Knowledge (XXG)

Aerobic fermentation

Source 📝

173:
produce biomass at a faster rate than the yeast. Producing a toxic compound, like ethanol, can slow the growth of bacteria, allowing the yeast to be more competitive. However, the yeast still had to use a portion of the sugar it consumes to produce ethanol. Crabtree-positive yeasts also have increased glycolytic flow, or increased uptake of glucose and conversion to pyruvate, which compensates for using a portion of the glucose to produce ethanol rather than biomass. Therefore, it is believed that the original driving force was to kill competitors. This is supported by research that determined the kinetic behavior of the ancestral ADH protein, which was found to be optimized to make ethanol, rather than consume it.
563:), the fermentation enzyme ADH is abundant, regardless of the oxygen level. In tobacco pollen, PDC is also highly expressed in this tissue and transcript levels are not influenced by oxygen concentration. Tobacco pollen, similar to Crabtree-positive yeast, perform high levels of fermentation dependent on the sugar supply, and not oxygen availability. In these tissues, respiration and alcoholic fermentation occur simultaneously with high sugar availability. Fermentation produces the toxic acetaldehyde and ethanol, that can build up in large quantities during pollen development. It has been hypothesized that acetaldehyde is a pollen factor that causes 386: 394:
water. During the domestication process, organisms shift from natural environments that are more variable and complex to simple and stable environments with a constant substrate. This often favors specialization adaptations in domesticated microbes, associated with relaxed selection for non-useful genes in alternative metabolic strategies or pathogenicity. Domestication might be partially responsible for the traits that promote aerobic fermentation in industrial species. Introgression and HGT is common in
604: 303:(Pdh). The kinetics of the enzymes are such that when pyruvate concentrations are high, due to a high rate of glycolysis, there is increased flux through Pdc and thus the fermentation pathway. The WGD is believed to have played a beneficial role in the evolution of the Crabtree effect in post-WGD species partially due to this increase in copy number of glycolysis genes. 123:(CNV) and differential expression in metabolic genes, and regulatory reprogramming. Research is still needed to fully understand the genomic basis of this complex phenomenon. Many Crabtree-positive yeast species are used for their fermentation ability in industrial processes in the production of wine, beer, sake, bread, and bioethanol. Through 567:. Cytoplasmic male sterility is a trait observed in maize, tobacco and other plants in which there is an inability to produce viable pollen. It is believed that this trait might be due to the expression of the fermentation genes, ADH and PDC, a lot earlier on in pollen development than normal and the accumulation of toxic aldehyde. 331:. Adh1 is the major enzyme responsible for catalyzing the fermentation step from acetaldehyde to ethanol. Adh2 catalyzes the reverse reaction, consuming ethanol and converting it to acetaldehyde. The ancestral, or original, Adh had a similar function as Adh1 and after a duplication in this gene, Adh2 evolved a lower K 579:
parasites degrade glucose via aerobic fermentation. In this group, this phenomenon is not a pre-adaptation to/or remnant of anaerobic life, shown through their inability to survive in anaerobic conditions. It is believed that this phenomenon developed due to the capacity for a high glycolytic flux
508:
One of the hallmarks of cancer is altered metabolism or deregulating cellular energetics. Cancers cells often have reprogrammed their glucose metabolism to perform lactic acid fermentation, in the presence of oxygen, rather than send the pyruvate made through glycolysis to the mitochondria. This is
356:
is grown on glucose in aerobic conditions, respiration-related gene expression is repressed. Mitochondrial ribosomal proteins expression is only induced under environmental stress conditions, specifically low glucose availability. Genes involving mitochondrial energy generation and phosphorylation
269:
gene results in decreased ethanol production or fully respiratory metabolism. Thus, having an efficient glucose uptake system appears to be essential to ability of aerobic fermentation. There is a significant positive correlation between the number of hexose transporter genes and the efficiency of
172:
It is believed that a major driving force in the origin of aerobic fermentation was its simultaneous origin with modern fruit (~125 mya). These fruits provided an abundance of simple sugar food source for microbial communities, including both yeast and bacteria. Bacteria, at that time, were able to
163:
Crabtree-positive yeasts likely occurred in the interval between the ability to grow under anaerobic conditions, horizontal transfer of anaerobic DHODase (encoded by URA1 with bacteria), and the loss of respiratory chain Complex I. A more pronounced Crabtree effect, the second step, likely occurred
599:
cytochrome oxidase mutant) strain by removing three terminal cytochrome oxidases (cydAB, cyoABCD, and cbdAB) to reduce oxygen uptake. After 60 days of adaptive evolution on glucose media, the strain displayed a mixed phenotype. In aerobic conditions, some populations' fermentation solely produced
393:
Aerobic fermentation is essential for multiple industries, resulting in human domestication of several yeast strains. Beer and other alcoholic beverages, throughout human history, have played a significant role in society through drinking rituals, providing nutrition, medicine, and uncontaminated
517:
This phenomenon is often seen as counterintuitive, since cancer cells have higher energy demands due to the continued proliferation and respiration produces significantly more ATP than glycolysis alone (fermentation produces no additional ATP). Typically, there is an up-regulation in glucose
105:, and tumor cells. Crabtree-positive yeasts will respire when grown with very low concentrations of glucose or when grown on most other carbohydrate sources. The Crabtree effect is a regulatory system whereby respiration is repressed by fermentation, except in low sugar conditions. When 294:
reaction pathway were retained in post-WGD species, significantly higher than the overall retention rate. This has been associated with an increased ability to metabolize glucose into pyruvate, or higher rate of glycolysis. After glycolysis, pyruvate can either be further broken down by
279: 335:
for ethanol. Adh2 is believed to have increased yeast species' tolerance for ethanol and allowed Crabtree-positive species to consume the ethanol they produced after depleting sugars. However, Adh2 and consumption of ethanol is not essential for aerobic fermentation.
