: 510: 486: 480: 474: 471: 469: 464: 455: 451: 447: 444: 442: 437: 426: 425: 424: 422: 418: 414: 410: 405: 400: 396: 391: 386: 382: 363: 360: 357: 351: 348: 345: 339: 332: 331: 330: 329: 324: 321: 316: 294: 287: 284: 279: 272: 265: 262: 247: 243: 238: 232: 227: 204: 198: 192: 189: 187: 182: 172: 166: 163: 161: 156: 145: 144: 143: 142: 138: 134: 129: 127: 123: 119: 115: 111: 102: 92: 89: 81: 71: 67: 61: 60: 54: 50: 46: 41: 32: 31: 19: 3024: 3004: 2981:Prym variety 2955:Stable curve 2945:Hodge bundle 2935:ELSV formula 2737:Fermat curve 2694:Plane curves 2657:Higher genus 2632:Applications 2557:Modular form 2417: 2389: 2349: 2334: 2318:smooth curve 2311: 2296:Applications 2285: 2276: 2267: 2258: 2249: 2236: 2137: 2128: 2115: 2106: 2097: 2088: 2079: 2070: 2061: 2052: 2039: 1789:is given by 1777: 1770: 1761: 1752: 1743: 1738: 1727: 1714: 1711: 1622: 1505: 1494: 1490: 1486: 1479: 1475: 1471: 1465: 1451: 1447: 1443: 1436: 1432: 1428: 1400: 1393: 1378: 1374: 1370: 1361: 1310:is given by 1307: 1242: 1205: 893:normal forms 705: 701:group action 679:in both the 667:upon by the 653:real numbers 638: 634: 630: 616: 607:neighborhood 588: 581: 575: 571:multiplicity 570: 566: 561: 555: 549: 542:power series 535: 531: 518: 508: 505: 421:neighborhood 417:parametrized 403: 389: 378: 325: 319: 314: 236: 230: 223: 130: 117: 113: 107: 84: 75: 64:Please help 56: 3010:singularity 2856:Polar curve 2355:wave fronts 1712:For a type 1635:wave fronts 617:Consider a 514:real number 226:derivatives 133:plane curve 110:mathematics 70:introducing 18:Double cusp 3082:Categories 2851:Dual curve 2479:Topics in 2378:References 2314:projecting 1508:(from 1396:(0, 0) = 0 1203:notation. 708:denoted by 677:coordinate 413:polynomial 78:April 2021 2964:Morphisms 2712:Bitangent 2328:(and for 1997:→ 1976:− 1952:± 1904:− 1880:± 1862:± 1840:. We can 1807:± 1781:and that 1589:− 1543:− 1530:− 1328:− 1187:± 1130:− 1046:− 1034:→ 993:− 915:± 863:± 810:± 776:± 729:± 626:variables 591:RenĂ© Thom 379:which is 2414:(1994). 2388:(1984). 2372:Cardioid 2361:See also 2351:Caustics 2135:divides 2086:divides 2077:is that 1734:), that 1631:caustics 1441:, where 1251:Examples 691:up into 683:and the 661:function 288:′ 266:′ 137:analytic 3035:Tacnode 3020:Crunode 2306:caustic 2245:quintic 2124:tacnode 2048:quartic 1238:⁠ 1208:⁠ 1201:⁠ 1166:⁠ 1064:⁠ 1011:⁠ 1007:⁠ 972:⁠ 968:⁠ 933:⁠ 929:⁠ 897:⁠ 790:⁠ 758:⁠ 746:⁠ 711:⁠ 699:of the 695:, i.e. 624:of two 569:or the 527:integer 419:, in a 246:tangent 118:spinode 66:improve 3015:Acnode 2928:Moduli 2426:  2400:  2234:where 2126:). If 2037:where 1828:where 1413:(0, 0) 748:where 697:orbits 685:target 681:source 643:where 628:, say 619:smooth 529:, and 506:where 407:is an 381:smooth 131:For a 2265:. If 2095:. If 1510:Greek 669:group 665:acted 659:is a 655:. So 605:of a 567:order 546:order 540:is a 512:is a 234:and 122:curve 51:, or 3025:Cusp 2424:ISBN 2398:ISBN 2353:and 2339:and 2256:and 2059:and 1836:and 1739:does 1633:and 1460:and 1387:and 651:are 647:and 593:and 524:even 114:cusp 112:, a 2243:is 2046:is 1768:). 