Knowledge

Eulerian path

Source 📝

1556: 1586: 1578: 1521: 31: 414:
chooses the next edge in the path to be one whose deletion would not disconnect the graph, unless there is no such edge, in which case it picks the remaining edge left at the current vertex. It then moves to the other endpoint of that edge and deletes the edge. At the end of the algorithm there are no edges left, and the sequence from which the edges were chosen forms an Eulerian cycle if the graph has no vertices of odd degree, or an Eulerian trail if there are exactly two vertices of odd degree.
768: 1439: 375: 50: 1159: 1392: 734:. Because it is only possible to get stuck when the deque represents a closed tour, one should rotate the deque by removing edges from the tail and adding them to the head until unstuck, and then continue until all edges are accounted for. This also takes linear time, as the number of rotations performed is never larger than 1450:, the corresponding concept to an Eulerian trail or Eulerian cycle is an Eulerian line, a doubly-infinite trail that covers all of the edges of the graph. It is not sufficient for the existence of such a trail that the graph be connected and that all vertex degrees be even; for instance, the infinite 1513:
Euler stated a necessary condition for a finite graph to be Eulerian as all vertices must have even degree. Hierholzer proved this is a sufficient condition in a paper published in 1873. This leads to the following necessary and sufficient statement for what a finite graph must have to be Eulerian:
683:
to maintain the set of unused edges incident to each vertex, to maintain the list of vertices on the current tour that have unused edges, and to maintain the tour itself, the individual operations of the algorithm (finding unused edges exiting each vertex, finding a new starting vertex for a tour,
413:
is an elegant but inefficient algorithm that dates to 1883. Consider a graph known to have all edges in the same component and at most two vertices of odd degree. The algorithm starts at a vertex of odd degree, or, if the graph has none, it starts with an arbitrarily chosen vertex. At each step it
1570:
Ford and Fulkerson proved in 1962 in their book Flows in Networks a necessary and sufficient condition for a graph to be Eulerian, viz., that every vertex must be even and satisfy the balance condition, i.e. for every subset of vertices S, the difference between the number of arcs leaving S and
1540:
that has all even out-degrees but is not Eulerian. Since an Eulerian circuit leaves a vertex the same number of times as it enters that vertex, a necessary condition for an Eulerian circuit to exist is that the in-degree and out-degree are equal at each vertex. Obviously, connectivity is also
1555: 934: 166:
Eulerian. If there are no vertices of odd degree, all Eulerian trails are circuits. If there are exactly two vertices of odd degree, all Eulerian trails start at one of them and end at the other. A graph that has an Eulerian trail but not an Eulerian circuit is called
1174: 323:
if and only if all of its vertices have even degree. So, a graph has an Eulerian cycle if and only if it can be decomposed into edge-disjoint cycles and its nonzero-degree vertices belong to a single connected
1574:
The process of checking if a mixed graph is Eulerian is harder than checking if an undirected or directed graph is Eulerian because the balanced set condition concerns every possible subset of vertices.
616: 1524:
A directed graph with all even degrees that is not Eulerian, serving as a counterexample to the statement that a sufficient condition for a directed graph to be Eulerian is that it has all even degrees
1154:{\displaystyle \operatorname {ec} (K_{n})=2^{\frac {(n+1)}{2}}\pi ^{\frac {1}{2}}e^{{\frac {-n^{2}}{2}}+{\frac {11}{12}}}n^{\frac {(n-2)(n+1)}{2}}{\bigl (}1+O(n^{-{\frac {1}{2}}+\epsilon }){\bigr )}.} 155:
has two common meanings in graph theory. One meaning is a graph with an Eulerian circuit, and the other is a graph with every vertex of even degree. These definitions coincide for connected graphs.
1541:
necessary. König proved that these conditions are also sufficient. That is, a directed graph is Eulerian if and only if it is connected and the in-degree and out-degree are equal at each vertex.
1387:{\displaystyle \operatorname {ec} (K_{n,n})=\left({\frac {n}{2}}-1\right)!^{2n}2^{n^{2}-n+{\frac {1}{2}}}\pi ^{-n+{\frac {1}{2}}}n^{n-1}{\bigl (}1+O(n^{-{\frac {1}{2}}+\epsilon }){\bigr )}.} 1559:
This mixed graph is Eulerian. The graph is even but not symmetric which proves that evenness and symmetricness are not necessary and sufficient conditions for a mixed graph to be Eulerian.
798: 1567:
that are both even and symmetric are guaranteed to be Eulerian. However, this is not a necessary condition, as it is possible to construct a non-symmetric, even graph that is Eulerian.
327:
An undirected graph has an Eulerian trail if and only if exactly zero or two vertices have odd degree, and all of its vertices with nonzero degree belong to a single connected component
1585: 908:
in 1968) is believed to give a sharp approximation for the number of Eulerian circuits in a graph, though as yet there is no proof of this fact (even for graphs of bounded degree).
1577: 365:
every other vertex has equal in-degree and out-degree, and all of its vertices with nonzero degree belong to a single connected component of the underlying undirected graph.
291:. Such an orientation exists for any undirected graph in which every vertex has even degree, and may be found by constructing an Euler tour in each connected component of 516: 230:
the two definitions are equivalent, while a possibly unconnected graph is Eulerian in the weaker sense if and only if each connected component has an Eulerian cycle.
725: 458: 762: 791: 53:
Every vertex of this graph has an even degree. Therefore, this is an Eulerian graph. Following the edges in alphabetical order gives an Eulerian circuit/cycle.
