Knowledge (XXG)

Magic number (physics)

Source 📝

636: 140: 272: 31: 297:, one of her colleagues in the Manhattan Project. Two years later, in 1950, a new publication followed in which she attributed the shell closures at the magic numbers to spin-orbit coupling. According to Steven Moszkowski, a student of Goeppert Mayer, the term "magic number" was coined by Wigner: "Wigner too believed in the 263:). It is now believed that the sequence of spherical magic numbers cannot be extended in this way. Further predicted magic numbers are 114, 122, 124, and 164 for protons as well as 184, 196, 236, and 318 for neutrons. However, more modern calculations predict 228 and 308 for neutrons, along with 184 and 196. 1326:
Dvorak, J.; Brüchle, W.; Chelnokov, M.; Dressler, R.; Düllmann, Ch. E.; Eberhardt, K.; Gorshkov, V.; Jäger, E.; Krücken, R.; Kuznetsov, A.; Nagame, Y.; Nebel, F.; Novackova, Z.; Qin, Z.; Schädel, M.; Schausten, B.; Schimpf, E.; Semchenkov, A.; Thörle, P.; Türler, A.; Wegrzecki, M.; Wierczinski, B.;
463:
that are unstable, and represent endpoints beyond which stability drops off rapidly. Nickel-48, discovered in 1999, is the most proton-rich doubly magic nuclide known. At the other extreme, nickel-78 is also doubly magic, with 28 protons and 50 neutrons, a ratio observed only in much heavier
375:
process. Double beta decay in general is so rare that several nuclides exist which are predicted to decay by this mechanism but in which no such decay has yet been observed. Even in nuclides whose double beta decay has been confirmed through observations, half lives usually exceed the
414:-48 are doubly magic because calcium-48 has 20 protons and 28 neutrons while nickel-48 has 28 protons and 20 neutrons. Calcium-48 is very neutron-rich for such a relatively light element, but like calcium-40, it is stabilized by being doubly magic. As an exception, although 289:
became interested in the properties of nuclear fission products, such as decay energies and half-lives. In 1948, she published a body of experimental evidence for the occurrence of closed nuclear shells for nuclei with 50 or 82 protons or 50, 82, and 126 neutrons.
436:(the emission of a He nucleus – also known as an alpha particle – by a heavy element undergoing radioactive decay) is common in part due to the extraordinary stability of helium-4, which makes this type of decay energetically favored in most heavy nuclei over 608:. Hence, the "atomic magic numbers" are 2, 10, 18, 36, 54, 86 and 118. As with the nuclear magic numbers, these are expected to be changed in the superheavy region due to spin/orbit-coupling effects affecting subshell energy levels. Hence 623:
extension of the standard rotation group, the ground state properties (including the magic numbers) for metallic clusters and nuclei were simultaneously determined analytically. A specific potential term is not necessary in this model.
257: 538:
can be solved for the motion of nucleons and energy levels determined. Nuclear shells are said to occur when the separation between energy levels is significantly greater than the local mean separation.
1127:
Kondo, Y.; Achouri, N. L.; Falou, H. Al; Atar, L.; Aumann, T.; Baba, H.; Boretzky, K.; Caesar, C.; Calvet, D.; Chae, H.; Chiga, N.; Corsi, A.; Delaunay, F.; Delbart, A.; Deshayes, Q. (2023-08-31).
371:-208. While only helium-4, oxygen-16, calcium-40, and lead-208 are completely stable, calcium-48 is extremely long-lived and therefore found naturally, disintegrating only by a very inefficient 301:, but he recognized, from the work of Maria Mayer, the very strong evidence for the closed shells. It seemed a little like magic to him, and that is how the words 'Magic Numbers' were coined." 155:
Before this was realized, higher magic numbers, such as 184, 258, 350, and 462, were predicted based on simple calculations that assumed spherical shapes: these are generated by the formula
616:(114) are expected to be more inert than oganesson (118), and the next noble gas after these is expected to occur at element 172 rather than 168 (which would continue the pattern). 66:. As a result, atomic nuclei with a "magic" number of protons or neutrons are much more stable than other nuclei. The seven most widely recognized magic numbers as of 2019 are 1421:
Herrmann, Richard (2010). "Higher dimensional mixed fractional rotation groups as a basis for dynamic symmetries generating the spectrum of the deformed Nilsson-oscillator".
