Knowledge (XXG)

Double layer (surface science)

Source 📝

1013:
by a two-step process. In the first step, when the molecules in the solution first approach a virgin surface that has no pre-existing surface charges, it may be possible that the atoms/molecules in the solution directly interact with the atoms on the solid surface to form strong overlap of electron clouds. Electron transfer occurs first to make the “neutral” atoms on solid surface become charged, i.e., the formation of ions. In the second step, if there are ions existing in the liquid, such as H and OH, the loosely distributed negative ions in the solution would be attracted to migrate toward the surface bonded ions due to electrostatic interactions, forming an EDL. Both electron transfer and ion transfer co-exist at liquid-solid interface.
365: 492:, expressed usually in C/m. This surface charge creates an electrostatic field that then affects the ions in the bulk of the liquid. This electrostatic field, in combination with the thermal motion of the ions, creates a counter charge, and thus screens the electric surface charge. The net electric charge in this screening diffuse layer is equal in magnitude to the net surface charge, but has the opposite polarity. As a result, the complete structure is electrically neutral. 194: 1017: 20: 480: 1012:
The formation of electrical double layer (EDL) has been traditionally assumed to be entirely dominated by ion adsorption and redistribution. With considering the fact that the contact electrification between solid-solid is dominated by electron transfer, it is suggested by Wang that the EDL is formed
683:
There is no general analytical solution for mixed electrolytes, curved surfaces or even spherical particles. There is an asymptotic solution for spherical particles with low charged DLs. In the case when electric potential over DL is less than 25 mV, the so-called Debye-Huckel approximation holds. It
913:
formation. With an electrode, it is possible to regulate the surface charge by applying an external electric potential. This application, however, is impossible in colloidal and porous double layers, because for colloidal particles, one does not have access to the interior of the particle to apply a
430:
His "supercapacitor" stored electrical charge partially in the Helmholtz double-layer and partially as the result of faradaic reactions with "pseudocapacitance" charge transfer of electrons and protons between electrode and electrolyte. The working mechanisms of pseudocapacitors are redox reactions,
395:
proposed the BDM model of the double-layer that included the action of the solvent in the interface. They suggested that the attached molecules of the solvent, such as water, would have a fixed alignment to the electrode surface. This first layer of solvent molecules displays a strong orientation to
368:
Schematic representation of a double layer on an electrode (BMD) model. 1. Inner Helmholtz plane, (IHP), 2. Outer Helmholtz plane (OHP), 3. Diffuse layer, 4. Solvated ions (cations) 5. Specifically adsorbed ions (redox ion, which contributes to the pseudocapacitance), 6. Molecules of the electrolyte
400:
of the solvent that varies with field strength. The IHP passes through the centers of these molecules. Specifically adsorbed, partially solvated ions appear in this layer. The solvated ions of the electrolyte are outside the IHP. Through the centers of these ions pass the OHP. The diffuse layer is
378:
as they approach the electrode. He called ions in direct contact with the electrode "specifically adsorbed ions". This model proposed the existence of three regions. The inner Helmholtz plane (IHP) passes through the centres of the specifically adsorbed ions. The outer Helmholtz plane (OHP) passes
27:
at the interface with a negatively-charged surface of a mineral solid. Blue + sphere: cations; red – spheres: anions. The number of cations is larger in the EDL close to the negatively-charged surface in order to neutralize these negative charges and to maintain electroneutrality. The drawing does
409:
Further research with double layers on ruthenium dioxide films in 1971 by Sergio Trasatti and Giovanni Buzzanca demonstrated that the electrochemical behavior of these electrodes at low voltages with specific adsorbed ions was like that of capacitors. The specific adsorption of the ions in this
426:
electrochemical capacitors. In 1991, he described the difference between 'Supercapacitor' and 'Battery' behavior in electrochemical energy storage. In 1999, he coined the term supercapacitor to explain the increased capacitance by surface redox reactions with faradaic charge transfer between
1319:
Gomila, Alexandre M. J.; PĂ©rez-MejĂ­as, Gonzalo; Nin-Hill, Alba; Guerra-Castellano, Alejandra; Casas-Ferrer, Laura; Ortiz-Tescari, Sthefany; DĂ­az-Quintana, Antonio; Samitier, Josep; Rovira, Carme; De la Rosa, Miguel A.; DĂ­az-Moreno, Irene; Gorostiza, Pau; Giannotti, Marina I.; Lagunas, Anna
343:
The Stern layer accounts for ions' finite size and consequently an ion's closest approach to the electrode is on the order of the ionic radius. The Stern model has its own limitations, namely that it effectively treats ions as point charges, assumes all significant interactions in the
524:
is used for estimating the degree of DL charge. A characteristic value of this electric potential in the DL is 25 mV with a maximum value around 100 mV (up to several volts on electrodes). The chemical composition of the sample at which the ζ-potential is 0 is called the
373:
D. C. Grahame modified the Stern model in 1947. He proposed that some ionic or uncharged species can penetrate the Stern layer, although the closest approach to the electrode is normally occupied by solvent molecules. This could occur if ions lose their
679: 471:
There are detailed descriptions of the interfacial DL in many books on colloid and interface science and microscale fluid transport. There is also a recent IUPAC technical report on the subject of interfacial double layer and related
339:
suggested combining the Helmholtz model with the Gouy-Chapman model: in Stern's model, some ions adhere to the electrode as suggested by Helmholtz, giving an internal Stern layer, while some form a Gouy-Chapman diffuse layer.