1544:
In this theorem it doesn't matter whether "connected" means "weakly connected" or "strongly connected" since they are equivalent for Eulerian graphs.
312:
An undirected graph has an Eulerian cycle if and only if every vertex has even degree, and all of its vertices with nonzero degree belong to a single
1517:
The following result was proved by Veblen in 1912: An undirected connected graph is Eulerian if and only if it is the disjoint union of some cycles.
784: 877:
BEST theorem is first stated in this form in a "note added in proof" to the Aardenne-Ehrenfest and de Bruijn paper (1951). The original proof was
132:
with all vertices of even degree have an Eulerian circuit. The first complete proof of this latter claim was published posthumously in 1873 by
2345: 1970: 862:. The formula states that the number of Eulerian circuits in a digraph is the product of certain degree factorials and the number of rooted 1454:
shown, with all vertex degrees equal to four, has no Eulerian line. The infinite graphs that contain Eulerian lines were characterized by
1733: 226:. The term "Eulerian graph" is also sometimes used in a weaker sense to denote a graph where every vertex has even degree. For finite 313: 2291: 1878: 1711: 1520: 30: 2521: 525: 1635:, which states that graphs with even vertex degree can be partitioned into edge-disjoint cycles regardless of their connectivity 1613:, proven by Euler in his original paper, showing that any undirected connected graph has an even number of odd-degree vertices 98: 38: 2594: 2553: 2002: 925: 1682:. This ambiguity can be avoided by using the terms Eulerian trail and Eulerian circuit when self-intersection is allowed. 339: 239: 74: 1702: 2578: 2549: 863: 849: 129: 684:
and connecting two tours that share a vertex) may be performed in constant time each, so the overall algorithm takes
2502: 841: 629:'s 1873 paper provides a different method for finding Euler cycles that is more efficient than Fleury's algorithm: 1629:, search for the shortest path that visits all edges, possibly repeating edges if an Eulerian path does not exist. 653:. The tour formed in this way is a closed tour, but may not cover all the vertices and edges of the initial graph. 2506: 352: 335: 1626: 1165: 897: 356: 331: 1781: 342:. Equivalently, a directed graph has an Eulerian cycle if and only if it can be decomposed into edge-disjoint 2599: 1547:
Hierholzer's linear time algorithm for constructing an Eulerian tour is also applicable to directed graphs.
660:
that belongs to the current tour but that has adjacent edges not part of the tour, start another trail from
121:
that a necessary condition for the existence of Eulerian circuits is that all vertices in the graph have an
45:
have more than two odd vertices (in orange), thus are not Eulerian and hence the puzzles have no solutions.
2510: 2141: 1858: 295:
and then orienting the edges according to the tour. Every Eulerian orientation of a connected graph is a
2566: 2460: 1768: 469: 461: 125: 90: 1589:
An even mixed graph that satisfies the balanced set condition and is therefore an Eulerian mixed graph.
1528:
Hierholzer developed a linear time algorithm for constructing an Eulerian tour in an undirected graph.
1462:
to have an Eulerian line, it is necessary and sufficient that all of the following conditions be met:
2101:"Optimum Gate Ordering of CMOS Logic Gates Using Euler Path Approach: Some Insights and Explanations" 2053: 343: 320: 215: 159: 122: 110: 70: 2146: 1793: 1632: 1514:
An undirected connected finite graph is Eulerian if and only if every vertex of G has even degree.
1419: 917: 871: 106: 78: 2269: 2231: 2535: 2477: 1825: 1750: 1423: 882: 772: 731: 680: 300: 296: 118: 2378: 475: 2341: 2287: 2242:, Bolyai Soc. Math. Stud., vol. 25, János Bolyai Math. Soc., Budapest, pp. 325–345, 2235: 2213: 2081: 1966: 1894: 1874: 1707: 1610: 767: 764:(intuitively, any "bad" edges are moved to the head, while fresh edges are added to the tail) 2456:"Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren" 2273: 1962: 1956: 645:, because the even degree of all vertices ensures that, when the trail enters another vertex 2527: 2469: 2425: 2333: 2279: 2243: 2205: 2178: 2151: 2112: 2071: 2061: 1929: 1866: 1809: 1742: 1616: 1605: 1599: 893: 691: 424: 346:
and all of its vertices with nonzero degree belong to a single strongly connected component.
188: 42: 2301: 2255: 1990: 1941: 1821: 1581:
An even mixed graph that violates the balanced set condition and is therefore not Eulerian.
1422:
that rely on an Euler tour of the tree (where each edge is treated as a pair of arcs). The
383: 378:
Using Eulerian trails to solve puzzles involving drawing a shape with a continuous stroke:
2451: 2327: 2297: 2251: 2132:
Tarjan, Robert E.; Vishkin, Uzi (1985). "An efficient parallel biconnectivity algorithm".
2025:
M.I. Isaev (2009). "Asymptotic number of Eulerian circuits in complete bipartite graphs".
1937: 1817: 1427: 878: 833: 672: 626: 227: 133: 113:; i.e., a path starting and ending on the same vertex) that visits each edge exactly once? 2572: 1850: 737: 2057: 2437: 2278:, Graduate Texts in Mathematics, vol. 184, Springer-Verlag, New York, p. 20, 1537: 1447: 1438: 1403: 921: 822: 392:
If there are no odd vertices, the trail can start anywhere and forms an Eulerian cycle.