380:
by orders of magnitude, and emitted beta or gamma radiation is for virtually all practical purposes irrelevant. On the other hand, helium-10 is extremely unstable, and has a
421:
Magic number shell effects are seen in ordinary abundances of elements: helium-4 is among the most abundant (and stable) nuclei in the universe and lead-208 is the heaviest
1468:
Herrmann, Richard (2010). "Fractional phase transition in medium size metal clusters and some remarks on magic numbers in gravitationally and weakly bound clusters".
418:
has 8 protons and 20 neutrons, it is unbound with respect to four-neutron decay and appears to lack closed neutron shells, so it is not regarded as doubly magic.
136:. Unlike the magic numbers 2–126, which are realized in spherical nuclei, theoretical calculations predict that nuclei in the island of stability are deformed. 327:) numbers both equal to one of the magic numbers are called "doubly magic", and are generally very stable against decay. The known doubly magic isotopes are 101:, although 126 is so far only known to be a magic number for neutrons. Atomic nuclei consisting of such a magic number of nucleons have a higher average 293:
It had already been known that nuclei with 20 protons or neutrons were stable: that was evidenced by calculations by Hungarian-American physicist
781:
Grumann, Jens; Mosel, Ulrich; Fink, Bernd; Greiner, Walter (1969). "Investigation of the stability of superheavy nuclei aroundZ=114 andZ=164".
724:
Grumann, Jens; Mosel, Ulrich; Fink, Bernd; Greiner, Walter (1969). "Investigation of the stability of superheavy nuclei aroundZ=114 andZ=164".
635: 1551: 1204: 158: 546:
for the nucleus, magic numbers are the numbers of nucleons at which a shell is filled. For instance, the magic number 8 occurs when the 1s
862: 452:
of mass number 5 and 8; indeed, all nuclides of those mass numbers decay within fractions of a second to produce alpha particles.
406:, with 20 neutrons and 20 protons, which is the heaviest stable isotope made of the same number of protons and neutrons. Both 476: 455:
Magic effects can keep unstable nuclides from decaying as rapidly as would otherwise be expected. For example, the nuclides
402:
Doubly magic effects may allow the existence of stable isotopes which otherwise would not have been expected. An example is
148: 110: 1563: 1608: 1102: 886: 619:
In 2010, an alternative explanation of magic numbers was given in terms of symmetry considerations. Based on the
649: 488: 139: 1598: 535: 1603: 475:-270, with 108 protons and 162 neutrons, was discovered by an international team of scientists led by the 429: 313: 124:
could theoretically be created with extremely large nuclei and yet not be subject to the extremely rapid
1212: 1487: 1442: 1395: 1348: 1274: 1044: 999: 960: 913: 790: 733: 286: 275: 260: 121: 1185: 1384:"Single-Particle Levels of Spherical Nuclei in the Superheavy and Extremely Superheavy Mass Region" 767: 710: 620: 543: 484: 377: 305: 133: 59: 1503: 1477: 1432: 1060: 1034: 880: 806: 749: 411: 1526: 1233: 271: 1593: 1547: 1364: 1328: 1166: 1148: 949:"On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei" 929: 868: 858: 574: 515: 372: 309: 298: 282: 125: 1495: 1450: 1403: 1356: 1282: 1156: 1140: 1052: 1007: 968: 921: 798: 741: 659: 511: 449: 437: 510:-256 may be doubly magic and spherical due to the difference in size between low- and high- 468:
with one proton and two neutrons (Ni: 28/50 = 0.56; U: 92/146 = 0.63).