569:
The theory for a flat surface and a symmetrical electrolyte is usually referred to as the Gouy-Chapman theory. It yields a simple relationship between electric charge in the diffuse layer σ and the Stern potential Κ:
783: 487:
As stated by Lyklema, "...the reason for the formation of a "relaxed" ("equilibrium") double layer is the non-electric affinity of charge-determining ions for a surface..." This process leads to the buildup of an
274:
in 1913 both observed that capacitance was not a constant and that it depended on the applied potential and the ionic concentration. The "Gouy–Chapman model" made significant improvements by introducing a
832:
The thin DL model is valid for most aqueous systems because the Debye length is only a few nanometers in such cases. It breaks down only for nano-colloids in solution with ionic strengths close to water.
319:, electric fields extending several nanometers, and currents decreasing quasi exponentially with the distance at rate ~1 nm. This region is termed "Gouy-Chapman conduit" and is strongly regulated by 2151: 1114: 790:
The first one is "thin DL". This model assumes that DL is much thinner than the colloidal particle or capillary radius. This restricts the value of the Debye length and particle radius as following:
575: 1783:"Measurement and Interpretation of Electrokinetic Phenomena", International Union of Pure and Applied Chemistry, Technical Report, published in Pure Appl.Chem., vol 77, 10, pp.1753-1805, 2005 1835:
Jiang, Jingkun; Oberdörster, GĂŒnter; Biswas, Pratim (25 June 2008). "Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies".
323:, which adds one negative charge to the protein surface that disrupts cationic depletion and prevents long-distance charge transport. Similar effects are observed at the redox active site of 991: 1020:
The "two-step" model (Wang model) for the formation of electric double-layer (EDL) at a liquid-solid interface, in which the electron transfer plays a dominant role in the first step.
451:
reactions, in which two chemical species change only in their charge, with an electron jumping. For redox reactions without making or breaking bonds, Marcus theory takes the place of
874:
The last model introduces "overlapped DLs". This is important in concentrated dispersions and emulsions when distances between particles become comparable with the Debye length.
1542:
Nakamura, Masashi; Sato, Narumasa; Hoshi, Nagahiro; Sakata, Osami (2011). "Outer Helmholtz Plane of the Electrical Double Layer Formed at the Solid Electrode-Liquid Interface".
251:
This model, while a good foundation for the description of the interface, does not consider important factors including diffusion/mixing of ions in solution, the possibility of
566:
The electric field strength inside the DL can be anywhere from zero to over 10 V/m. These steep electric potential gradients are the reason for the importance of the DLs.
502:. There is a conventionally introduced slipping plane that separates mobile fluid from fluid that remains attached to the surface. Electric potential at this plane is called 866: 817: 447:
explains the rates of electron transfer reactions—the rate at which an electron can move from one chemical species to another. It was originally formulated to address
1246:
Lagunas, Anna; Guerra-Castellano, Alejandra; Nin-Hill, Alba; DĂ­az-Moreno, Irene; De la Rosa, Miguel A.; Samitier, Josep; Rovira, Carme; Gorostiza, Pau (2018-12-04).
410:
region of potential could also involve a partial charge transfer between the ion and the electrode. It was the first step towards understanding pseudocapacitance.
697: 233:
dielectric and stores charge electrostatically. Below the electrolyte's decomposition voltage, the stored charge is linearly dependent on the voltage applied.
1118: 1144: 379:
through the centres of solvated ions at the distance of their closest approach to the electrode. Finally the diffuse layer is the region beyond the OHP.
1198: 563:. In aqueous solutions it is typically on the scale of a few nanometers and the thickness decreases with increasing concentration of the electrolyte. 225:
electrodes immersed in electrolyte solutions repel the co-ions of the charge while attracting counterions to their surfaces. Two layers of opposite
307: 104:
the first layer. This second layer is loosely associated with the object. It is made of free ions that move in the fluid under the influence of
1211: 2135: 2114: 2016:"Quantifying electron-transfer and ion-transfer in liquid-solid contact electrification and the formation mechanism of electric double-layer" 1967: 1819: 1757: 1182: 460: 1671: 1082:"Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche" 533:. It is usually determined by the solution pH value, since protons and hydroxyl ions are the charge-determining ions for most surfaces. 439:
The physical and mathematical basics of electron charge transfer absent chemical bonds leading to pseudocapacitance was developed by
280: 229:
form at the interface between electrode and electrolyte. In 1853, he showed that an electrical double layer (DL) is essentially a
787:
There are several asymptotic models which play important roles in theoretical developments associated with the interfacial DL.
448: 1377:
LĂłpez‐Ortiz, Manuel; Zamora, Ricardo A.; Giannotti, Marina InĂ©s; Hu, Chen; Croce, Roberta; Gorostiza, Pau (February 2022).