518:
transporters and enzymes in the glycolysis pathway (also seen in yeast). There are many parallel aspects of aerobic fermentation in tumor cells that are also seen in Crabtree-positive yeasts. Further research into the evolution of aerobic fermentation in yeast such as
159:(ADH) encoding genes and hexose transporters. However, recent evidence has shown that aerobic fermentation originated before the WGD and evolved as a multi-step process, potentially aided by the WGD. The origin of aerobic fermentation, or the first step, in 513:
and is associated with high consumption of glucose and a high rate of glycolysis. ATP production in these cancer cells is often only through the process of glycolysis and pyruvate is broken down by the fermentation process in the cell's cytoplasm.
176:
Further evolutionary events in the development of aerobic fermentation likely increased the efficiency of this lifestyle, including increased tolerance to ethanol and the repression of the respiratory pathway. In high sugar environments,
111:
is grown below the sugar threshold and undergoes a respiration metabolism, the fermentation pathway is still fully expressed, while the respiration pathway is only expressed relative to the sugar availability. This contrasts with the
191:
to dominate in high sugar environments evolved more recently than aerobic fermentation and is dependent on the type of high-sugar environment. Other yeasts' growth is dependent on the pH and nutrients of the high-sugar environment.
164:
near the time of the WGD event. Later evolutionary events that aided in the evolution of aerobic fermentation are better understood and outlined in the section discussing the genomic basis of the Crabtree effect.
34:
is a metabolic process by which cells metabolize sugars via fermentation in the presence of oxygen and occurs through the repression of normal respiratory metabolism. Preference of aerobic fermentation over
1044:
Alfarouk, Khalid O.; Verduzco, Daniel; Rauch, Cyril; Muddathir, Abdel Khalig; Adil, H. H. Bashir; Elhassan, Gamal O.; Ibrahim, Muntaser E.; David Polo Orozco, Julian; Cardone, Rosa Angela (2014-01-01).
155:(WGD). A majority of Crabtree-positive yeasts are post-WGD yeasts. It was believed that the WGD was a mechanism for the development of the Crabtree effect in these species due to the duplication of 249:
lineage, and detects glucose via the cAMP-signaling pathway. The number of transporter genes vary significantly between yeast species and has continually increased during the evolution of the
357:
oxidation, which are involved in respiration, have the largest expression difference between aerobic fermentative yeast species and respiratory species. In a comparative analysis between
200:
The genomic basis of the Crabtree effect is still being investigated, and its evolution likely involved multiple successive molecular steps that increased the efficiency of the lifestyle.
365:, both of which evolved aerobic fermentation independently, the expression pattern of these two fermentative yeasts were more similar to each other than a respiratory yeast, 1814:
Legras, Jean-Luc; Merdinoglu, Didier; Cornuet, Jean-Marie; Karst, Francis (2007-05-01). "Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history".
1172:
Baumann, Kristin; Carnicer, Marc; Dragosits, Martin; Graf, Alexandra B; Stadlmann, Johannes; Jouhten, Paula; Maaheimo, Hannu; Gasser, Brigitte; Albiol, Joan (2010-10-22).
235:
encode for glucose sensors. The number of glucose sensor genes have remained mostly consistent through the budding yeast lineage, however glucose sensors are absent from
257:
also has a high number of transporter genes compared to its close relatives. Glucose uptake is believed to be a major rate-limiting step in glycolysis and replacing
1781:
Lin, Zhenguo; Li, Wen-Hsiung (2014-01-01). "Comparative Genomics and Evolutionary Genetics of Yeast Carbon Metabolism". In Piškur, Jure; Compagno, Concetta (eds.).
686:
Piškur, Jure; Rozpędowska, Elżbieta; Polakova, Silvia; Merico, Annamaria; Compagno, Concetta (2006-04-01). "How did Saccharomyces evolve to become a good brewer?".
543:
to allow for glycolysis to continue. For most plant tissues, fermentation only occurs in anaerobic conditions, but there are a few exceptions. In the pollen of
1478:
Libkind, Diego; Hittinger, Chris Todd; Valério, Elisabete; Gonçalves, Carla; Dover, Jim; Johnston, Mark; Gonçalves, Paula; Sampaio, José Paulo (2011-08-30).
1047:"Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question" 402:
species. HGT and introgression are less common in nature than is seen during domestication pressures. For example, the important industrial yeast strain
522:
can be a useful model for understanding aerobic fermentation in tumor cells. This has a potential for better understanding cancer and cancer treatments.
580:
and the high glucose concentrations of their natural environment. The mechanism for repression of respiration in these conditions is not yet known.