1078: 460: 441: 39: 901: 833:. 4th International Conference on the Chemistry and Physics of the Transactinide Elements 691:. 4th International Conference on the Chemistry and Physics of the Transactinide Elements 1491: 1446: 1399: 1352: 1286: 1278: 1161: 1128: 1048: 1003: 964: 917: 794: 737: 1540: 1259: 641: 422: 144: 102: 63: 1587: 1383: 810: 753: 531: 445: 324: 294: 129: 1507: 1064: 1208: 987: 825: 683: 387: 1360: 948: 1499: 1454: 1025:
Audi, Georges (2006). "The history of nuclidic masses and of their evaluation".
609: 433: 30: 1144: 1056: 631: 506: = 164 are not magic numbers, the undiscovered neutron-rich nucleus 492: 407: 403: 344: 340: 98: 1152: 933: 872: 854:
Out of the shadows : contributions of twentieth-century women to physics
1576: 1423: 1011: 827:
Decay modes and a limit of existence of nuclei in the superheavy mass region
654: 613: 605: 578: 527: 480: 415: 381: 336: 17: 1407: 1368: 1170: 972: 925: 852: 768:"Nuclear scientists eye future landfall on a second 'island of stability'" 711:"Nuclear scientists eye future landfall on a second 'island of stability'" 1237: 570: 328: 1039: 132:. Large isotopes with magic numbers of nucleons are said to exist in an 802: 745: 685:
The Impact of Superheavy Elements on the Chemical and Physical Sciences
593: 558:
energy levels are filled, as there is a large energy gap between the 1p
507: 472: 465: 425: 117: 106: 82: 55: 47: 1301: 581: 356: 352: 348: 332: 252:{\displaystyle 2({\tbinom {n}{1}}+{\tbinom {n}{2}}+{\tbinom {n}{3}})} 86: 78: 74: 51: 27:
Number of protons or neutrons that make a nucleus particularly stable
151:. Distinct sharp peaks in the contours appear only at magic numbers. 1258:
Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017).
1482: 1437: 601: 597: 589: 270: 29: 585: 569:
The atomic analog to nuclear magic numbers are those numbers of
368: 94: 456: 364: 360: 90: 308:, which Mayer developed in the following years together with 34:
A graph of isotope stability, with some of the magic numbers.
1577:"A Nearly Complete Explanation of the Nuclear Magic Numbers" 483:
of 9 seconds. Hassium-270 evidently forms part of an
448:. The stability of He also leads to the absence of stable 147:
of isotopes and the binding energy as predicted from the
109:
than one would expect based upon predictions such as the
58:, separately) such that they are arranged into complete 1205:"Twice-magic metal makes its debut - isotope of nickel" 1103:"What is Stable Nuclei - Unstable Nuclei - Definition" 223: 196: 169: 1234:"Tests confirm nickel-78 is a 'doubly magic' isotope" 161: 857:. Byers, Nina. Cambridge: Cambridge Univ. Pr. 2006. 487:, and may even be doubly magic due to the deformed ( 1542:The Periodic Table, Its Story and Its Significance 1539: 251: 113:and are hence more stable against nuclear decay. 