1379:"Distance and Potential Dependence of Charge Transport Through the Reaction Center of Individual Photosynthetic Complexes" 1046: 2171: 279:
model of the DL. In this model, the charge distribution of ions as a function of distance from the metal surface allows
119: 197:
Simplified illustration of the potential development in the area and in the further course of a Helmholtz double layer.
293:
Gouy-Chapman layers may bear special relevance in bioelectrochemistry. The observation of long-distance inter-protein
1636:
Conway, B.E. (May 1991), "Transition from 'Supercapacitor' to 'Battery' Behavior in Electrochemical Energy Storage",
1747: 2166: 1056: 1001: 793: 953: 2181: 1151: 826: 541: 517:. Electric potential difference between the fluid bulk and the surface is called the electric surface potential. 513:
The electric potential on the external boundary of the Stern layer versus the bulk electrolyte is referred to as
271: 177: 2176: 940: 934: 503: 473: 364: 316: 237: 173: 101: 674:{\displaystyle \sigma ^{d}=-{\sqrt {{8\varepsilon _{0}}{\varepsilon _{m}}CRT}}\sinh {\frac {F\Psi ^{d}}{2RT}}} 1186: 871:
This model can be useful for some nano-colloids and non-polar fluids, where the Debye length is much larger.
489: 456: 392: 353: 320: 909:
The primary difference between a double layer on an electrode and one on an interface is the mechanism of
452: 256: 1707:
Russel, W.B., Saville, D.A. and Schowalter, W.R. "Colloidal Dispersions", Cambridge University Press,1989
918: 218: 210: 115: 2191: 2075: 1844: 1641: 1594: 1333: 1259: 1089: 899: 526: 297:
through the aqueous solution has been attributed to a diffuse region between redox partner proteins (
93: 1888: 1478: 1218: 1041: 842: 549: 545: 241: 226: 1585:
J. O’m. Bockris; M. A. V. Devanathan; K. MĂŒllen (1963). "On the structure of charged interfaces".
1996: 1929: 1903: 1860: 1618: 1459: 1424: 1301: 903: 891: 530: 419: 284: 267: 154: 1889:"Scalable Surface Area Characterization by Electrokinetic Analysis of Complex Anion Adsorption" 1784: 1668: 2131: 2110: 2091: 2045: 1963: 1921: 1815: 1753: 1610: 1567: 1559: 1524: 1516: 1499:
Grahame, David C. (1947). "The Electrical Double Layer and the Theory of Electrocapillarity".
1416: 1408: 1359: 1293: 1275: 1178: 440: 294: 287: 1960:
Characterization of liquids, nano- and micro- particulates and porous bodies using Ultrasound
1378: 1248:"Long distance electron transfer through the aqueous solution between redox partner proteins" 315:) that is depleted of cations in comparison to the solution bulk, thereby leading to reduced 2083: 2035: 2027: 1988: 1913: 1852: 1687: 1649: 1602: 1551: 1508: 1451: 1398: 1390: 1349: 1341: 1283: 1267: 1097: 1030: 922: 836:
The opposing "thick DL" model assumes that the Debye length is larger than particle radius:
499: 193: 146: 105: 24: 2186: 1675: 822: 537: 514: 423: 375: 222: 135: 77: 33: 821:
This model offers tremendous simplifications for many subsequent applications. Theory of
2079: 1848: 1645: 1598: 1587:
Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
1337: 1263: 1093: 396:
the electric field depending on the charge. This orientation has great influence on the
356:
to be constant throughout the double layer, and that fluid viscosity is constant plane.
2040: 2015: 1354: 1321: 1288: 1247: 1187:
Chapter 2, Electrode/electrolyte interfaces: Structure and kinetics of charge transfer.
1061: 1016: 997: 910: 521: 507: 214: 109: 81: 2066:
Stillinger, Frank H.; Kirkwood, John G. (1960). "Theory of the Diffuse Double Layer".
1698:
Dukhin, S.S. & Derjaguin, B.V. "Electrokinetic Phenomena", J.Willey and Sons, 1974
2160: 2000: 1463: 1428: 1177:
Srinivasan S. (2006) Fuel cells, from Fundamentals to Applications, Springer eBooks,
444: 345: 162: 97: 1864: 1800:
Lyklema, J. "Fundamentals of Interface and Colloid Science", vol.2, page.3.208, 1995
1622: 1305: 1933: 1199:
Electrochemical double-layer capacitors using carbon nanotube electrode structures.
1051: 556: 397: 388: 302: 73: 2125: 2104: 1992: 559:, Îș. It is reciprocally proportional to the square root of the ion concentration 2127:
Principles of Colloid and Surface Chemistry, Third Edition, Revised and Expanded
1036: 324: 127: 2031: 1716:
Kruyt, H.R. "Colloid Science", Elsevier: Volume 1, Irreversible systems, (1952)
1345: 1271: 96:. The second layer is composed of ions attracted to the surface charge via the 1856: 496: 336: 298: 252: 131: 65: 2095: 1614: 1563: 1520: 1412: 1279: 1101: 459:
which was derived for reactions with structural changes. Marcus received the
1946:
Hunter, R.J. "Foundations of Colloid Science", Oxford University Press, 1989
276: 139: 2049: 1979:
Wang, Z.L.; Wang, A.C. (2019). "On the origin of contact electrification".