119:
The evolution of aerobic fermentation likely involved multiple successive molecular steps, which included the expansion of hexose transporter genes,
2087:
Bringaud, Frédéric; Rivière, Loïc; Coustou, Virginie (2006-09-01). "Energy metabolism of trypanosomatids: Adaptation to available carbon sources".
1412:"The Evolution of Aerobic Fermentation in Schizosaccharomyces pombe Was Associated with Regulatory Reprogramming but not Nucleosome Reorganization" 311:
The fermentation reaction only involves two steps. Pyruvate is converted to acetaldehyde by Pdc and then acetaldehyde is converted to ethanol by
1798: 286:
After a WGD, one of the duplicated gene pair is often lost through fractionation; less than 10% of WGD gene pairs have remained in
2049:
Tadege, Million; Dupuis, Isabelle; Kuhlemeier, Cris (1999-08-01). "Ethanolic fermentation: new functions for an old pathway".
55:(ATP) in high yield, it allows proliferating cells to convert nutrients such as glucose and glutamine more efficiently into 1358:
Thomson, J Michael; Gaucher, Eric A; Burgan, Michelle F; Kee, Danny W De; Li, Tang; Aris, John P; Benner, Steven A (2005).
1115:"Yeast "Make-Accumulate-Consume" Life Strategy Evolved as a Multi-Step Process That Predates the Whole Genome Duplication" 352:
In Crabtree-negative species, respiration related genes are highly expressed in the presence of oxygen. However, when
595:
mutant strains have been bioengineered to ferment glucose under aerobic conditions. One group developed the ECOM3 (
385: 564: 473: 398:
domesticated strains. Many commercial wine strains have significant portions of their DNA derived from HGT of non-
2010:"The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression" 510: 404: 237: 44: 485: 389:
A close up picture of ripening wine grapes. The light white "dusting" is a film that also contains wild yeasts.
152: 136: 107: 253:
lineage. Most of the transporter genes have been generated by tandem duplication, rather than from the WGD.
414: 183: 1230:"Expansion of Hexose Transporter Genes Was Associated with the Evolution of Aerobic Fermentation in Yeasts" 536: 469: 300: 296: 52: 477: 312: 156: 120: 377:. Regulatory rewiring was likely important in the evolution of aerobic fermentation in both lineages. 986:"Aerobic Fermentation of D-Glucose by an Evolved Cytochrome Oxidase-Deficient Escherichia coli Strain" 319:
genes in Crabtree-positive compared to Crabtree-negative species and no correlation between number of
1491: 1126: 997: 742: 493: 433: 128: 116:, which is the inhibition of fermentation in the presence of oxygen and observed in most organisms. 2138: 211:(HXT) are a group of proteins that are largely responsible for the uptake of glucose in yeast. In 208: 97: 36: 419:
This hybrid is commonly used in lager-brewing, which requires slow, low temperature fermentation.
131:, to better fit their environment. Strains evolved through mechanisms that include interspecific 2128: 1990: 1847: 957: 905: 68: 17: 1480:"Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast" 866: 278: 2104: 2066: 2031: 1982: 1947: 1906: 1888: 1839: 1831: 1794: 1748: 1740: 1699: 1681: 1637: 1583: 1527: 1509: 1449: 1431: 1389: 1325: 1267: 1249: 1205: 1154: 1084: 1066: 1023: 949: 897: 889: 842: 824: 776: 758: 711: 703: 653: 2096: 2058: 2021: 1974: 1937: 1896: 1878: 1823: 1786: 1730: 1689: 1673: 1627: 1617: 1573: 1565: 1517: 1499: 1439: 1423: 1379: 1371: 1315: 1307: 1257: 1241: 1195: 1185: 1144: 1134: 1074: 1058: 1013: 1005: 939: 881: 832: 816: 766: 750: 695: 643: 140: 132: 2133: 576: 40: 1495: 1130: 1001: 746: 1901: 1866: 1735: 1718: 1694: 1661: 1632: 1605: 1578: 1553: 1522: 1479: 1444: 1411: 1384: 1359: 1320: 1295: 1262: 1229: 1200: 1173: 1149: 1114: 1079: 1046: 1018: 985: 837: 804: 771: 730: 113: 64: 2062: 245:
is a Crabtree-positive yeast, which developed aerobic fermentation independently from
2122: 2100: 1827: 124: 85: 1851: 961: 731:"Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation" 1994: 1174:"A multi-level study of recombinant Pichia pastoris in different oxygen conditions" 465: 909: 535:
Alcoholic fermentation is often used by plants in anaerobic conditions to produce
480:, which is then converted to acetic acid. Both of these processes either generate 2026: 2009: 1622: 1139: 1790: 944: 927: 453: 428: 151:
Approximately 100 million years ago (mya), within the yeast lineage there was a
1942: 1925: 1662:"Evolution of ecological dominance of yeast species in high-sugar environments" 729:
Heiden, Matthew G. Vander; Cantley, Lewis C.; Thompson, Craig B. (2009-05-22).
181:
outcompetes and dominants all other yeast species, except its closest relative
1883: 1569: 1296:"Increased glycolytic flux as an outcome of whole-genome duplication in yeast" 885: 699: 648: 631: 603: 457: 291: 83:
Aerobic fermentation evolved independently in at least three yeast lineages (
60: 1986: 1892: 1835: 1744: 1685: 1513: 1435: 1253: 1070: 1062: 893: 828: 762: 707: 1965:
Warburg, Prof Otto (1925-03-01). "über den Stoffwechsel der Carcinomzelle".