284: 276: 245: 234: 191:
is a walk that uses each edge exactly once. If such a walk exists, the graph is called
158:
For the existence of Eulerian trails it is necessary that zero or two vertices have an
144: 94: 2182: 374: 2588: 2517: 2481: 2401: 2370: 2076: 2041: 2011: 1986: 1933: 1917: 1854: 1476: 465: 1829: 472:
after the removal of every edge, Fleury's algorithm will have a time complexity of
2405: 2374: 1451: 1407: 905: 828: 58: 49: 2539: 252:
The definition and properties of Eulerian trails, cycles and graphs are valid for
2247: 1870: 1442:
An infinite graph with all vertex degrees equal to four but with no Eulerian line
2545: 1564: 1496:
leaves at most two infinite connected components in the remaining graph, and if
867: 856: 685: 386:
has two odd vertices (orange), the trail must start at one and end at the other.
2046:
Proceedings of the National Academy of Sciences of the United States of America
775:
of the vertices of the five platonic solids – only the octahedron has an
218:
that uses each edge exactly once. If such a cycle exists, the graph is called
2283: 2209: 1780:
Schaum's outline of theory and problems of graph theory By V. K. Balakrishnan
1725: 1571:
entering S must be less than or equal to the number of edges incident with S.
1415: 253: 34: 2217: 2006: 349:
A directed graph has an Eulerian trail if and only if at most one vertex has
330:
A directed graph has an Eulerian cycle if and only if every vertex has equal
2382: 2337: 2169:
Berkman, Omer; Vishkin, Uzi (Apr 1994). "Finding level-ancestors in trees".
2409: 2085: 2066: 2531: 2429: 17: 2117: 2100: 2473: 1813: 1754: 2196:
Savage, Carla (January 1997). "A Survey of Combinatorial Gray Codes".
1666:
path and cycle. A (potentially) self-intersecting path is known as a
618:, but this is still significantly slower than alternative algorithms. 885:. It is a variation on an earlier result by Smith and Tutte (1941). 101:
problem in 1736. The problem can be stated mathematically like this:
2455: 2155: 1746: 1726:"Two-graphs, switching classes and Euler graphs are equal in number" 1961:, Annals of Discrete Mathematics, vol. 50, Elsevier, pp.  1955:
Fleischner, Herbert (1991), "X.1 Algorithms for Eulerian Trails",
1584: 1576: 1554: 1519: 1437: 766: 675:, repeating the previous step will exhaust all edges of the graph. 637:, and follow a trail of edges from that vertex until returning to 48: 29: 2007:
Asymptotic enumeration of eulerian circuits in the complete graph
338:, and all of its vertices with nonzero degree belong to a single 1411: 81:
exactly once (allowing for revisiting vertices). Similarly, an
1797: 1164:
A similar formula was later obtained by M.I. Isaev (2009) for
2040:
Pevzner, Pavel A.; Tang, Haixu; Waterman, Michael S. (2001).
421:
in Fleury's algorithm is linear in the number of edges, i.e.
668:, and join the tour formed in this way to the previous tour. 105:
Given the graph in the image, is it possible to construct a
892:
graphs is much more difficult. This problem is known to be
641:. It is not possible to get stuck at any vertex other than 611:{\displaystyle O(|E|\cdot \log ^{3}|E|\cdot \log \log |E|)} 2520:(2000), "Near-optimal fully-dynamic graph connectivity", 319:
An undirected graph can be decomposed into edge-disjoint
299:, an orientation that makes the resulting directed graph 460:, we also need to factor in the complexity of detecting 2509:(1951) "Circuits and trees in oriented linear graphs", 2552:(1941) "On Unicursal Paths in a Network of Degree 4", 1500:
has even degree at each of its vertices then removing
1455: 89:
is an Eulerian trail that starts and ends on the same
2042:"An Eulerian trail approach to DNA fragment assembly" 1177: 937: 740: 694: 528: 478: 427: 2495:
Fleury, "Deux problemes de geometrie de situation",
1958:
Eulerian Graphs and Related Topics: Part 1, Volume 2
1920:(1974), "A note on finding the bridges of a graph", 779:
or cycle, by extending its path with the dotted one
771:
Orthographic projections and Schlegel diagrams with
389:
Annie Pope's with four odd vertices has no solution.
