Knowledge

Second-order logic

Source 📝

4383: 1210:, of the properties of the sets or functions ranged over. Henkin semantics is a kind of many-sorted first-order semantics, where there are a class of models of the axioms, instead of the semantics being fixed to just the standard model as in the standard semantics. A model in Henkin semantics will provide a set of sets or set of functions as the interpretation of higher-order domains, which may be a proper subset of all sets or functions of that sort. For his axiomatisation, Henkin proved that 178: 1673:, and some countably infinite collection of sets of internal numbers, whose members we will call "internal sets", such that the domain consisting of internal numbers and internal sets satisfies exactly the same first-order sentences as are satisfied by the domain of real numbers and sets of real numbers. In particular, it satisfies a sort of least-upper-bound axiom that says, in effect: 1723:, along with the fact that all the axioms of an Archimedean complete ordered field are expressible in second-order logic. This shows that the second-order theory of the real numbers cannot be reduced to a first-order theory, in the sense that the second-order theory of the real numbers has only one model but the corresponding first-order theory has many models. 2116: 591:(MSO) is a restriction of second-order logic in which only quantification over unary relations (i.e. sets) is allowed. Quantification over functions, owing to the equivalence to relations as described above, is thus also not allowed. The second-order logic without these restrictions is sometimes called 1635:
The deductive systems considered by Shapiro (1991) and Henkin (1950) add to the augmented first-order deductive scheme both comprehension axioms and choice axioms. These axioms are sound for standard second-order semantics. They are sound for Henkin semantics restricted to Henkin models satisfying
1731:
holds and that has no model if the continuum hypothesis does not hold (cf. Shapiro 2000, p. 105). This theory consists of a finite theory characterizing the real numbers as a complete Archimedean ordered field plus an axiom saying that the domain is of the first uncountable cardinality. This
1503:
that satisfies this property is isomorphic to the real number field. On the other hand, the set of first-order sentences valid in the reals has arbitrarily large models due to the compactness theorem. Thus the least-upper-bound property cannot be expressed by any set of sentences in first-order
1649:
real numbers. Add a new binary predicate to the language: the membership relation. Then sentences that were second-order become first-order, with the formerly second-order quantifiers ranging over the second sort instead. This reduction can be attempted in a one-sorted theory by adding unary
1583:
Certain fragments of second-order logic like ESO are also more expressive than first-order logic even though they are strictly less expressive than the full second-order logic. ESO also enjoys translation equivalence with some extensions of first-order logic that allow non-linear ordering of
640:
in a particular second-order language. These are restricted, however, in that all terms that they form must be either first-order terms (which can be substituted for a first-order variable) or second-order terms (which can be substituted for a second-order variable of an appropriate sort).
1644:
One might attempt to reduce the second-order theory of the real numbers, with full second-order semantics, to the first-order theory in the following way. First expand the domain from the set of all real numbers to a two-sorted domain, with the second sort containing all
247:
As a result, second-order logic has greater expressive power than first-order logic. For example, there is no way in first-order logic to identify the set of all cubes and tetrahedrons. But the existence of this set can be asserted in second-order logic as:
1200:) Thus once the domain of the first-order variables is established, the meaning of the remaining quantifiers is fixed. It is these semantics that give second-order logic its expressive power, and they will be assumed for the remainder of this article. 1715:
Thus the first-order theory of real numbers and sets of real numbers has many models, some of which are countable. The second-order theory of the real numbers has only one model, however. This follows from the classical theorem that there is only one
1233:
For theories such as second-order arithmetic, the existence of non-standard interpretations of higher-order domains isn't just a deficiency of the particular axiomatisation derived from type theory that Henkin used, but a necessary consequence of
1616:
and logical axioms that determine which sequences of formulas constitute valid proofs. Several deductive systems can be used for second-order logic, although none can be complete for the standard semantics (see below). Each of these systems is
1184:. In each of these semantics, the interpretations of the first-order quantifiers and the logical connectives are the same as in first-order logic. Only the ranges of quantifiers over second-order variables differ in the two types of semantics 1934:
of sentences such as "Some critics admire only each other" and "Some of Fianchetto's men went into the warehouse unaccompanied by anyone else", which he argues can only be expressed by the full force of second-order quantification. However,
1843:
made them famous. Frege used different variables to distinguish quantification over objects from quantification over properties and sets; but he did not see himself as doing two different kinds of logic. After the discovery of
1195:
sets or functions of the appropriate sort. A model with this condition is called a full model, and these are the same as models in which the range of the second-order quantifiers is the powerset of the model's first-order part.