1466:and 1422:of 1411:at 1306:An 1245:≥ 1 1112:to 703:. 671:of 584:= 2 544:of 387:of 256:lim 228:of 108:In 3084:: 2396:. 2392:. 2074:≥4 1922:4. 1756:≥4 1747:≥3 1731:≥2 1559:0. 1504:A 1493:, 1478:, 1464:, 1450:, 1435:, 1409:f 1377:, 637:, 586:. 516:, 139:, 128:. 55:, 47:, 3007:k 3005:A 2472:e 2465:t 2458:v 2432:. 2406:. 2289:4 2286:A 2280:2 2277:P 2271:2 2268:x 2262:2 2259:y 2253:2 2250:x 2240:2 2237:P 2220:2 2216:P 2212:+ 2207:2 2202:2 2198:x 2175:1 2171:P 2167:+ 2162:2 2157:1 2153:x 2141:1 2138:P 2132:1 2129:x 2119:3 2116:A 2110:1 2107:P 2101:1 2098:x 2092:1 2089:P 2083:1 2080:x 2071:A 2065:1 2062:y 2056:1 2053:x 2043:1 2040:P 2023:1 2019:P 2015:+ 2010:2 2005:1 2001:x 1994:4 1990:/ 1984:4 1980:Q 1971:2 1967:) 1963:2 1959:/ 1955:Q 1949:L 1946:( 1918:/ 1912:4 1908:Q 1899:2 1895:) 1891:2 1887:/ 1883:Q 1877:L 1874:( 1871:= 1868:Q 1865:L 1857:2 1853:L 1838:y 1834:x 1830:Q 1816:, 1813:Q 1810:L 1802:2 1798:L 1787:f 1783:L 1778:L 1773:f 1765:4 1762:A 1753:A 1744:A 1736:L 1728:A 1723:f 1718:4 1715:A 1697:. 1692:5 1688:x 1684:+ 1679:4 1675:x 1671:a 1668:= 1665:y 1661:, 1656:2 1652:t 1648:= 1645:x 1626:4 1623:A 1608:, 1605:0 1602:= 1597:5 1593:y 1584:2 1580:x 1556:= 1551:5 1547:y 1538:4 1534:x 1525:2 1521:x 1499:. 1497:) 1495:y 1491:x 1489:( 1487:f 1482:) 1480:y 1476:x 1474:( 1472:L 1462:y 1458:x 1454:) 1452:y 1448:x 1446:( 1444:L 1439:) 1437:y 1433:x 1431:( 1429:L 1424:f 1404:2 1401:A 1394:f 1389:y 1385:x 1381:) 1379:y 1375:x 1373:( 1371:f 1365:2 1362:A 1347:, 1344:0 1341:= 1336:3 1332:y 1323:2 1319:x 1288:3 1284:x 1280:= 1275:2 1271:y 1243:n 1224:n 1221:2 1217:A 1182:n 1179:2 1175:A 1152:. 1147:1 1144:+ 1141:n 1138:2 1134:y 1125:2 1121:x 1098:1 1095:+ 1092:k 1088:y 1084:+ 1079:2 1075:x 1052:) 1049:y 1043:, 1040:x 1037:( 1031:) 1028:y 1025:, 1022:x 1019:( 988:n 985:2 981:A 954:+ 949:n 946:2 942:A 910:k 906:A 877:1 874:+ 871:k 867:y 858:2 854:x 843:f 829:, 824:1 821:+ 818:k 814:y 805:2 801:x 771:k 767:A 754:f 750:k 734:, 724:k 720:A 657:f 649:y 645:x 641:) 639:y 635:x 633:( 631:f 582:m 576:F 562:m 556:m 550:k 538:) 536:t 534:( 532:S 519:m 509:a 487:, 484:) 481:t 478:( 475:S 472:= 465:y 456:m 452:t 448:a 445:= 438:x 404:F 390:F 364:, 361:0 358:= 355:) 352:y 349:, 346:x 343:( 340:F 320:t 301:) 298:) 295:t 292:( 285:f 280:/ 276:) 273:t 270:( 263:g 259:( 237:g 231:f 205:, 202:) 199:t 196:( 193:g 190:= 183:y 176:) 173:t 170:( 167:f 164:= 157:x 91:) 85:( 80:) 76:( 62:. 20:)

Index

Double cusp
list of references
related reading
external links
inline citations
improve
introducing
Learn how and when to remove this message

mathematics
curve
singular point of a curve
plane curve
analytic
parametric equation
derivatives
directional derivative
tangent
implicit equation
smooth
Taylor expansion
linear polynomial
Puiseux series
analytic function
polynomial
parametrized
neighborhood
real number
even
integer

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