2438:
Solutio problematis ad geometriam situs pertinentis
1418:ordering. There are some algorithms for processing 2567:Discussion of early mentions of Fleury's algorithm 1861:(October 2009), "Hamiltonian and Eulerian Paths", 1386: 1153: 756: 719: 610: 510: 452: 1674:; and a (potentially) self-intersecting cycle, a 2329:Arc Routing: Problems, Methods, and Applications 2326:Corberán, Ángel; Laporte, Gilbert, eds. (2015). 1504:leaves exactly one infinite connected component. 267:is an assignment of a direction to each edge of 2523:Proc. 32nd ACM Symposium on Theory of Computing 2412:[On Eulerian lines in infinite graphs] 2105:Journal of Computing and Information Technology 1798:"Bounds on the number of Eulerian orientations" 1602:, an abstract generalization of Eulerian graphs 395:Loose ends are considered vertices of degree 1. 730:This algorithm may also be implemented with a 1376: 1328: 1143: 1095: 792: 8: 2385:[On Euler lines of infinite graphs] 888:Counting the number of Eulerian circuits on 664:, following unused edges until returning to 1700:N. L. Biggs, E. K. Lloyd and R. J. Wilson, 1650: 1648: 920:for the number of Eulerian circuits in the 162:degree; this means the Königsberg graph is 27:Trail in a graph that visits each edge once 1895:"Deux problèmes de Géométrie de situation" 1410:from its fragments. They are also used in 799: 785: 2442:Comment. Academiae Sci. I. Petropolitanae 2332:. MOS-SIAM Series on Optimization. SIAM. 2145: 2116: 2075: 2065: 1426:can be constructed as Eulerian trails of 1375: 1374: 1353: 1349: 1327: 1326: 1314: 1298: 1288: 1272: 1257: 1252: 1239: 1214: 1191: 1176: 1142: 1141: 1120: 1116: 1094: 1093: 1053: 1037: 1022: 1012: 1011: 996: 967: 951: 936: 749: 741: 739: 709: 701: 693: 600: 592: 572: 564: 555: 543: 535: 527: 499: 494: 485: 477: 442: 434: 426: 370:Constructing Eulerian trails and circuits 518:. A dynamic bridge-finding algorithm of 373: 2410:"Über Euler-Linien unendlicher Graphen" 1865:, Birkhäuser Boston, pp. 157–168, 1724:C. L. Mallows, N. J. A. Sloane (1975). 1693: 1644: 1485:has no vertices of (finite) odd degree. 1706:, Clarendon Press, Oxford, 1976, 8–9, 1458:. For an infinite graph or multigraph 1456:Erdõs, Grünwald & Weiszfeld (1936) 874:, giving a polynomial time algorithm. 826:can be calculated using the so-called 671:Since we assume the original graph is 519: 2497:Journal de mathematiques elementaires 2321: 2319: 2317: 2315: 2313: 2311: 1899:Journal de mathématiques élémentaires 1845: 1843: 1841: 1839: 649:there must be an unused edge leaving 363:(in-degree) − (out-degree) = 1, 143:A connected graph has an Euler cycle 7: 679:By using a data structure such as a 1863:Notes on Introductory Combinatorics 1734:SIAM Journal on Applied Mathematics 866:. The latter can be computed as a 820:The number of Eulerian circuits in 2383:"Végtelen gráfok Euler vonalairól" 1991:Note on Counting Eulerian Circuits 1414:circuit design to find an optimal 25: 2236:"Erdős's work on infinite graphs" 656:As long as there exists a vertex 398:The graph must also be connected. 237:, "path" has to be replaced with 128:, and stated without proof that 93:. They were first discussed by 2029:(in Russian). Moscow: 111–114. 1922:Information Processing Letters 1654:Some people reserve the terms 1371: 1342: 1203: 1184: 1138: 1109: 1083: 1071: 1068: 1056: 982: 970: 957: 944: 750: 742: 714: 710: 702: 698: 605: 601: 593: 573: 565: 544: 536: 532: 522:allows this to be improved to 505: 495: 486: 482: 447: 443: 435: 431: 214:, in an undirected graph is a 1: 2554:American Mathematical Monthly 2183:10.1016/S0022-0000(05)80002-9 1893:Fleury, Pierre-Henry (1883), 1488:Removing any finite subgraph 896:. In a positive direction, a 147:every vertex has even degree. 2490:Récréations Mathématiques IV 2248:10.1007/978-3-642-39286-3_11 2015:, 10 (1995), no. 4, 367–377. 