1260:"The NUBASE2016 evaluation of nuclear properties" 459:-100 and tin-132 are examples of doubly magic 323:Nuclei which have neutron numbers and proton ( 73:For protons, this corresponds to the elements 239: 226: 212: 199: 185: 172: 8: 1564:"New magic number "inside atoms" discovered" 304:These magic numbers were the bedrock of the 1027:International Journal of Mass Spectrometry 1481: 1436: 1160: 1038: 238: 225: 222: 211: 198: 195: 184: 171: 168: 160: 1388:Journal of the Physical Society of Japan 526:Magic numbers are typically obtained by 514:orbitals, which alters the shape of the 138: 677: 675: 671: 878: 432:by known experimental observations). 7: 986:Mayer, Maria Goeppert (1949-06-15). 1327:Yakushev, A.; Yeremin, A. (2006). 573:leading to discontinuities in the 230: 203: 176: 25: 1079:"The Nobel Prize in Physics 1963" 682:Kratz, J. V. (5 September 2011). 988:"On Closed Shells in Nuclei. II" 634: 120:having magic numbers means that 1186:"The Most Tightly Bound Nuclei" 312:and culminated in their shared 900:Mayer, Maria G. (1948-08-01). 495:-like) shape of this nucleus. 477:Technical University of Munich 246: 165: 128:normally associated with high 1: 1382:Koura, H.; Chiba, S. (2013). 1361:10.1103/PhysRevLett.97.242501 1287:10.1088/1674-1137/41/3/030001 143:The difference between known 68:2, 8, 20, 28, 50, 82, and 126 902:"On Closed Shells in Nuclei" 530:studies; if the form of the 314:1963 Nobel Prize in Physics. 1546:. Oxford University Press. 1500:10.1016/j.physa.2010.03.033 1455:10.1016/j.physa.2009.11.016 1203:W., P. (October 23, 1999). 149:semi-empirical mass formula 111:semi-empirical mass formula 1625: 1558:see chapter 10 especially. 1300:Mason Inman (2006-12-14). 1145:10.1038/s41586-023-06352-6 1129:"First observation of 28O" 1057:10.1016/j.ijms.2006.01.048 947:Wigner, E. (1937-01-15). 116:The unusual stability of 1527:"Shell Model of Nucleus" 650:Magic number (chemistry) 1341:Physical Review Letters 1302:"A Nuclear Magic Trick" 1012:10.1103/PhysRev.75.1969 577:. These occur for the 562:and the next highest 1d 373:double beta minus decay 285:, the German physicist 97:, and the hypothetical 1408:10.7566/JPSJ.82.014201 1329:"Doubly Magic Nucleus 973:10.1103/PhysRev.51.106 926:10.1103/physrev.74.235 885:: CS1 maint: others ( 783:Zeitschrift für Physik 726:Zeitschrift für Physik 278: 253: 152: 35: 1538:Scerri, Eric (2007). 1306:Physical Review Focus 464:elements, apart from 444:or any other type of 274: 267:History and etymology 254: 142: 122:transuranium elements 33: 536:Schrödinger equation 502: = 92 and 287:Maria Goeppert Mayer 281:Upon working on the 276:Maria Goeppert Mayer 261:Binomial coefficient 159: 1568:Scientific American 1492:2010PhyA..389.3307H 1447:2010PhyA..389..693H 1400:2013JPSJ...82a4201K 1353:2006PhRvL..97x2501D 1279:2017ChPhC..41c0001A 1240:. September 5, 2014 1049:2006IJMSp.251...85A 1004:1949PhRv...75.1969M 965:1937PhRv...51..106W 918:1948PhRv...74..235M 795:1969ZPhy..228..371G 738:1969ZPhy..228..371G 534:is known, then the 485:island of stability 378:age of the universe 306:nuclear shell model 134:island of stability 1562:Moskowitz, Clara. 824:Koura, H. (2011). 