1925: 1606: 1571: 1555: 1528: 1455: 1420: 1394: 1363: 1322:"Phosphorylation disrupts long-distance electron transport in cytochrome c" 1297: 495:
The diffuse layer, or at least part of it, can move under the influence of
112:
rather than being firmly anchored. It is thus called the "diffuse layer".
1877:
V.S. Bogotsky, Fundamentals of Electrochemistry, Wiley-Interscience, 2006.
19: 778:{\displaystyle {\Psi }(r)={\Psi ^{d}}{\frac {a}{r}}\exp({-\kappa }(r-a))} 230: 89: 1763: 1512: 479: 126:
or porous bodies with particles or pores (respectively) on the scale of
1749:
Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
1403: 895: 349: 245: 145:
DLs play a fundamental role in many everyday substances. For instance,
123: 69: 53: 2087: 1917: 1654: 165:
fluid-based systems, such as blood, paint, ink and ceramic and cement
166: 158: 1442:
Stern, O. (1924). "Zur Theorie der Elektrolytischen Doppelschicht".
1081: 894:
near a surface, and has a significant influence on the behaviour of
1908: 939:
EDLs have an additional parameter defining their characterization:
1015: 363: 192: 61: 57: 1887:
Hanaor, D.A.H.; Ghadiri, M.; Chrzanowski, W.; Gan, Y. (2014).
1812:
Colloidal dispersions : suspensions, emulsions, and foams
335:
The Gouy-Chapman model fails for highly charged DLs. In 1924,
150: 85: 134:. However, DLs are important to other phenomena, such as the 1678:
Central Electrochemical Research Institute, (November, 2008)
1640:(in German), vol. 138, no. 6, pp. 1539–1548, 1088:(in German), vol. 165, no. 6, pp. 211–233, 1667:
A.K. Shukla, T.P. Kumar, Electrochemistry Encyclopedia,
422:
conducted extensive fundamental and development work on
28:
not explicitly show the negative charges of the surface.
1145:"A survey of electrochemical supercapacitor technology" 205:
conductor is brought in contact with a solid or liquid
684:
yields the following expression for electric potential
255:
onto the surface, and the interaction between solvent
956: 845: 796: 700: 578: 240:
independent from the charge density depending on the
1688:
Rudolph A. Marcus: The Nobel Prize in Chemistry 1992
1669:
Pillars of modern electrochemistry: A brief history
153:droplets are covered with a DL that prevents their 2124:Paul C. Hiemenz; Raj Rajagopalan (18 March 1997). 2014:Lin, S.Q.; Xu, L.; Wang, A.C.; Wang, Z.L. (2020). 985: 860: 811: 777: 688:in the spherical DL as a function of the distance 673: 23:Schematic of the electrical double layer (EDL) in 16:Molecular interface between a surface and a fluid 555:The characteristic thickness of the DL is the 118:DLs are most apparent in systems with a large 184:Development of the (interfacial) double layer 80:surrounding the object. The first layer, the 8: 1173: 1171: 1008:Electron transfer in electrical double layer 986:{\displaystyle C={\frac {d\sigma }{d\Psi }}} 209:conductor (electrolyte), a common boundary ( 2106:Principles of Colloid and Surface Chemistry 84:(either positive or negative), consists of 1796: 1794: 1792: 1138: 1136: 76:. The DL refers to two parallel layers of 2039: 1954: 1952: 1907: 1653: 1402: 1353: 1287: 963: 955: 844: 795: 749: 730: 723: 718: 701: 699: 651: 641: 617: 612: 605: 597: 595: 583: 577: 290:away from the surface of the fluid bulk. 1741: 1739: 1737: 478: 18: 1810:Morrison, Ian D.; Ross, Sydney (2002). 1072: 943:. Differential capacitance, denoted as 483:detailed illustration of interfacial DL 248:and the thickness of the double-layer. 1638:Journal of the Electrochemical Society 947:, is described by the equation below: 236:This early model predicted a constant 1814:(2nd ed.). New York, NY: Wiley. 1033:(structure of semiconductor junction) 536:Zeta potential can be measured using 56:of an object when it is exposed to a 52:) is a structure that appears on the 7: 1241: 1239: 890:) is the result of the variation of 898:and other surfaces in contact with 825:is just one example. The theory of 431:intercalation and electrosorption. 