1934:10.1016/0020-0190(74)90003-9 1871:10.1007/978-0-8176-4953-1_13 1769:Introduction of Graph Theory 1402:Eulerian trails are used in 340:strongly connected component 2579:Encyclopedia of Mathematics 2027:Proc. 52-nd MFTI Conference 633:Choose any starting vertex 99:Seven Bridges of Königsberg 2616: 1619:– a path that visits each 1509:Undirected Eulerian graphs 811:Counting Eulerian circuits 511:{\displaystyle O(|E|^{2})} 271:such that, at each vertex 2503:T. van Aardenne-Ehrenfest 2284:10.1007/978-1-4612-0619-4 2210:10.1137/S0036144595295272 2134:SIAM Journal on Computing 1536:It is possible to have a 1166:complete bipartite graphs 621: 405: 97:while solving the famous 2005:and Robert W. Robinson, 1901:, 2nd ser. (in French), 1627:Route inspection problem 1532:Directed Eulerian graphs 898:Markov chain Monte Carlo 470:bridge-finding algorithm 384:Haus vom Nikolaus puzzle 2408:; Vázsonyi, E. (1938), 2338:10.1137/1.9781611973679 1703:Graph Theory, 1736–1936 361:at most one vertex has 263:of an undirected graph 2067:10.1073/pnas.171285098 1590: 1582: 1560: 1525: 1479:of vertices and edges. 1443: 1388: 1155: 902:Kotzig transformations 807: 758: 721: 720:{\displaystyle O(|E|)} 622:Hierholzer's algorithm 612: 512: 464:. If we are to re-run 454: 453:{\displaystyle O(|E|)} 402: 54: 46: 2532:10.1145/335305.335345 2461:Mathematische Annalen 2430:10.1002/sapm193817159 1664:non-self-intersecting 1588: 1580: 1558: 1551:Mixed Eulerian graphs 1523: 1441: 1389: 1156: 928:and Robinson (1995): 770: 759: 722: 613: 513: 455: 377: 52: 33: 2595:Graph theory objects 2526:, pp. 343–350, 2171:J. Comput. Syst. Sci 2099:Roy, Kuntal (2007). 1767:Jun-ichi Yamaguchi, 1175: 935: 881:and generalized the 738: 692: 526: 476: 425: 261:Eulerian orientation 2275:Modern graph theory 2118:10.2498/cit.1000731 2058:2001PNAS...98.9748P 1424:de Bruijn sequences 1406:to reconstruct the 883:de Bruijn sequences 872:matrix tree theorem 757:{\displaystyle |E|} 314:connected component 136:. This is known as 2474:10.1007/BF01442866 1814:10.1007/BF02579193 1591: 1583: 1561: 1526: 1444: 1434:In infinite graphs 1384: 1151: 924:was determined by 918:asymptotic formula 900:approach, via the 808: 773:Hamiltonian cycles 754: 717: 681:doubly linked list 608: 508: 450: 411:Fleury's algorithm 406:Fleury's algorithm 403: 301:strongly connected 297:strong orientation 77:that visits every 55: 47: 39:Königsberg Bridges 2399:. Translated as 2347:978-1-61197-366-2 2052:(17): 9748–9753. 1972:978-0-444-89110-5 1855:Tarjan, Robert E. 1611:Handshaking lemma 1361: 1306: 1280: 1222: 1128: 1090: 1045: 1032: 1004: 989: 816:Complexity issues 243:and "cycle" with 206:, also called an 43:Five room puzzles 16:(Redirected from 2607: 2542: 2499:(1883), 257–261. 2484: 2452:Hierholzer, Carl 2447:(1736), 128–140. 2432: 2415: 2398: 2393:(in Hungarian), 2388: 2379:Weiszfeld, Endre 2358: 2357: 2355: 2354: 2323: 2306: 2304: 2266: 2260: 2258: 2240:Erdös centennial 2228: 2222: 2221: 2193: 2187: 2186: 2166: 2160: 2159: 2149: 2129: 2123: 2122: 2120: 2096: 2090: 2089: 2079: 2069: 2037: 2031: 2030: 2022: 2016: 2000: 1994: 1983: 1977: 1975: 1952: 1946: 1944: 1918:Tarjan, R. Endre 1914: 1908: 1906: 1890: 1884: 1883: 1859:Woods, Donald R. 1847: 1834: 1832: 1808:(3–4): 375–380, 1790: 1784: 1778: 1772: 1765: 1759: 1758: 1730: 1721: 1715: 1698: 1683: 1652: 1633:Veblen's theorem 1617:Hamiltonian path 1606:Five room puzzle 1600:Eulerian matroid 1503: 1499: 1495: 1491: 1484: 1474: 1468: 1461: 1428:de Bruijn graphs 1393: 1391: 1390: 1385: 1380: 1379: 1370: 1369: 1362: 1354: 1332: 1331: 1325: 1324: 1309: 1308: 1307: 1299: 1283: 1282: 1281: 1273: 1262: 1261: 1247: 1246: 1234: 1230: 1223: 1215: 1202: 1201: 1160: 1158: 1157: 1152: 1147: 1146: 1137: 1136: 1129: 1121: 1099: 1098: 1092: 1091: 1086: 1054: 1048: 1047: 1046: 1038: 1033: 1028: 1027: 1026: 1013: 1006: 1005: 997: 991: 990: 985: 968: 956: 955: 806: 801: 794: 787: 763: 761: 760: 755: 753: 745: 726: 724: 723: 718: 713: 705: 617: 615: 614: 609: 604: 596: 576: 568: 560: 559: 547: 539: 517: 515: 514: 509: 504: 503: 498: 489: 459: 457: 456: 451: 446: 438: 364: 360: 228:connected graphs 208:Eulerian circuit 189:undirected graph 138:Euler's Theorem: 130:connected graphs 83:Eulerian circuit 21: 2615: 2614: 2610: 2609: 2608: 2606: 2605: 2604: 2585: 