1175:
The semantics of second-order logic establish the meaning of each sentence. Unlike first-order logic, which has only one standard semantics, there are two different semantics that are commonly used for second-order logic:
1691:
Countability of the set of all internal numbers (in conjunction with the fact that those form a densely ordered set) implies that that set does not satisfy the full least-upper-bound axiom. Countability of the set of all
1726:
There are more extreme examples showing that second-order logic with standard semantics is more expressive than first-order logic. There is a finite second-order theory whose only model is the real numbers if the
1914:
like a property). For example, it might mean " . . . is a dog." But it makes no sense to think we can quantify over something like this. (Such a position is quite consistent with Frege's own arguments on the
1206:(1950) defined an alternative kind of semantics for second-order and higher-order theories, in which the meaning of the higher-order domains is partly determined by an explicit axiomatisation, drawing on 1262:, in that the former obeys model-theoretic properties like the Lowenheim-Skolem theorem and compactness, and the latter has categoricity phenomena. For example, "we cannot meaningfully ask whether the 1105: 966: 787: 128: 374:
It is notable that while we have variables for predicates in second-order-logic, we don't have variables for properties of predicates. We cannot say, for example, that there is a property Shape(
564:
Each of the variables just defined may be universally and/or existentially quantified over, to build up formulas. Thus there are many kinds of quantifiers, two for each sort of variables. A
1544: 1879:, and a variety of other powerful logical theories could be formulated axiomatically without appeal to any more logical apparatus than first-order quantification, and this, along with 1943:(or branching) quantification may suffice to express a certain class of purportedly nonfirstorderizable sentences as well and these do not appeal to second-order quantification. 917: 1919:
distinction). So to use a predicate as a variable is to have it occupy the place of a name, which only individual variables should occupy. This reasoning has been rejected by
2762: 1157: 843: 738: 674: 1412: 1384: 1356: 1308: 1056: 1804:, and the deductive system with comprehension and choice principles is sound, complete, and effective for Henkin semantics using only models that satisfy these principles. 1018: 875: 706: 627: 1852:—eliminated this problem: sets and properties cannot be quantified over in first-order logic alone. The now-standard hierarchy of orders of logics dates from this time. 3437: 1238:: Henkin's axioms can't be supplemented further to ensure the standard interpretation is the only possible model. Henkin semantics are commonly used in the study of 1125: 986: 807: 1328: 1280: 708:) if its quantifiers (which may be universal or existential) range only over variables of first order, although it may have free variables of second order. A 3520: 2661: 1902:" is to be thought of as a variable or name denoting an object and hence can be quantified over, as in "For all things, it is the case that . . ." but the " 1848:
it was realized that something was wrong with his system. Eventually logicians found that restricting Frege's logic in various ways—to what is now called
270:
We can then assert properties of this set. For instance, the following says that the set of all cubes and tetrahedrons does not contain any dodecahedrons:
1800:
As mentioned above, Henkin proved that the standard deductive system for first-order logic is sound, complete, and effective for second-order logic with
1252:) argued that the distinction between Henkin semantics and full semantics for second-order logic is analogous to the distinction between provability in 1450:. If the domain is the set of all real numbers, the following second-order sentence (split over two lines) expresses the least upper bound property: 3834: 2524: 1577: 1831:
and whose notation is most similar to the modern form (Putnam 1982). However, today most students of logic are more familiar with the works of
2023:, and additional predicates that serve to uniquely identify which index is which (typically, one takes the graph of the successor function on 3992: 2609: 2233: 2780: 3847: 3170: 1744: 1235: 1708:
implies that the set of all subsets of a countably infinite set is an uncountably infinite set). This construction is closely related to
2266:
The proof of this corollary is that a sound, complete, and effective deduction system for standard semantics could be used to produce a
2047: 1926:
In recent years second-order logic has made something of a recovery, buoyed by Boolos' interpretation of second-order quantification as
3432: 1650:
predicates that tell whether an element is a number or a set, and taking the domain to be the union of the set of real numbers and the
3852: 3842: 3579: 2785: 3330: 2776: 1211: 3988: 2513: 2473: 2405: 2096:
Relationships among these classes directly impact the relative expressiveness of the logics over finite structures; for example, if
571:
It's possible to forgo the introduction of function variables in the definition given above (and some authors do this) because an
4407: 4085: 3829: 2654: 2149: 3390: 3083: 2824: 2104:, then adding a transitive closure operator to second-order logic would not make it any more expressive over finite structures. 1864: 1812: 1662: 1219: 4412: 1952: 4346: 4048: 3811: 3806: 3631: 3052: 2736: 1849: 740:(existential second-order) formula is one additionally having some existential quantifiers over second order variables, i.e. 1061: 922: 809:
is a first-order formula. The fragment of second-order logic consisting only of existential second-order formulas is called
743: 169:(often called simply the "domain" or the "universe"). The domain is a set over which individual elements may be quantified. 4341: 4124: 4041: 3754: 3685: 3562: 2804: 79: 74: 3412: 4266: 4092: 3778: 3011: 1859:
could be formulated as an axiomatized system within the apparatus of first-order logic (at the cost of several kinds of
395: 3417: 2038:
This identification leads to the following characterizations of variants of second-order logic over finite structures:
1963:
can be characterized by the power of the logic needed to express languages (sets of finite strings) in them. A string
3749: 3488: 2746: 2647: 2228:(hardcover). Discrete Mathematics and Its Applications (5th ed.). Boca Raton: Chapman and Hall/CRC. p. 387. 1930:
over the same domain of objects as first-order quantification (Boolos 1984). Boolos furthermore points to the claimed
1593: 4144: 4139: 1732:
example illustrates that the question of whether a sentence in second-order logic is consistent is extremely subtle.
1624:
The weakest deductive system that can be used consists of a standard deductive system for first-order logic (such as
877:
formulas is defined dually, it is called universal second-order logic. More expressive fragments are defined for any
1511: 4073: 3663: 3057: 3025: 2716: 2154: 1628:) augmented with substitution rules for second-order terms. This deductive system is commonly used in the study of 587: 2790: 4363: 4312: 4209: 3707: 3668: 3145: 4204: 2819: 1759:) Every provable second-order sentence is universally valid, i.e., true in all domains under standard semantics. 1223: 4134: 3673: 3525: 3508: 3231: 2711: 2447: 1940: 1774: 568:
in second-order logic, as in first-order logic, is a well-formed formula with no free variables (of any sort).
595:
to distinguish it from the monadic version. Monadic second-order logic is particularly used in the context of
4036: 4013: 3974: 3860: 3801: 3447: 3367: 3211: 3155: 2768: 2295: 1629: 1239: 1164: 630: 607:) is decidable. By contrast, full second order logic over any infinite set (or MSO logic over for example ( 2630: 2199: 1887:'s adherence to first-order logic, led to a general decline in work in second (or any higher) order logic. 1426:, one can assert in first-order logic the existence of an additive inverse of each real number by writing ∀ 1422:
Second-order logic is more expressive than first-order logic. For example, if the domain is the set of all
1245: 1218:, which hold for first-order logic, carry over to second-order logic with Henkin semantics. Since also the 4326: 4053: 4031: 3998: 3891: 3737: 3722: 3695: 3646: 3530: 3465: 3290: 3256: 3251: 3125: 2956: 2933: 2539: 2267: 1956: 1936: 1931: 1840: 1824: 596: 158: 150: 47: 4256: 4109: 3901: 3619: 3355: 3261: 3120: 3105: 2986: 2961: 2325:
Boolos, George (1984). "To Be Is To Be a Value of a Variable (or to Be Some Values of Some Variables)".
1927: 1580:
that it is not possible to characterize finiteness or countability, respectively, in first-order logic.