1504: 1427: 1245: 1190: 820: 754: 489: 72: 2108: 2070: 2035: 1951: 1910: 1843: 1703: 1641: 1587: 1554:"The genomics of microbial domestication in the fermented food environment" 1531: 1453: 1393: 1329: 1271: 1209: 1158: 1088: 1027: 846: 803:
Dashko, Sofia; Zhou, Nerve; Compagno, Concetta; Piškur, Jure (2014-09-01).
780: 715: 607:
Myc and HIF-1 regulate glucose metabolism and stimulate the Warburg effect.
282:
A scheme of transformation of glucose to alcohol by alcoholic fermentation.
1752: 953: 901: 657: 1009: 461: 441: 48: 101:). It has also been observed in plant pollen, trypanosomatids, mutated 1978: 1311: 1113:
Hagman, Arne; Säll, Torbjörn; Compagno, Concetta; Piskur, Jure (2013).
984:
Portnoy, Vasiliy A.; Herrgård, Markus J.; Palsson, Bernhard Ø. (2008).
552: 497: 481: 449: 445: 91: 56: 1677: 1865:
Yating, H; Zhenzhen, X; Wolfgang, L; Hirohide, T; Fusheng, C (2022).
437: 1375: 540: 219:
genes have been identified and 17 encode for glucose transporters (
602: 544: 384: 277: 1867:"Oxidative Fermentation of Acetic Acid Bacteria and Its Products" 1660:
Williams, Kathryn M.; Liu, Ping; Fay, Justin C. (2015-08-01).
456:, in a process called AAB oxidative fermentation (AOF). After 805:"Why, when, and how did yeast evolve alcoholic fermentation?" 2008:
Diaz-Ruiz, Rodrigo; Rigoulet, Michel; Devin, Anne (2011).
1360:"Resurrecting ancestral alcohol dehydrogenases from yeast" 315:(Adh). There is no significant increase in the number of 867:"Aerobic fermentation during tobacco pollen development" 600:
lactate, while others performed mixed-acid fermentation.
1719:"The molecular genetics of hexose transport in yeasts" 323:
genes and efficiency of fermentation. There are five
290:
genome. A little over half of WGD gene pairs in the
928:"Aerobic fermentation of glucose by trypanosomatids" 340:
and other Crabtree positive species do not have the
2014:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
632:"The Crabtree Effect: A Regulatory System in Yeast" 127:, these yeast species have evolved, often through 1294:Conant, Gavin C; Wolfe, Kenneth H (2007-01-01). 1785:. Springer Berlin Heidelberg. pp. 97–120. 1783:Molecular Mechanisms in Yeast Carbon Metabolism 1484:Proceedings of the National Academy of Sciences 526:Aerobic fermentation in other non-yeast species 476:. Ethanol is first oxidized to acetaldehyde by 1606:"Origin of the Yeast Whole-Genome Duplication" 472:, which in turn is oxidized to acetic acid by 51:. While aerobic fermentation does not produce 1558:Current Opinion in Genetics & Development 8: 423:Aerobic fermentation in acetic acid bacteria 1717:Boles, E.; Hollenberg, C. P. (1997-08-01). 1410:Lin, Zhenguo; Li, Wen-Hsiung (2011-04-01). 1228:Lin, Zhenguo; Li, Wen-Hsiung (2011-01-01). 1926:"Hallmarks of Cancer: The Next Generation" 492:. This process is exploited in the use of 2025: 1941: 1900: 1882: 1734: 1693: 1631: 1621: 1577: 1552:Gibbons, John G; Rinker, David C (2015). 1521: 1503: 1443: 1383: 1319: 1261: 1199: 1189: 1148: 1138: 1078: 1017: 943: 865:Tadege, M.; Kuhlemeier, C. (1997-10-01). 836: 770: 647: 429:Acetic acid § Oxidative fermentation 227:encodes for a galactose transporter, and 617: 344:gene and consumes ethanol very poorly. 2089:Molecular and Biochemical Parasitology 2082: 2080: 1776: 1774: 1772: 1770: 1768: 1766: 1764: 1762: 1655: 1653: 1651: 1599: 1597: 1547: 1545: 1543: 1541: 1473: 1471: 1469: 1467: 1465: 1463: 1289: 1287: 1285: 1283: 1281: 381:Domestication and aerobic fermentation 1405: 1403: 1353: 1351: 1349: 1347: 1345: 1343: 1341: 1339: 1223: 1221: 1219: 681: 679: 677: 675: 673: 671: 669: 667: 204:Expansion of hexose transporter genes 7: 1108: 1106: 1104: 1102: 1100: 1098: 1039: 1037: 979: 977: 975: 973: 971: 921: 919: 860: 858: 856: 798: 796: 794: 792: 790: 625: 623: 621: 196:Genomic basis of the Crabtree effect 143:, pseudogenization, and gene loss. 1736:10.1111/j.1574-6976.1997.tb00346.x 575:When grown in glucose-rich media, 147:Origin of Crabtree effect in yeast 25: 1924:Hanahan, Douglas (4 March 2011). 