2584: 2563: 2516: 2507:N. G. de Bruijn 2450: 2413: 2400: 2391:Mat. Fix. Lapok 2386: 2375:Grünwald, Tibor 2369: 2366: 2361: 2352: 2350: 2348: 2325: 2324: 2309: 2294: 2268: 2267: 2263: 2230: 2229: 2225: 2195: 2194: 2190: 2168: 2167: 2163: 2156:10.1137/0214061 2147:10.1.1.465.8898 2131: 2130: 2126: 2098: 2097: 2093: 2039: 2038: 2034: 2024: 2023: 2019: 2001: 1997: 1985:Brightwell and 1984: 1980: 1973: 1954: 1953: 1949: 1916: 1915: 1911: 1892: 1891: 1887: 1881: 1849: 1848: 1837: 1792: 1791: 1787: 1779: 1775: 1766: 1762: 1747:10.1137/0128070 1728: 1723: 1722: 1718: 1699: 1695: 1691: 1686: 1653: 1646: 1642: 1596: 1553: 1534: 1511: 1501: 1497: 1493: 1489: 1482: 1472: 1466: 1459: 1436: 1400: 1345: 1310: 1284: 1253: 1248: 1235: 1213: 1209: 1187: 1173: 1172: 1112: 1055: 1049: 1018: 1014: 1007: 992: 969: 963: 947: 933: 932: 922:complete graphs 914: 904:(introduced by 818: 813: 805: 780: 736: 735: 690: 689: 624: 551: 524: 523: 493: 474: 473: 468:'s linear time 423: 422: 419:graph traversal 408: 401: 372: 362: 350: 344:directed cycles 309: 235:directed graphs 177: 134:Carl Hierholzer 28: 23: 22: 15: 12: 11: 5: 2613: 2611: 2603: 2602: 2600:Leonhard Euler 2597: 2587: 2586: 2583: 2582: 2570: 2562: 2561:External links 2559: 2558: 2557: 2550:C. A. B. Smith 2543: 2518:Thorup, Mikkel 2514: 2500: 2493: 2492:, Paris, 1921. 2486: 2448: 2434: 2424:(1–4): 59–75, 2418:J. Math. Phys. 2365: 2362: 2360: 2359: 2346: 2307: 2292: 2270:Bollobás, Béla 2261: 2232:Komjáth, Peter 2223: 2204:(4): 605–629. 2188: 2177:(2): 214–230. 2161: 2140:(4): 862–874. 2124: 2091: 2032: 2017: 1995: 1978: 1971: 1947: 1928:(6): 160–161, 1909: 1885: 1879: 1835: 1785: 1773: 1760: 1741:(4): 876–880. 1716: 1692: 1690: 1687: 1685: 1684: 1643: 1641: 1638: 1637: 1636: 1630: 1624: 1614: 1608: 1603: 1595: 1592: 1552: 1549: 1538:directed graph 1533: 1530: 1510: 1507: 1506: 1505: 1486: 1480: 1477:countable sets 1470: 1448:infinite graph 1435: 1432: 1404:bioinformatics 1399: 1396: 1395: 1394: 1383: 1378: 1373: 1368: 1365: 1360: 1357: 1352: 1348: 1344: 1341: 1338: 1335: 1330: 1323: 1320: 1317: 1313: 1305: 1302: 1297: 1294: 1291: 1287: 1279: 1276: 1271: 1268: 1265: 1260: 1256: 1251: 1245: 1242: 1238: 1233: 1229: 1226: 1221: 1218: 1212: 1208: 1205: 1200: 1197: 1194: 1190: 1186: 1183: 1180: 1162: 1161: 1150: 1145: 1140: 1135: 1132: 1127: 1124: 1119: 1115: 1111: 1108: 1105: 1102: 1097: 1089: 1085: 1082: 1079: 1076: 1073: 1070: 1067: 1064: 1061: 1058: 1052: 1044: 1041: 1036: 1031: 1025: 1021: 1017: 1010: 1003: 1000: 995: 988: 984: 981: 978: 975: 972: 966: 962: 959: 954: 950: 946: 943: 940: 913: 910: 832:, named after 817: 814: 812: 809: 804: 803: 796: 789: 781: 752: 748: 744: 716: 712: 708: 704: 700: 697: 677: 676: 669: 654: 623: 620: 607: 603: 599: 595: 591: 588: 585: 582: 579: 575: 571: 567: 563: 558: 554: 550: 546: 542: 538: 534: 531: 507: 502: 497: 492: 488: 484: 481: 449: 445: 441: 437: 433: 430: 407: 404: 400: 399: 396: 393: 390: 387: 379: 371: 368: 367: 366: 347: 328: 325: 317: 308: 305: 246:directed cycle 204:Eulerian cycle 181:Eulerian trail 176: 173: 153:Eulerian graph 149: 148: 145:if and only if 115: 114: 95:Leonhard Euler 87:Eulerian cycle 63:Eulerian trail 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2612: 2601: 2598: 2596: 2593: 2592: 2590: 2580: 2576: 2575: 2571: 2568: 2565: 2564: 2560: 2555: 2551: 2547: 2544: 2541: 2537: 2533: 2529: 2525: 2524: 2519: 2515: 2512: 2508: 2504: 2501: 2498: 2494: 2491: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2462: 2457: 2453: 2449: 2446: 2443: 2439: 2435: 2431: 2427: 2423: 2420:(in German), 2419: 2411: 2407: 2403: 2396: 2392: 2384: 2380: 2376: 2372: 2368: 2367: 2363: 2349: 2343: 2339: 2335: 2331: 2330: 2322: 2320: 2318: 2316: 2314: 2312: 2308: 2303: 2299: 2295: 2293:0-387-98488-7 2289: 2285: 2281: 2277: 2276: 2271: 2265: 2262: 2257: 2253: 2249: 2245: 2241: 2237: 2233: 2227: 2224: 2219: 2215: 2211: 2207: 2203: 2199: 2192: 2189: 2184: 2180: 2176: 2172: 2165: 2162: 2157: 2153: 2148: 2143: 2139: 2135: 2128: 2125: 2119: 2114: 2110: 2106: 2102: 2095: 2092: 2087: 2083: 2078: 2073: 2068: 