977: 720: 702: 648: 14: 1837:Journal of Nanoparticle Research 2068:The Journal of Chemical Physics 1958:Dukhin, A. S. and Goetz, P. J. 510:(also denoted as ζ-potential). 383:Bockris/Devanathan/MĂŒller (BDM) 161:. DLs exist in practically all 1752:. Cambridge University Press. 772: 769: 757: 746: 712: 706: 449:outer sphere electron transfer 221:was the first to realize that 1: 1444:Zeitschrift fĂŒr Elektrochemie 1115:"The electrical double layer" 1086:Annalen der Physik und Chemie 1047:Interface and colloid science 861:{\displaystyle \kappa a<1} 812:{\displaystyle \kappa a\gg 1} 172:The DL is closely related to 1993:10.1016/j.mattod.2019.05.016 281:Maxwell–Boltzmann statistics 120:surface-area-to-volume ratio 2152:The Electrical Double Layer 1210:Ehrenstein, Gerald (2001). 401:the region beyond the OHP. 2208: 2032:10.1038/s41467-019-14278-9 1346:10.1038/s41467-022-34809-1 1272:10.1038/s41467-018-07499-x 1057:Poisson-Boltzmann equation 1002:electric surface potential 932: 917:EDLs are analogous to the 692:from the particle center: 391:, M. A. V. Devanathan and 1857:10.1007/s11051-008-9446-4 1728:Theoretical Microfluidics 827:electroacoustic phenomena 542:electroacoustic phenomena 463:in 1992 for this theory. 178:electroacoustic phenomena 2103:Paul C. Hiemenz (1986). 1674:August 20, 2013, at the 1477:SMIRNOV, Gerald (2011). 1102:10.1002/andp.18531650603 941:differential capacitance 935:Differential capacitance 929:Differential capacitance 878:Electrical double layers 504:electrokinetic potential 474:electrokinetic phenomena 467:Mathematical description 461:Nobel Prize in Chemistry 325:photosynthetic complexes 283:to be applied. Thus the 238:differential capacitance 174:electrokinetic phenomena 60:. The object might be a 1479:"Electric Double Layer" 884:electrical double layer 490:electric surface charge 457:transition state theory 418:Between 1975 and 1980, 354:dielectric permittivity 288:decreases exponentially 92:onto the object due to 46:electrical double layer 1607:10.1098/rspa.1963.0114 1556:10.1002/cphc.201100011 1456:10.1002/bbpc.192400182 1395:10.1002/smll.202104366 1143:Adam Marcus Namisnyk. 1117:. 2011. Archived from 1080:Helmholtz, H. (1853), 1021: 987: 914:potential difference. 862: 813: 779: 675: 484: 370: 198: 29: 2020:Nature Communications 1326:Nature Communications 1252:Nature Communications 1019: 988: 863: 814: 780: 676: 482: 427:electrodes and ions. 367: 272:David Leonard Chapman 219:Hermann von Helmholtz 196: 94:chemical interactions 22: 1746:Kirby, B.J. (2010). 1224:on 28 September 2011 954: 843: 829:is another example. 794: 698: 576: 527:point of zero charge 149:exists only because 2172:Colloidal chemistry 2080:1960JChPh..33.1282S 1902:(50): 15143–15152. 1849:2009JNR....11...77J 1646:1991JElS..138.1539C 1599:1963RSPSA.274...55B 1513:10.1021/cr60130a002 1338:2022NatCo..13.7100G 1264:2018NatCo...9.5157L 1094:1853AnP...165..211H 1042:Electroosmotic pump 904:fast ion conductors 550:electroosmotic flow 546:streaming potential 259:and the electrode. 244:of the electrolyte 242:dielectric constant 106:electric attraction 1726:Bruus, H. (2007). 1022: 983: 892:electric potential 858: 809: 775: 671: 531:iso-electric point 485: 420:Brian Evans Conway 371: 285:electric potential 268:Louis Georges Gouy 199: 30: 2167:Chemical mixtures 2137:978-0-8247-9397-5 2116:978-0-8247-7476-9 2088:10.1063/1.1731401 1968:978-0-444-63908-0 1962:, Elsevier, 2017 1918:10.1021/la503581e 1821:978-0-471-17625-1 1759:978-0-521-11903-0 1655:10.1149/1.2085829 1183:978-0-387-35402-6 981: 738: 669: 633: 441:Rudolph A. Marcus 405:Trasatti/Buzzanca 295:electron transfer 44:, also called an 2199: 2182:Electrochemistry 2141: 2120: 2099: 2074:(5): 1282–1290. 