63:oxidation of such nutrients into 18:Evolution of aerobic fermentation 2101:10.1016/j.molbiopara.2006.03.017 1828:10.1111/j.1365-294X.2007.03266.x 484:, or shuttle electrons into the 1416:Molecular Biology and Evolution 1234:Molecular Biology and Evolution 1: 2063:10.1016/S1360-1385(99)01450-8 408:is an interspecies hybrid of 79:Aerobic fermentation in yeast 43:in yeast, and is part of the 2027:10.1016/j.bbabio.2010.08.010 1623:10.1371/journal.pbio.1002221 1140:10.1371/journal.pone.0068734 373:is evolutionarily closer to 265:genes with a single chimera 1791:10.1007/978-3-642-55013-3_5 945:10.1096/fasebj.6.13.1397837 926:Cazzulo, Juan José (1992). 436:(AAB) incompletely oxidize 2155: 1943:10.1016/j.cell.2011.02.013 1604:Wolfe, Kenneth H. (2015). 565:cytoplasmic male sterility 474:acetaldehyde dehydrogenase 426: 1884:10.3389/fmicb.2022.879246 1871:Frontiers in Microbiology 1723:FEMS Microbiology Reviews 1570:10.1016/j.gde.2015.07.003 1300:Molecular Systems Biology 700:10.1016/j.tig.2006.02.002 649:10.1099/00221287-44-2-149 561:Nicotiana plumbaginifolia 405:Saccharomyces pastorianus 307:CNV in fermentation genes 238:Schizosaccharomyces pombe 1063:10.18632/oncoscience.109 990:Appl. Environ. Microbiol 630:De Deken, R. H. (1966). 486:electron transport chain 153:whole genome duplication 137:horizontal gene transfer 108:Saccharomyces cerevisiae 59:by avoiding unnecessary 2051:Trends in Plant Science 1967:Klinische Wochenschrift 1505:10.1073/pnas.1105430108 1191:10.1186/1752-0509-4-141 886:10.1023/A:1005837112653 874:Plant Molecular Biology 821:10.1111/1567-1364.12161 755:10.1126/science.1160809 348:Differential expression 274:CNV in glycolysis genes 184:Saccharomyces paradoxus 608: 470:pyruvate decarboxylase 412:and the cold tolerant 390: 301:pyruvate dehydrogenase 297:pyruvate decarboxylase 283: 53:adenosine triphosphate 39:is referred to as the 1428:10.1093/molbev/msq324 1246:10.1093/molbev/msq184 606: 478:alcohol dehydrogenase 388: 313:alcohol dehydrogenase 281: 157:alcohol dehydrogenase 121:copy number variation 1010:10.1128/AEM.00880-08 494:acetic acid bacteria 434:Acetic acid bacteria 270:ethanol production. 129:artificial selection 28:Aerobic fermentation 1496:2011PNAS..10814539L 1490:(35): 14539–14544. 1178:BMC Systems Biology 1131:2013PLoSO...868734H 1002:2008ApEnM..74.7561P 809:FEMS Yeast Research 747:2009Sci...324.1029V 741:(5930): 1029–1033. 509:referred to as the 209:Hexose transporters 98:Schizosaccharomyces 69:carbon-carbon bonds 37:aerobic respiration 1979:10.1007/BF01726151 1312:10.1038/msb4100170 688:Trends in Genetics 609: 464:is broken down to 391: 284: 32:aerobic glycolysis 1822:(10): 2091–2102. 1816:Molecular Ecology 1678:10.1111/evo.12707 996:(24): 7561–7569. 636:J. Gen. Microbiol 557:Nicotiana tabacum 187:. The ability of 16:(Redirected from 2146: 2113: 2112: 2084: 2075: 2074: 2046: 2040: 2039: 2029: 2005: 1999: 1998: 1962: 1956: 1955: 1945: 1921: 1915: 1914: 1904: 1886: 1862: 1856: 1855: 1811: 1805: 1804: 1778: 1757: 1756: 1738: 1714: 1708: 1707: 1697: 1672:(8): 2079–2093. 1657: 1646: 1645: 1635: 1625: 1601: 1592: 1591: 1581: 1549: 1536: 1535: 1525: 1507: 1475: 1458: 1457: 1447: 1422:(4): 1407–1413. 