2063: 2059: 2055: 2051: 2047: 2043: 2036: 2033: 2028: 2021: 2018: 2014: 2013: 2012:Combinatorica 2008: 2004: 2003:Brendan McKay 1999: 1996: 1992: 1988: 1982: 1979: 1974: 1968: 1964: 1960: 1959: 1951: 1948: 1943: 1939: 1935: 1931: 1927: 1923: 1919: 1913: 1910: 1904: 1900: 1896: 1889: 1886: 1882: 1880:9780817649531 1876: 1872: 1868: 1864: 1860: 1856: 1852: 1851:Pólya, George 1846: 1844: 1842: 1840: 1836: 1831: 1827: 1823: 1819: 1815: 1811: 1807: 1803: 1802:Combinatorica 1799: 1795: 1794:Schrijver, A. 1789: 1786: 1782: 1777: 1774: 1770: 1764: 1761: 1756: 1752: 1748: 1744: 1740: 1736: 1735: 1727: 1720: 1717: 1713: 1712:0-19-853901-0 1709: 1705: 1704: 1697: 1694: 1688: 1681: 1677: 1673: 1669: 1665: 1661: 1657: 1651: 1649: 1645: 1639: 1634: 1631: 1628: 1625: 1623:exactly once. 1622: 1618: 1615: 1612: 1609: 1607: 1604: 1601: 1598: 1597: 1593: 1587: 1579: 1575: 1572: 1568: 1566: 1557: 1550: 1548: 1545: 1542: 1539: 1531: 1529: 1522: 1518: 1515: 1508: 1487: 1481: 1478: 1471: 1469:is connected. 1465: 1464: 1463: 1457: 1453: 1449: 1440: 1433: 1431: 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1397: 1381: 1366: 1363: 1358: 1355: 1350: 1346: 1339: 1336: 1333: 1321: 1318: 1315: 1311: 1303: 1300: 1295: 1292: 1289: 1285: 1277: 1274: 1269: 1266: 1263: 1258: 1254: 1249: 1243: 1240: 1236: 1231: 1227: 1224: 1219: 1216: 1210: 1206: 1198: 1195: 1192: 1188: 1181: 1178: 1171: 1170: 1169: 1167: 1148: 1133: 1130: 1125: 1122: 1117: 1113: 1106: 1103: 1100: 1087: 1080: 1077: 1074: 1065: 1062: 1059: 1050: 1042: 1039: 1034: 1029: 1023: 1019: 1015: 1008: 1001: 998: 993: 986: 979: 976: 973: 964: 960: 952: 948: 941: 938: 931: 930: 929: 927: 923: 919: 912:Special cases 911: 909: 907: 903: 899: 895: 891: 886: 884: 880: 875: 873: 869: 865: 864:arborescences 861: 859: 854: 852: 847: 845: 842:van Aardenne- 839: 837: 831: 830: 825: 824: 815: 810: 802: 797: 795: 790: 788: 783: 782: 778: 777:Eulerian path 774: 769: 765: 746: 733: 728: 706: 695: 687: 682: 674: 670: 667: 663: 659: 655: 652: 648: 644: 640: 636: 632: 631: 630: 628: 619: 597: 589: 586: 583: 580: 577: 569: 561: 556: 552: 548: 540: 529: 521: 520:Thorup (2000) 500: 490: 479: 471: 467: 463: 439: 428: 420: 415: 412: 397: 394: 391: 388: 385: 381: 380: 376: 369: 358: 354: 348: 345: 341: 337: 333: 329: 326: 322: 318: 315: 311: 310: 306: 304: 302: 298: 294: 290: 286: 282: 278: 274: 270: 266: 262: 257: 255: 250: 248: 247: 242: 241: 240:directed path 236: 231: 229: 225: 221: 217: 213: 209: 205: 200: 198: 197:semi-eulerian 194: 190: 186: 182: 174: 172: 170: 169:semi-Eulerian 165: 161: 156: 154: 146: 142: 141: 140: 139: 135: 131: 127: 124: 120: 112: 108: 104: 103: 102: 100: 96: 92: 88: 84: 80: 76: 72: 68: 67:Eulerian path 64: 60: 51: 44: 40: 36: 32: 19: 2573: 2556:48: 233–237. 2522: 2513:28: 203–217. 2511:Simon Stevin 2496: 2489: 2468:(1): 30–32, 2465: 2459: 2444: 2441: 2436:Euler, L., " 2421: 2417: 2406:Grünwald, T. 2394: 2390: 2364:Bibliography 2351:. Retrieved 2328: 2274: 2264: 2239: 2226: 2201: 2197: 2191: 2174: 2170: 2164: 2137: 2133: 2127: 2111:(1): 85–92. 2108: 2104: 2094: 2049: 2045: 2035: 2026: 2020: 2010: 1998: 1981: 1957: 1950: 1925: 1921: 1912: 1902: 1898: 1888: 1862: 1805: 1801: 1788: 1776: 1763: 1738: 1732: 1719: 1701: 1696: 1679: 1675: 1671: 1667: 1663: 1659: 1655: 1620: 1573: 1569: 1565:mixed graphs 1562: 1546: 1543: 1535: 1527: 1516: 1512: 1452:Cayley graph 1445: 1408:DNA sequence 1401: 1398:Applications 1163: 915: 906:Anton Kotzig 901: 889: 887: 876: 857: 850: 843: 835: 829:BEST theorem 827: 821: 819: 776: 729: 678: 665: 661: 657: 650: 646: 642: 638: 634: 625: 418: 416: 410: 409: 292: 288: 280: 272: 268: 264: 260: 258: 251: 244: 238: 232: 223: 219: 211: 207: 203: 201: 196: 192: 184: 180: 178: 168: 163: 157: 152: 150: 137: 116: 86: 82: 73:in a finite 66: 62: 59:graph theory 56: 2546:W. T. Tutte 2488:Lucas, E., 2198:SIAM Review 1680:closed walk 894:#P-complete 868:determinant 686:linear time 355:) − ( 283:equals the 254:multigraphs 193:traversable 35:Multigraphs 2589:Categories 2574:Euler tour 2371:Erdõs, Pál 2353:2022-08-19 1689:References 1416:logic gate 890:undirected 627:Hierholzer 417:While the 353:out-degree 336:out degree 324:component. 