803:10.1007/BF01406719 746:10.1007/BF01406719 471:In December 2006, 279: 249: 244: 217: 190: 153: 36: 1609:Integer sequences 1575:Watkins, Thayer. 1553:978-0-19-530573-9 1476:(16): 3307–3315. 1273:(3): 030001–134. 1267:Chinese Physics C 1139:(7976): 965–970. 998:(12): 1969–1970. 575:ionization energy 532:nuclear potential 516:nuclear potential 489:American football 299:liquid drop model 283:Manhattan Project 237: 210: 183: 126:radioactive decay 16:(Redirected from 1616: 1580: 1571: 1557: 1545: 1534: 1512: 1511: 1485: 1465: 1459: 1458: 1440: 1418: 1412: 1411: 1379: 1373: 1372: 1323: 1317: 1316: 1314: 1313: 1297: 1291: 1290: 1264: 1255: 1249: 1248: 1246: 1245: 1230: 1224: 1223: 1221: 1220: 1211:. Archived from 1200: 1194: 1193: 1181: 1175: 1174: 1164: 1124: 1118: 1117: 1115: 1114: 1099: 1093: 1092: 1090: 1089: 1075: 1069: 1068: 1042: 1022: 1016: 1015: 983: 977: 976: 944: 938: 937: 897: 891: 890: 884: 876: 849: 843: 842: 840: 838: 832: 821: 815: 814: 778: 772: 771: 764: 758: 757: 721: 715: 714: 707: 701: 700: 698: 696: 690: 679: 660:Superdeformation 644: 639: 638: 512:angular momentum 438:neutron emission 398: 396: 390: 258: 256: 255: 250: 245: 243: 242: 229: 218: 216: 215: 202: 191: 189: 188: 175: 145:binding energies 21: 1624: 1623: 1619: 1618: 1617: 1615: 1614: 1613: 1584: 1583: 1574: 1561: 1554: 1537: 1524: 1521: 1516: 1515: 1467: 1466: 1462: 1420: 1419: 1415: 1381: 1380: 1376: 1336: 1332: 1325: 1324: 1320: 1311: 1309: 1299: 1298: 1294: 1262: 1257: 1256: 1252: 1243: 1241: 1232: 1231: 1227: 1218: 1216: 1215:on May 24, 2012 1202: 1201: 1197: 1183: 1182: 1178: 1126: 1125: 1121: 1112: 1110: 1101: 1100: 1096: 1087: 1085: 1077: 1076: 1072: 1040:physics/0602050 1024: 1023: 1019: 992:Physical Review 985: 984: 980: 953:Physical Review 946: 945: 941: 906:Physical Review 899: 898: 894: 877: 865: 851: 850: 846: 836: 834: 830: 823: 822: 818: 780: 779: 775: 766: 765: 761: 723: 722: 718: 709: 708: 704: 694: 692: 688: 681: 680: 673: 668: 640: 633: 630: 566:energy levels. 565: 561: 557: 553: 549: 524: 461:isotopes of tin 442:proton emission 394: 392: 385: 321: 269: 224: 197: 170: 157: 156: 46:is a number of 40:nuclear physics 28: 23: 22: 15: 12: 11: 5: 1622: 1620: 1612: 1611: 1606: 1601: 1599:Periodic table 1596: 1586: 1585: 1582: 1581: 1572: 1559: 1552: 1535: 1520: 1519:External links 1517: 1514: 1513: 1460: 1431:(4): 693–704. 1413: 1374: 1347:(24): 242501. 1334: 1330: 1318: 1308:. Vol. 18 1292: 1250: 1225: 1195: 1176: 1119: 1107:Periodic Table 1094: 1083:NobelPrize.org 1070: 1033:(2–3): 85–94. 1017: 978: 959:(2): 106–119. 939: 912:(3): 235–239. 892: 863: 844: 816: 789:(5): 371–386. 773: 759: 732:(5): 371–386. 716: 702: 670: 669: 667: 664: 663: 662: 657: 652: 646: 645: 642:Physics portal 629: 626: 563: 559: 555: 551: 547: 523: 520: 320: 317: 268: 265: 248: 241: 236: 233: 228: 221: 214: 209: 206: 201: 194: 187: 182: 179: 174: 167: 164: 130:atomic numbers 103:binding energy 64:atomic nucleus 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1621: 1610: 1607: 1605: 1604:Radioactivity 1602: 1600: 1597: 1595: 1592: 1591: 1589: 1578: 1573: 1569: 1565: 1560: 1555: 1549: 1544: 1543: 1536: 1532: 1528: 1523: 1522: 1518: 1509: 1505: 1501: 1497: 1493: 1489: 1484: 1479: 1475: 1471: 1464: 1461: 1456: 1452: 1448: 1444: 1439: 1434: 1430: 1426: 1425: 1417: 1414: 1409: 1405: 1401: 1397: 1394:(1): 014201. 