1407: 1398: 1397: 1387: 1355: 1334: 1333: 1323: 1291: 1276: 1275: 1265: 1225: 1214: 1213: 1203: 1193: 1169: 1163: 1162: 1152: 1142: 1110: 1093: 1092: 1082: 1041: 1032: 1031: 1021: 981: 966: 965: 947: 923: 914: 913: 871: 862: 851: 850: 840: 800: 785: 784: 774: 726: 720: 719: 683: 662: 661: 651: 627: 593:Escherichia coli 141:gene duplication 21: 2154: 2153: 2149: 2148: 2147: 2145: 2144: 2143: 2119: 2118: 2117: 2116: 2086: 2085: 2078: 2048: 2047: 2043: 2007: 2006: 2002: 1973:(12): 534–536. 1964: 1963: 1959: 1923: 1922: 1918: 1864: 1863: 1859: 1813: 1812: 1808: 1801: 1780: 1779: 1760: 1716: 1715: 1711: 1659: 1658: 1649: 1616:(8): e1002221. 1603: 1602: 1595: 1551: 1550: 1539: 1477: 1476: 1461: 1409: 1408: 1401: 1364:Nature Genetics 1357: 1356: 1337: 1293: 1292: 1279: 1227: 1226: 1217: 1171: 1170: 1166: 1112: 1111: 1096: 1057:(12): 777–802. 1043: 1042: 1035: 983: 982: 969: 938:(13): 3153–61. 925: 924: 917: 869: 864: 863: 854: 802: 801: 788: 728: 727: 723: 685: 684: 665: 629: 628: 619: 614: 589: 573: 571:Trypanosomatids 539:and regenerate 533: 528: 506: 460:, the produced 431: 425: 383: 350: 334: 309: 276: 206: 198: 170: 149: 81: 41:Crabtree effect 23: 22: 15: 12: 11: 5: 2152: 2150: 2142: 2141: 2136: 2131: 2121: 2120: 2115: 2114: 2076: 2057:(8): 320–325. 2041: 2020:(6): 568–576. 2000: 1957: 1936:(5): 646–674. 1916: 1857: 1806: 1799: 1758: 1709: 1647: 1593: 1537: 1459: 1399: 1376:10.1038/ng1553 1370:(6): 630–635. 1335: 1277: 1240:(1): 131–142. 1215: 1164: 1094: 1033: 967: 915: 880:(3): 343–354. 852: 815:(6): 826–832. 786: 721: 694:(4): 183–186. 663: 642:(2): 149–156. 616: 615: 613: 610: 588: 582: 577:trypanosomatid 572: 569: 532: 529: 527: 524: 511:Warburg effect 505: 502: 424: 421: 382: 379: 349: 346: 332: 308: 305: 275: 272: 205: 202: 197: 194: 169: 168:Driving forces 166: 148: 145: 114:Pasteur effect 80: 77: 71:and promoting 65:carbon dioxide 45:Warburg effect 24: 14: 13: 10: 9: 6: 4: 3: 2: 2151: 2140: 2137: 2135: 2132: 2130: 2127: 2126: 2124: 2110: 2106: 2102: 2098: 2094: 2090: 2083: 2081: 2077: 2072: 2068: 2064: 2060: 2056: 2052: 2045: 2042: 2037: 2033: 2028: 2023: 2019: 2015: 2011: 2004: 2001: 1996: 1992: 1988: 1984: 1980: 1976: 1972: 1969:(in German). 1968: 1961: 1958: 1953: 1949: 1944: 1939: 1935: 1931: 1927: 1920: 1917: 1912: 1908: 1903: 1898: 1894: 1890: 1885: 1880: 1876: 1872: 1868: 1861: 1858: 1853: 1849: 1845: 1841: 1837: 1833: 1829: 1825: 1821: 1817: 1810: 1807: 1802: 1800:9783642550126 1796: 1792: 1788: 1784: 1777: 1775: 1773: 1771: 1769: 1767: 1765: 1763: 1759: 1754: 1750: 1746: 1742: 1737: 1732: 1729:(1): 85–111. 1728: 1724: 1720: 1713: 1710: 1705: 1701: 1696: 1691: 1687: 1683: 1679: 1675: 1671: 1667: 1663: 1656: 1654: 1652: 1648: 1643: 1639: 1634: 1629: 1624: 1619: 1615: 1611: 1607: 1600: 1598: 1594: 1589: 1585: 1580: 1575: 1571: 1567: 1563: 1559: 1555: 1548: 1546: 1544: 1542: 1538: 1533: 1529: 1524: 1519: 1515: 1511: 1506: 1501: 1497: 1493: 1489: 1485: 1481: 1474: 1472: 1470: 1468: 1466: 1464: 1460: 1455: 1451: 1446: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1413: 1406: 1404: 1400: 1395: 1391: 1386: 1381: 1377: 1373: 1369: 1365: 1361: 1354: 1352: 1350: 1348: 1346: 1344: 1342: 1340: 1336: 1331: 1327: 1322: 1317: 1313: 1309: 1305: 1301: 1297: 1290: 1288: 1286: 1284: 1282: 1278: 1273: 1269: 1264: 1259: 1255: 1251: 1247: 1243: 1239: 1235: 1231: 1224: 1222: 1220: 1216: 1211: 1207: 1202: 1197: 1192: 1187: 1183: 1179: 1175: 1168: 1165: 1160: 1156: 1151: 1146: 1141: 1136: 1132: 1128: 1125:(7): e68734. 