307:Properties 212:Euler tour 185:Euler walk 175:Definition 18:Euler tour 2482:119885172 2402:Erdős, P. 2397:: 129–140 2218:0036-1445 2142:CiteSeerX 1905:: 257–261 1672:open walk 1367:ϵ 1351:− 1319:− 1290:− 1286:π 1264:− 1225:− 1182:⁡ 1134:ϵ 1118:− 1063:− 1016:− 994:π 942:⁡ 879:bijective 870:, by the 673:connected 590:⁡ 584:⁡ 578:⋅ 562:⁡ 549:⋅ 357:in-degree 332:in degree 285:outdegree 256:as well. 224:unicursal 151:The term 2454:(1873), 2381:(1936), 2272:(1998), 2234:(2013), 2086:11504945 1993:", 2004. 1830:13708977 1796:(1983), 1662:to mean 1594:See also 846:hrenfest 823:digraphs 277:indegree 220:Eulerian 187:, in an 37:of both 2302:1633290 2256:3203602 2054:Bibcode 1987:Winkler 1942:0349483 1822:0729790 1755:2100368 1676:circuit 462:bridges 382:As the 69:) is a 2540:128282 2538:  2480:  2344:  2300:  2290:  2254:  2216:  2144:  2084:  2074:  1969:  1963:X.1–13 1940:  1877:  1828:  1820:  1753:  1710:  1670:or an 1621:vertex 1446:In an 466:Tarjan 359:) = 1, 321:cycles 275:, the 183:, or 126:degree 119:proved 117:Euler 109:(or a 91:vertex 2536:S2CID 2478:S2CID 2414:(PDF) 2387:(PDF) 2173:. 2. 2077:55524 1826:S2CID 1751:JSTOR 1729:(PDF) 1678:or a 1668:trail 1660:cycle 1640:Notes 1492:from 1420:trees 926:McKay 838:ruijn 732:deque 216:cycle 111:cycle 75:graph 71:trail 61:, an 2548:and 2505:and 2342:ISBN 2288:ISBN 2214:ISSN 2082:PMID 1967:ISBN 1875:ISBN 1708:ISBN 1658:and 1656:path 1563:All 1475:has 1412:CMOS 860:utte 855:and 853:mith 334:and 233:For 123:even 107:path 79:edge 65:(or 41:and 2577:at 2528:doi 2470:doi 2440:", 2426:doi 2334:doi 2280:doi 2244:doi 2206:doi 2179:doi 2152:doi 2113:doi 2072:PMC 2062:doi 1989:, " 1930:doi 1867:doi 1810:doi 1743:doi 916:An 834:de 587:log 581:log 553:log 287:of 279:of 259:An 222:or 210:or 202:An 195:or 179:An 164:not 160:odd 85:or 57:In 2591:: 2534:, 2476:, 2464:, 2458:, 2422:17 2416:, 2404:; 2395:43 2389:, 2377:; 2373:; 2340:. 2310:^ 2298:MR 2296:, 2286:, 2252:MR 2250:, 2238:, 2212:. 2202:39 2200:. 2175:48 2150:. 2138:14 2136:. 2109:15 2107:. 2103:. 2080:. 2070:. 2060:. 2050:98 2048:. 2044:. 2009:, 1965:, 1938:MR 1936:, 1924:, 1897:, 1873:, 1857:; 1853:; 1838:^ 1824:, 1818:MR 1816:, 1804:, 1800:, 1749:. 1739:28 1737:. 1731:. 1647:^ 1430:. 1179:ec 1168:: 1043:12 1040:11 939:ec 848:, 840:, 727:. 688:, 303:. 249:. 199:. 171:. 2581:. 2569:. 2530:: 2485:. 2472:: 2466:6 2445:8 2433:. 2428:: 2356:. 2336:: 2305:. 2282:: 2259:. 2246:: 2220:. 2208:: 2185:. 2181:: 2158:. 2154:: 2121:. 2115:: 2088:. 2064:: 2056:: 1976:. 1945:. 1932:: 1926:2 1907:. 1903:2 1869:: 1833:. 1812:: 1806:3 1783:. 1771:. 1757:. 1745:: 1714:. 1502:S 1498:S 1494:G 1490:S 1483:G 1473:G 1467:G 1460:G 1382:. 1377:) 1372:) 1364:+ 1359:2 1356:1 1347:n 1343:( 1340:O 1337:+ 1334:1 1329:( 1322:1 1316:n 1312:n 1304:2 1301:1 1296:+ 1293:n 1278:2 1275:1 1270:+ 1267:n 1259:2 1255:n 1250:2 1244:n 1241:2 1237:! 1232:) 1228:1 1220:2 1217:n 1211:( 1207:= 1204:) 1199:n 1196:, 1193:n 1189:K 1185:( 1149:. 1144:) 1139:) 1131:+ 1126:2 1123:1 1114:n 1110:( 1107:O 1104:+ 1101:1 1096:( 1088:2 1084:) 1081:1 1078:+ 1075:n 1072:( 1069:) 1066:2 1060:n 1057:( 1051:n 1035:+ 1030:2 1024:2 1020:n 1009:e 1002:2 999:1 987:2 983:) 980:1 977:+ 974:n 971:( 965:2 961:= 958:) 953:n 949:K 945:( 858:T 851:S 844:E 836:B 800:e 793:t 786:v 751:| 747:E 743:| 715:) 711:| 707:E 703:| 699:( 696:O 666:u 662:u 658:u 651:w 647:w 643:v 639:v 635:v 606:) 602:| 598:E 594:| 574:| 570:E 566:| 557:3 545:| 541:E 537:| 533:( 530:O 506:) 501:2 496:| 491:E 487:| 483:( 480:O 448:) 444:| 440:E 436:| 432:( 429:O 351:( 316:. 293:G 289:v 281:v 273:v 269:G 265:G 20:)

Index

Euler tour

Multigraphs
Königsberg Bridges
Five room puzzles

graph theory
trail
graph
edge
vertex
Leonhard Euler
Seven Bridges of Königsberg
path
cycle
proved
even
degree
connected graphs
Carl Hierholzer
if and only if
odd
undirected graph
cycle
connected graphs
directed graphs
directed path
directed cycle
multigraphs
indegree

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.