2054: 2053: 2043: 2011: 2005: 2004: 1976: 1970: 1956: 1947: 1944: 1938: 1937: 1911: 1893: 1884: 1878: 1875: 1869: 1868: 1832: 1826: 1825: 1807: 1801: 1798: 1787: 1781: 1775: 1774: 1772: 1771: 1762:. Archived from 1743: 1732: 1731: 1723: 1717: 1714: 1708: 1705: 1699: 1696: 1690: 1685: 1679: 1665: 1659: 1658: 1657: 1633: 1627: 1626: 1582: 1576: 1575: 1550:(8): 1430–1434. 1539: 1533: 1532: 1501:Chemical Reviews 1496: 1490: 1489: 1487: 1485: 1474: 1468: 1467: 1439: 1433: 1432: 1406: 1374: 1368: 1367: 1357: 1316: 1310: 1309: 1291: 1243: 1234: 1233: 1231: 1229: 1223: 1217:. Archived from 1216: 1212:"Surface charge" 1207: 1201: 1196: 1190: 1175: 1166: 1165: 1163: 1162: 1156: 1150:. Archived from 1149: 1140: 1131: 1130: 1128: 1126: 1111: 1105: 1104: 1077: 1031:Depletion region 992: 990: 989: 984: 982: 980: 972: 964: 867: 865: 864: 859: 818: 816: 815: 810: 784: 782: 781: 776: 756: 739: 731: 729: 728: 727: 705: 680: 678: 677: 672: 670: 668: 657: 656: 655: 642: 634: 623: 622: 621: 611: 610: 609: 596: 588: 587: 213:) among the two 147:homogenized milk 25:aqueous solution 2207: 2206: 2202: 2201: 2200: 2198: 2197: 2196: 2177:Surface science 2157: 2156: 2148: 2138: 2123: 2117: 2102: 2065: 2062: 2060:Further reading 2057: 2013: 2012: 2008: 1981:Materials Today 1978: 1977: 1973: 1957: 1950: 1945: 1941: 1891: 1886: 1885: 1881: 1876: 1872: 1834: 1833: 1829: 1822: 1809: 1808: 1804: 1799: 1790: 1782: 1778: 1769: 1767: 1760: 1745: 1744: 1735: 1725: 1724: 1720: 1715: 1711: 1706: 1702: 1697: 1693: 1686: 1682: 1676:Wayback Machine 1666: 1662: 1635: 1634: 1630: 1593:(1356): 55–79. 1584: 1583: 1579: 1541: 1540: 1536: 1498: 1497: 1493: 1483: 1481: 1476: 1475: 1471: 1441: 1440: 1436: 1376: 1375: 1371: 1318: 1317: 1313: 1245: 1244: 1237: 1227: 1225: 1221: 1214: 1209: 1208: 1204: 1197: 1193: 1176: 1169: 1160: 1158: 1154: 1147: 1142: 1141: 1134: 1124: 1122: 1113: 1112: 1108: 1079: 1078: 1074: 1070: 1027: 1010: 996:where σ is the 973: 965: 952: 951: 937: 931: 902:or solid-state 880: 841: 840: 823:electrophoresis 792: 791: 719: 696: 695: 658: 647: 643: 613: 601: 579: 574: 573: 538:electrophoresis 515:Stern potential 469: 437: 424:ruthenium oxide 416: 407: 389:J. O'M. Bockris 385: 376:solvation shell 362: 333: 321:phosphorylation 313: 265: 191: 186: 136:electrochemical 100:, electrically 34:surface science 17: 12: 11: 5: 2205: 2203: 2195: 2194: 2189: 2184: 2179: 2174: 2169: 2159: 2158: 2155: 2154: 2147: 2146:External links 2144: 2143: 2142: 2136: 2121: 2115: 2100: 2061: 2058: 2056: 2055: 2006: 1971: 1948: 1939: 1879: 1870: 1827: 1820: 1802: 1788: 1776: 1758: 1733: 1718: 1709: 1700: 1691: 1680: 1660: 1628: 1577: 1534: 1507:(3): 441–501. 1491: 1469: 1450:(21–22): 508. 1434: 1389:(7): 2104366. 1369: 1320:(2022-11-19). 1311: 1235: 1202: 1191: 1167: 1132: 1121:on 31 May 2011 1106: 1071: 1069: 1066: 1065: 1064: 1062:Supercapacitor 1059: 1054: 1049: 1044: 1039: 1034: 1026: 1023: 1009: 1006: 998:surface charge 994: 993: 979: 976: 971: 968: 962: 959: 933:Main article: 930: 927: 911:surface charge 879: 876: 869: 868: 857: 854: 851: 848: 808: 805: 802: 799: 774: 771: 768: 765: 762: 759: 755: 752: 748: 745: 742: 737: 734: 726: 722: 717: 714: 711: 708: 704: 667: 664: 661: 654: 650: 646: 640: 637: 632: 629: 626: 620: 616: 608: 604: 600: 594: 591: 586: 582: 522:zeta potential 508:zeta potential 468: 465: 436: 433: 415: 412: 406: 403: 384: 381: 361: 358: 332: 329: 311: 264: 261: 257:dipole moments 190: 187: 185: 182: 110:thermal motion 82:surface charge 15: 13: 10: 9: 6: 4: 3: 2: 2204: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2175: 2173: 2170: 2168: 2165: 2164: 2162: 2153: 2150: 2149: 2145: 2139: 2133: 2130:. CRC Press. 2129: 2128: 2122: 2118: 2112: 2109:. M. Dekker. 