1124: 1120: 1116: 1109: 1107: 1105: 1103: 1101: 1099: 1095: 1090: 1086: 1081: 1076: 1072: 1068: 1064: 1060: 1056: 1052: 1048: 1040: 1038: 1034: 1029: 1025: 1020: 1015: 1011: 1007: 1003: 999: 995: 991: 987: 980: 978: 976: 974: 972: 968: 963: 959: 955: 951: 946: 941: 937: 933: 932:FASEB Journal 929: 922: 920: 916: 911: 907: 903: 899: 895: 891: 887: 883: 879: 875: 868: 861: 859: 857: 853: 848: 844: 839: 834: 830: 826: 822: 818: 814: 810: 806: 799: 797: 795: 793: 791: 787: 782: 778: 773: 768: 764: 760: 756: 752: 748: 744: 740: 736: 732: 725: 722: 717: 713: 709: 705: 701: 697: 693: 689: 682: 680: 678: 676: 674: 672: 670: 668: 664: 659: 655: 650: 645: 641: 637: 633: 626: 624: 622: 618: 611: 605: 601: 598: 594: 586: 583: 581: 578: 570: 568: 566: 562: 558: 554: 550: 546: 542: 538: 530: 525: 523: 521: 520:S. cerevisiae 515: 512: 503: 501: 499: 495: 491: 487: 483: 479: 475: 471: 467: 463: 459: 455: 451: 447: 443: 439: 435: 430: 422: 420: 418: 416: 411: 410:S. cerevisiae 407: 406: 401: 400:Saccharomyces 397: 396:Saccharomyces 387: 380: 378: 376: 372: 371:S. cerevisiae 368: 364: 363:S. cerevisiae 360: 355: 354:S. cerevisiae 347: 345: 343: 339: 330: 329:S. cerevisiae 326: 322: 318: 314: 306: 304: 302: 298: 293: 289: 288:S. cerevisiae 280: 273: 271: 268: 264: 260: 259:S. cerevisiae 256: 252: 251:S. cerevisiae 248: 247:Saccharomyces 244: 240: 239: 234: 230: 226: 222: 218: 214: 213:S. cerevisiae 210: 203: 201: 195: 193: 190: 189:S. cerevisiae 186: 185: 180: 179:S. cerevisiae 174: 167: 165: 162: 161:Saccharomyces 158: 154: 146: 144: 142: 138: 134: 133:hybridization 130: 126: 125:domestication 122: 117: 115: 110: 109: 104: 100: 99: 94: 93: 88: 87: 86:Saccharomyces 78: 76: 74: 70: 67:, preserving 66: 62: 58: 54: 50: 46: 42: 38: 33: 29: 19: 2092: 2088: 2054: 2050: 2044: 2017: 2013: 2003: 1970: 1966: 1960: 1933: 1929: 1919: 1874: 1870: 1860: 1819: 1815: 1809: 1782: 1726: 1722: 1712: 1669: 1665: 1613: 1610:PLOS Biology 1609: 1561: 1557: 1487: 1483: 1419: 1415: 1367: 1363: 1303: 1299: 1237: 1233: 1181: 1177: 1167: 1122: 1118: 1054: 1050: 993: 989: 935: 931: 877: 873: 812: 808: 738: 734: 724: 691: 687: 639: 635: 596: 592: 591:A couple of 590: 584: 574: 560: 556: 548: 534: 519: 516: 507: 466:acetaldehyde 432: 415:S. eubayanus 413: 409: 403: 399: 395: 392: 374: 370: 369:. However, 366: 362: 358: 353: 351: 341: 337: 328: 324: 320: 316: 310: 287: 285: 266: 262: 258: 254: 250: 246: 242: 236: 232: 228: 224: 220: 216: 212: 207: 199: 188: 182: 178: 175: 171: 160: 150: 118: 106: 102: 96: 90: 84: 82: 31: 27: 26: 1051:Oncoscience 504:Tumor cells 496:to produce 454:acetic acid 375:C. albicans 367:C. albicans 49:tumor cells 2139:Metabolism 2123:Categories 2095:(1): 1–9. 1184:(1): 141. 612:References 458:glycolysis 444:, usually 427:See also: 359:Sch. pombe 338:Sch. pombe 292:glycolysis 255:Sch. pombe 243:Sch. pombe 221:HXT1-HXT17 2129:Evolution 1987:0023-2173 1893:1664-302X 1836:0962-1083 1745:0168-6445 1686:1558-5646 1666:Evolution 1514:0027-8424 1436:0737-4038 1254:0737-4038 1071:2331-4737 894:0167-4412 829:1567-1364 763:0036-8075 708:0168-9525 490:ubiquinol 327:genes in 299:(Pdc) or 73:anabolism 61:catabolic 2109:16682088 2071:10431222 2036:20804724 1952:21376230 1911:35685922 1852:13157807 1844:17498234 1704:26087012 1642:26252643 1588:26338497 1532:21873232 1454:21127171 1394:15864308 1330:17667951 1272:20660490 1210:20969759 1159:23869229 1119:PLOS ONE 1089:25621294 1028:18952873 962:35191022 847:24824836 781:19460998 716:16499989 549:Zea mays 462:pyruvate 442:alcohols 1995:2034590 1902:9171043 1753:9299703 1695:4751874 1633:4529243 1579:4695309 1564:: 1–8. 1523:3167505 1492:Bibcode 1445:3058771 1385:3618678 1321:1943425 1306:: 129. 