1393: 1389: 1385: 1378: 1375: 1370: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1338: 1322: 1319: 1307: 1303: 1296: 1293: 1288: 1284: 1280: 1276: 1272: 1268: 1261: 1254: 1251: 1239: 1235: 1229: 1226: 1214: 1210: 1206: 1199: 1196: 1191: 1187: 1180: 1177: 1172: 1168: 1163: 1158: 1154: 1150: 1146: 1142: 1138: 1134: 1130: 1123: 1120: 1108: 1104: 1098: 1095: 1084: 1080: 1074: 1071: 1066: 1062: 1058: 1054: 1050: 1046: 1041: 1036: 1032: 1028: 1021: 1018: 1013: 1009: 1005: 1001: 997: 993: 989: 982: 979: 974: 970: 966: 962: 958: 954: 950: 943: 940: 935: 931: 927: 923: 919: 915: 911: 907: 903: 896: 893: 888: 882: 874: 870: 866: 864:0-521-82197-5 860: 856: 855: 848: 845: 829: 828: 820: 817: 812: 808: 804: 800: 796: 792: 788: 784: 777: 774: 769: 763: 760: 755: 751: 747: 743: 739: 735: 731: 727: 720: 717: 712: 706: 703: 687: 686: 678: 676: 672: 665: 661: 658: 656: 653: 651: 648: 647: 643: 637: 632: 627: 625: 622: 617: 615: 611: 607: 603: 599: 595: 591: 587: 583: 580: 576: 572: 567: 545: 540: 537: 533: 529: 521: 519: 517: 513: 509: 505: 501: 496: 494: 490: 486: 482: 478: 474: 469: 467: 462: 458: 453: 451: 447: 446:cluster decay 443: 439: 435: 431: 427: 424: 419: 417: 413: 409: 405: 400: 389: 386:260(40)  383: 379: 374: 370: 366: 362: 358: 354: 350: 346: 342: 338: 334: 330: 326: 318: 316: 315: 311: 307: 302: 300: 296: 295:Eugene Wigner 291: 288: 284: 277: 273: 266: 264: 262: 234: 231: 219: 207: 204: 192: 180: 177: 162: 150: 146: 141: 137: 135: 131: 127: 123: 119: 114: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 71: 69: 65: 61: 57: 53: 49: 45: 41: 32: 19: 1567: 1541: 1531:HyperPhysics 1530: 1525:Nave, C. R. 1473: 1469: 1463: 1428: 1422: 1416: 1391: 1387: 1377: 1344: 1340: 1321: 1310:. Retrieved 1305: 1295: 1270: 1266: 1253: 1242:. Retrieved 1228: 1217:. Retrieved 1213:the original 1209:Science News 1198: 1190:HyperPhysics 1189: 1184:Nave, C. R. 1179: 1136: 1132: 1122: 1111:. Retrieved 1109:. 2019-05-22 1106: 1097: 1086:. Retrieved 1082: 1073: 1030: 1026: 1020: 995: 991: 981: 956: 952: 942: 909: 905: 895: 853: 847: 835:. Retrieved 826: 819: 786: 782: 776: 762: 729: 725: 719: 705: 693:. Retrieved 684: 618: 568: 541: 525: 503: 499: 497: 470: 454: 420: 401: 388:yoctoseconds 322: 319:Doubly magic 303: 292: 280: 154: 115: 72: 67: 44:magic number 43: 37: 18:Doubly magic 837:18 November 610:copernicium 579:noble gases 544:shell model 479:, having a 434:Alpha decay 310:Hans Jensen 62:within the 1588:Categories 1312:2006-12-25 1244:2014-09-09 1219:2006-09-29 1113:2019-12-22 1088:2020-06-27 666:References 621:fractional 612:(112) and 522:Derivation 493:rugby ball 408:calcium-48 404:calcium-40 367:-132, and 345:calcium-48 341:calcium-40 99:unbihexium 1483:0907.1953 1470:Physica A 1438:0806.2300 1424:Physica A 1153:0028-0836 