2108: 2107: 2101: 2097: 2093: 2089: 2085: 2081: 2077: 2073: 2069: 2064: 2063: 2059: 2051: 2047: 2042: 2037: 2033: 2029: 2025: 2021: 2017: 2010: 2007: 2002: 1998: 1994: 1990: 1986: 1982: 1975: 1972: 1969: 1965: 1961: 1955: 1953: 1949: 1943: 1940: 1935: 1931: 1927: 1923: 1919: 1915: 1910: 1905: 1901: 1897: 1890: 1883: 1880: 1874: 1871: 1866: 1862: 1858: 1854: 1850: 1846: 1842: 1838: 1831: 1828: 1823: 1817: 1813: 1806: 1803: 1797: 1795: 1793: 1789: 1786: 1780: 1777: 1766:on 2019-04-28 1765: 1761: 1755: 1751: 1750: 1742: 1740: 1738: 1734: 1729: 1722: 1719: 1713: 1710: 1704: 1701: 1695: 1692: 1689: 1684: 1681: 1677: 1673: 1670: 1664: 1661: 1656: 1651: 1647: 1643: 1639: 1632: 1629: 1624: 1620: 1616: 1612: 1608: 1604: 1600: 1596: 1592: 1588: 1581: 1578: 1573: 1569: 1565: 1561: 1557: 1553: 1549: 1545: 1538: 1535: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1502: 1495: 1492: 1480: 1473: 1470: 1465: 1461: 1457: 1453: 1449: 1445: 1438: 1435: 1430: 1426: 1422: 1418: 1414: 1410: 1405: 1400: 1396: 1392: 1388: 1384: 1380: 1373: 1370: 1365: 1361: 1356: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1315: 1312: 1307: 1303: 1299: 1295: 1290: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1257: 1253: 1249: 1242: 1240: 1236: 1220: 1213: 1206: 1203: 1200: 1195: 1192: 1189:(769 kB) 1188: 1184: 1180: 1174: 1172: 1168: 1157:on 2014-12-22 1153: 1146: 1139: 1137: 1133: 1120: 1116: 1110: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1076: 1073: 1067: 1063: 1060: 1058: 1055: 1053: 1050: 1048: 1045: 1043: 1040: 1038: 1035: 1032: 1029: 1028: 1024: 1018: 1014: 1007: 1005: 1003: 1000:and ψ is the 999: 974: 969: 966: 960: 957: 950: 949: 948: 946: 942: 936: 928: 926: 924: 920: 915: 912: 907: 905: 901: 897: 893: 889: 885: 877: 875: 872: 855: 852: 849: 846: 839: 838: 837: 834: 830: 828: 824: 819: 806: 803: 800: 797: 788: 785: 766: 763: 760: 753: 750: 743: 740: 735: 732: 724: 715: 709: 693: 691: 687: 681: 665: 662: 659: 652: 644: 638: 635: 630: 627: 624: 618: 614: 606: 602: 598: 592: 589: 584: 580: 571: 567: 564: 562: 558: 553: 551: 547: 543: 539: 534: 532: 528: 523: 518: 516: 511: 509: 505: 501: 498: 493: 491: 481: 477: 475: 466: 464: 462: 458: 454: 450: 446: 445:Marcus Theory 442: 434: 432: 428: 425: 421: 413: 411: 404: 402: 399: 394: 390: 382: 380: 377: 366: 359: 357: 355: 351: 347: 346:diffuse layer 341: 338: 330: 328: 326: 322: 318: 314: 310: 305: 304: 300: 296: 291: 289: 286: 282: 278: 273: 269: 262: 260: 258: 254: 249: 247: 243: 239: 234: 232: 228: 224: 220: 216: 212: 208: 204: 195: 188: 183: 181: 179: 175: 170: 168: 164: 163:heterogeneous 160: 156: 152: 148: 143: 141: 138:behaviour of 137: 133: 129: 125: 121: 117: 113: 111: 107: 103: 99: 98:Coulomb force 95: 91: 87: 83: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 39: 35: 26: 21: 2126: 2105: 2071: 2067: 2023: 2019: 2009: 1984: 1980: 1974: 1959: 1942: 1899: 1895: 1882: 1873: 1843:(1): 77–89. 1840: 1836: 1830: 1811: 1805: 1779: 1768:. Retrieved 1764:the original 1748: 1727: 1721: 1712: 1703: 1694: 1683: 1663: 1637: 1631: 1590: 1586: 1580: 1547: 1544:ChemPhysChem 1543: 1537: 1504: 1500: 1494: 1482:. Retrieved 1472: 1447: 1443: 1437: 1386: 1382: 1372: 1329: 1325: 1314: 1255: 1251: 1226:. Retrieved 1219:the original 1205: 1194: 1159:. Retrieved 1152:the original 1123:. Retrieved 1119:the original 1109: 1085: 1075: 1052:Nanofluidics 1011: 995: 944: 938: 919:double layer 916: 908: 887: 883: 881: 873: 870: 835: 831: 820: 789: 786: 694: 689: 685: 682: 572: 568: 565: 560: 557:Debye length 554: 535: 519: 512: 494: 486: 470: 453:Henry Eyring 438: 429: 417: 408: 398:permittivity 393:Klaus MĂŒller 386: 372: 342: 334: 308: 301: 292: 270:in 1910 and 266: 263:Gouy–Chapman 250: 235: 206: 202: 200: 171: 144: 122:, such as a 114: 64:particle, a 49: 45: 41: 38:double layer 37: 31: 2192:Soft matter 1404:2445/191184 1332:(1): 7100. 1258:(1): 5157. 