1263:3002240 1201:2987880 1150:3711898 1127:Bibcode 1080:4303887 1019:2607145 998:Bibcode 954:1397837 902:9349258 838:4262006 772:2849637 743:Bibcode 735:Science 658:5969497 597:E. coli 587:mutants 585:E. coli 553:tobacco 498:vinegar 482:NAD(P)H 450:ethanol 446:glucose 263:HXT1-17 139:(HGT), 103:E. coli 92:Dekkera 57:biomass 2134:Yeasts 2107:  2069:  2034:  1993:  1985:  1950:  1909:  1899:  1891:  1850:  1842:  1834:  1797:  1751:  1743:  1702:  1692:  1684:  1640:  1630:  1586:  1576:  1530:  1520:  1512:  1452:  1442:  1434:  1392:  1382:  1328:  1318:  1270:  1260:  1252:  1208:  1198:  1157:  1147:  1087:  1077:  1069:  1026:  1016:  960:  952:  910:534500 908:  900:  892:  845:  835:  827:  779:  769:  761:  714:  706:  656:  559:& 551:) and 531:Plants 438:sugars 1991:S2CID 1848:S2CID 958:S2CID 906:S2CID 870:(PDF) 545:maize 452:, to 215:, 20 2105:PMID 2067:PMID 2032:PMID 2018:1807 1983:ISSN 1948:PMID 1930:Cell 1907:PMID 1889:ISSN 1840:PMID 1832:ISSN 1795:ISBN 1749:PMID 1741:ISSN 1700:PMID 1682:ISSN 1638:PMID 1584:PMID 1528:PMID 1510:ISSN 1450:PMID 1432:ISSN 1390:PMID 1326:PMID 1268:PMID 1250:ISSN 1206:PMID 1155:PMID 1085:PMID 1067:ISSN 1024:PMID 950:PMID 898:PMID 890:ISSN 843:PMID 825:ISSN 777:PMID 759:ISSN 712:PMID 704:ISSN 654:PMID 488:via 448:and 440:and 361:and 342:ADH2 233:RGT2 231:and 229:SNF3 225:GAL2 2097:doi 2093:149 2059:doi 2022:doi 1975:doi 1938:doi 1934:144 1897:PMC 1879:doi 1824:doi 1787:doi 1731:doi 1690:PMC 1674:doi 1628:PMC 1618:doi 1574:PMC 1566:doi 1518:PMC 1500:doi 1488:108 1440:PMC 1424:doi 1380:PMC 1372:doi 1316:PMC 1308:doi 1258:PMC 1242:doi 1196:PMC 1186:doi 1145:PMC 1135:doi 1075:PMC 1059:doi 1014:PMC 1006:doi 940:doi 882:doi 833:PMC 817:doi 767:PMC 751:doi 739:324 696:doi 644:doi 541:NAD 537:ATP 468:by 325:Adh 321:Pdc 317:Pdc 267:HXT 261:'s 241:. 223:), 217:HXT 47:in 30:or 2125:: 2103:. 2091:. 2079:^ 2065:. 2053:. 2030:. 2016:. 2012:. 1989:. 1981:. 1946:. 1932:. 1928:. 1905:. 1895:. 1887:. 1877:. 1875:13 1873:. 1869:. 1846:. 1838:. 1830:. 1820:16 1818:. 1793:. 1761:^ 1747:. 1739:. 1727:21 1725:. 1721:. 1698:. 1688:. 1680:. 1670:69 1668:. 1664:. 1650:^ 1636:. 1626:. 1614:13 1612:. 1608:. 1596:^ 1582:. 1572:. 1562:35 1560:. 1556:. 1540:^ 1526:. 1516:. 1508:. 1498:. 1486:. 1482:. 1462:^ 1448:. 1438:. 1430:. 1420:28 1418:. 1414:. 1402:^ 1388:. 1378:. 1368:37 1366:. 1362:. 1338:^ 1324:. 1314:. 1302:. 1298:. 1280:^ 1266:. 1256:. 1248:. 1238:28 1236:. 1232:. 1218:^ 1204:. 1194:. 1180:. 1176:. 1153:. 1143:. 1133:. 1121:. 1117:. 1097:^ 1083:. 1073:. 1065:. 1053:. 1049:. 1036:^ 1022:. 1012:. 1004:. 994:74 992:. 988:. 970:^ 956:. 948:. 934:. 930:. 918:^ 904:. 896:. 888:. 878:35 876:. 872:. 855:^ 841:. 831:. 823:. 813:14 811:. 807:. 789:^ 775:. 765:. 757:. 749:. 737:. 733:. 710:. 702:. 692:22 690:. 666:^ 652:. 640:44 638:. 634:. 620:^ 500:. 135:, 95:, 89:, 75:. 2111:. 2099:: 2073:. 2061:: 2055:4 2038:. 2024:: 1997:. 1977:: 1971:4 1954:. 1940:: 1913:. 1881:: 1854:. 1826:: 1803:. 1789:: 1755:. 1733:: 1706:. 1676:: 1644:. 1620:: 1590:. 1568:: 1534:. 1502:: 1494:: 1456:. 1426:: 1396:. 1374:: 1332:. 1310:: 1304:3 1274:. 1244:: 1212:. 1188:: 1182:4 1161:. 1137:: 1129:: 1123:8 1091:. 1061:: 1055:1 1030:. 1008:: 1000:: 964:. 942:: 936:6 912:. 884:: 849:. 819:: 783:. 753:: 745:: 718:. 698:: 660:. 646:: 555:( 547:( 417:. 333:M 20:)

Index

Evolution of aerobic fermentation
aerobic respiration
Crabtree effect
Warburg effect
tumor cells
adenosine triphosphate
biomass
catabolic
carbon dioxide
carbon-carbon bonds
anabolism
Saccharomyces
Dekkera
Schizosaccharomyces
Saccharomyces cerevisiae
Pasteur effect
copy number variation
domestication
artificial selection
hybridization
horizontal gene transfer
gene duplication
whole genome duplication
alcohol dehydrogenase
Saccharomyces paradoxus
Hexose transporters
Schizosaccharomyces pombe

glycolysis
pyruvate decarboxylase

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.