934:0031-899X 881:cite book 873:255313795 811:120251297 754:120251297 695:27 August 655:Superatom 614:flerovium 606:oganesson 571:electrons 528:empirical 498:Although 481:half-life 416:oxygen-28 397:10 s 382:half-life 337:oxygen-16 1594:Isotopes 1508:50477979 1369:17280272 1238:Phys.org 1171:37648757 1162:10630140 1065:13236732 628:See also 430:at least 384:of just 329:helium-4 118:isotopes 56:neutrons 50:(either 48:nucleons 1488:Bibcode 1443:Bibcode 1396:Bibcode 1349:Bibcode 1275:Bibcode 1045:Bibcode 1000:Bibcode 961:Bibcode 914:Bibcode 791:Bibcode 734:Bibcode 594:krypton 542:In the 508:uranium 473:hassium 466:tritium 450:isobars 426:nuclide 107:nucleon 83:calcium 52:protons 1550:  1506:  1367:  1169:  1159:  1151:  1133:Nature 1063:  932:  871:  861:  809:  752:  582:helium 423:stable 412:nickel 393:2.6(4) 363:-100, 357:nickel 353:nickel 349:nickel 333:helium 325:atomic 87:nickel 79:oxygen 75:helium 60:shells 1504:S2CID 1478:arXiv 1433:arXiv 1263:(PDF) 1061:S2CID 1035:arXiv 831:(PDF) 807:S2CID 750:S2CID 689:(PDF) 602:radon 598:xenon 590:argon 491:- or 359:-78, 355:-56, 351:-48, 335:-10, 259:(see 1548:ISBN 1365:PMID 1167:PMID 1149:ISSN 930:ISSN 887:link 869:OCLC 859:ISBN 839:2018 697:2013 604:and 586:neon 554:, 1p 550:, 1p 410:and 369:lead 105:per 95:lead 42:, a 1496:doi 1474:389 1451:doi 1429:389 1404:doi 1357:doi 1335:162 1331:108 1283:doi 1157:PMC 1141:doi 1137:620 1053:doi 1031:251 1008:doi 969:doi 922:doi 799:doi 787:228 742:doi 730:228 564:5/2 560:1/2 556:1/2 552:3/2 548:1/2 457:tin 399:). 365:tin 361:tin 91:tin 54:or 38:In 1590:: 1566:. 1529:. 1502:. 1494:. 1486:. 1472:. 1449:. 1441:. 1427:. 1402:. 1392:82 1390:. 1386:. 1363:. 1355:. 1345:97 1343:. 1339:. 1333:Hs 1304:. 1281:. 1271:41 1269:. 1265:. 1236:. 1207:. 1188:. 1165:. 1155:. 1147:. 1135:. 1131:. 1105:. 1081:. 1059:. 1051:. 1043:. 1029:. 1006:. 996:75 994:. 990:. 967:. 957:51 955:. 951:. 928:. 920:. 910:74 908:. 904:. 883:}} 879:{{ 867:. 805:. 797:. 785:. 748:. 740:. 728:. 674:^ 600:, 596:, 592:, 588:, 584:, 518:. 440:, 347:, 343:, 339:, 331:, 93:, 89:, 85:, 81:, 77:, 70:. 1579:. 1570:. 1556:. 1533:. 1510:. 1498:: 1490:: 1480:: 1457:. 1453:: 1445:: 1435:: 1410:. 1406:: 1398:: 1371:. 1359:: 1351:: 1337:" 1315:. 1289:. 1285:: 1277:: 1247:. 1222:. 1192:. 1173:. 1143:: 1116:. 1091:. 1067:. 1055:: 1047:: 1037:: 1014:. 1010:: 1002:: 975:. 971:: 963:: 936:. 924:: 916:: 889:) 875:. 841:. 813:. 801:: 793:: 770:. 756:. 744:: 736:: 713:. 699:. 504:N 500:Z 428:( 395:× 391:( 247:) 240:) 235:3 232:n 227:( 220:+ 213:) 208:2 205:n 200:( 193:+ 186:) 181:1 178:n 173:( 166:( 163:2 20:)

Index

Doubly magic

nuclear physics
nucleons
protons
neutrons
shells
atomic nucleus
helium
oxygen
calcium
nickel
tin
lead
unbihexium
binding energy
nucleon
semi-empirical mass formula
isotopes
transuranium elements
radioactive decay
atomic numbers
island of stability

binding energies
semi-empirical mass formula
Binomial coefficient

Maria Goeppert Mayer
Manhattan Project

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.