1037:DLVO theory 299:cytochromes 155:coagulation 128:micrometres 116:Interfacial 74:porous body 68:, a liquid 2161:Categories 2026:(1): 399. 1909:2106.03411 1770:2010-01-15 1161:2012-12-10 1068:References 497:tangential 352:, assumes 337:Otto Stern 253:adsorption 203:electronic 140:electrodes 132:nanometres 88:which are 66:gas bubble 2096:0021-9606 2001:189987682 1615:2053-9169 1564:1439-4235 1521:0009-2665 1464:138033996 1429:244922892 1413:1613-6810 1280:2041-1723 978:Ψ 970:σ 900:solutions 847:κ 804:≫ 798:κ 764:− 754:κ 751:− 744:⁡ 721:Ψ 703:Ψ 649:Ψ 639:⁡ 615:ε 603:ε 593:− 581:σ 387:In 1963, 350:Coulombic 317:screening 231:molecular 217:appears. 211:interface 189:Helmholtz 102:screening 2050:31964882 1926:25495551 1896:Langmuir 1865:95536100 1672:Archived 1623:94958336 1572:21557434 1529:18895519 1484:23 April 1421:34874621 1364:36402842 1306:54444826 1298:30514833 1125:23 April 1025:See also 896:colloids 520:Usually 227:polarity 201:When an 90:adsorbed 2076:Bibcode 2041:6972942 1934:4697498 1845:Bibcode 1642:Bibcode 1595:Bibcode 1355:9675734 1334:Bibcode 1289:6279779 1260:Bibcode 1090:Bibcode 529:or the 369:solvent 360:Grahame 277:diffuse 246:solvent 223:charged 124:colloid 72:, or a 70:droplet 54:surface 2187:Matter 2134:  2113:  2094:  2048:  2038:  1999:  1987:: 34. 1966:  1932:  1924:  1863:  1818:  1756:  1621:  1613:  1570:  1562:  1527:  1519:  1462:  1427:  1419:  1411:  1362:  1352:  1304:  1296:  1286:  1278:  1228:30 May 1181:  923:plasma 548:, and 500:stress 435:Marcus 414:Conway 215:phases 167:slurry 159:butter 78:charge 1997:S2CID 1930:S2CID 1904:arXiv 1892:(PDF) 1861:S2CID 1785:(pdf) 1619:S2CID 1460:S2CID 1425:S2CID 1383:Small 1302:S2CID 1222:(PDF) 1215:(PDF) 1155:(PDF) 1148:(PDF) 331:Stern 207:ionic 157:into 62:solid 58:fluid 2132:ISBN 2111:ISBN 2092:ISSN 2046:PMID 1964:ISBN 1922:PMID 1816:ISBN 1754:ISBN 1611:ISSN 1568:PMID 1560:ISSN 1525:PMID 1517:ISSN 1486:2013 1417:PMID 1409:ISSN 1360:PMID 1294:PMID 1276:ISSN 1230:2011 1179:ISBN 1127:2013 882:The 853:< 636:sinh 348:are 306:and 176:and 108:and 86:ions 36:, a 2084:doi 2036:PMC 2028:doi 1989:doi 1914:doi 1853:doi 1650:doi 1603:doi 1591:274 1552:doi 1509:doi 1452:doi 1399:hdl 1391:doi 1350:PMC 1342:doi 1284:PMC 1268:doi 1098:doi 921:in 888:EDL 741:exp 506:or 455:'s 151:fat 130:to 50:EDL 32:In 2163:: 2090:. 2082:. 2072:33 2070:. 2044:. 2034:. 2024:11 2022:. 2018:. 1995:. 1985:30 1983:. 1951:^ 1928:. 1920:. 1912:. 1900:30 1898:. 1894:. 1859:. 1851:. 1841:11 1839:. 1791:^ 1736:^ 1648:, 1617:. 1609:. 1601:. 1589:. 1566:. 1558:. 1548:12 1546:. 1523:. 1515:. 1505:41 1503:. 1458:. 1448:30 1446:. 1423:. 1415:. 1407:. 1397:. 1387:18 1385:. 1381:. 1358:. 1348:. 1340:. 1330:13 1328:. 1324:. 1300:. 1292:. 1282:. 1274:. 1266:. 1254:. 1250:. 1238:^ 1185:, 1170:^ 1135:^ 1096:, 1084:, 1004:. 925:. 906:. 552:. 544:, 540:, 476:. 443:. 327:. 180:. 169:. 142:. 48:, 42:DL 2140:. 2119:. 2098:. 2086:: 2078:: 2052:. 2030:: 2003:. 1991:: 1936:. 1916:: 1906:: 1867:. 1855:: 1847:: 1824:. 1773:. 1730:. 1652:: 1644:: 1625:. 1605:: 1597:: 1574:. 1554:: 1531:. 1511:: 1488:. 1466:. 1454:: 1431:. 1401:: 1393:: 1366:. 1344:: 1336:: 1308:. 1270:: 1262:: 1256:9 1232:. 1164:. 1129:. 1100:: 1092:: 975:d 967:d 961:= 958:C 945:C 886:( 856:1 850:a 807:1 801:a 773:) 770:) 767:a 761:r 758:( 747:( 736:r 733:a 725:d 716:= 713:) 710:r 707:( 690:r 686:Κ 666:T 663:R 660:2 653:d 645:F 631:T 628:R 625:C 619:m 607:0 599:8 590:= 585:d 561:C 312:1 309:c 303:c 40:(

Index


aqueous solution
surface science
surface
fluid
solid
gas bubble
droplet
porous body
charge
surface charge
ions
adsorbed
chemical interactions
Coulomb force
screening
electric attraction
thermal motion
Interfacial
surface-area-to-volume ratio
colloid
micrometres
nanometres
electrochemical
electrodes
homogenized milk
fat
coagulation
butter
heterogeneous

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