4382: 1951:
The expressive power of various forms of second-order logic on finite structures is intimately tied to
1793:) pointed to the lack of a complete proof system as a reason for thinking of second-order logic as not 1446:
property for sets of real numbers, which states that every bounded, nonempty set of real numbers has a
884: 232:
is not a sentence of first-order logic, but this is a legitimate sentence of second-order logic. Here,
1621:, which means any sentence they can be used to prove is logically valid in the appropriate semantics. 4229: 4191: 4068: 3872: 3712: 3636: 3614: 3442: 3400: 3299: 3266: 3130: 2918: 2829: 1860: 1845: 1770: 1763: 1728: 1717: 1258: 1160: 1130: 816: 711: 647: 200:) and obtain a quantified sentence by replacing the name with a variable and attaching a quantifier: 1389: 1361: 1333: 1285: 1023: 4358: 4249: 4234: 4214: 4171: 4058: 4008: 3934: 3879: 3816: 3609: 3604: 3552: 3320: 3309: 2981: 2881: 2809: 2800: 2796: 2731: 2726: 2544: 2173:
Shapiro (1991) and Hinman (2005) give complete introductions to the subject, with full definitions.
2139: 1808: 1709: 1705: 1573: 1215: 166: 131: 66: 1781:
This corollary is sometimes expressed by saying that second-order logic does not admit a complete
991: 848: 679: 610: 192:
First-order logic can quantify over individuals, but not over properties. That is, we can take an
4387: 4156: 4119: 4104: 4097: 4080: 3866: 3732: 3658: 3641: 3594: 3407: 3316: 3150: 3135: 3095: 3047: 3032: 2976: 2951: 2721: 2670: 2565: 2557: 2384: 2376: 2342: 2134: 2079: 1916: 1835:, who published his work several years prior to Peirce but whose works remained less known until 1801: 1666: 637: 383: 237: 62: 51: 3884: 3340: 2057: 2484: 1568:. To say that the domain has countable cardinality, use the sentence that says that there is a 4322: 4129: 3939: 3929: 3821: 3702: 3537: 3513: 3294: 3278: 3183: 3160: 3037: 3006: 2971: 2866: 2701: 2605: 2509: 2469: 2451: 2401: 2229: 2129: 2121: 2089: 2032: 1625: 1585: 1505: 604: 447: 399: 241: 154: 70: 43: 17: 2299: 2186: 1790: 1785:. In this respect second-order logic with standard semantics differs from first-order logic; 4336: 4331: 4224: 4181: 4003: 3964: 3959: 3944: 3770: 3727: 3624: 3422: 3372: 2946: 2908: 2615: 2549: 2431: 2368: 2334: 2283: 2271: 2043: 1960: 1836: 1609: 1597: 1815:
do not hold for full models of second-order logic. They do hold however for Henkin models.
1661:
sets of real numbers. That requirement cannot be reduced to a first-order sentence, as the
1110: 971: 792: 4317: 4307: 4261: 4244: 4199: 4161: 4063: 3983: 3790: 3717: 3690: 3678: 3584: 3498: 3472: 3427: 3395: 3196: 2998: 2941: 2891: 2856: 2814: 2619: 2601: 2499: 2069: 2053: 1911: 1777:
algorithm that can correctly decide whether a given sequence of symbols is a proof or not.
1751:) for second-order formulas that simultaneously satisfies these three desired attributes: 1613: 332:. In second-order logic we can express this by saying that every set of people containing 193: 300:
Second-order quantification is especially useful because it gives the ability to express
188:(Berlin) showing the simplest second-order sentence admitting nontrivial models, "∃𝜑𝜑". 2027:
or the order relation <, possibly with other arithmetic predicates). Conversely, the
1549:
In second-order logic, it is possible to write formal sentences that say "the domain is
4302: 4281: 4239: 4219: 4114: 3969: 3567: 3557: 3547: 3542: 3476: 3350: 3226: 3115: 3110: 3088: 2689: 2593: 2144: 1884: 1313: 1265: 443: 1766:) Every universally valid second-order formula, under standard semantics, is provable. 218:
However, we cannot do the same with the predicate. That is, the following expression:
177: 4401: 4276: 3954: 3461: 3246: 3236: 3206: 3191: 2861: 2585: 2465: 2436: 2419: 2415: 1920: 1880: 1832: 1554: 1500: 2388: 644:
A formula in second-order logic is said to be of first-order (and sometimes denoted
4176: 4023: 3924: 3916: 3796: 3744: 3653: 3589: 3572: 3503: 3362: 3221: 2923: 2706: 2589: 2569: 2028: 1782: 600: 301: 2459: 4286: 4166: 3345: 3335: 3282: 2966: 2886: 2871: 2751: 2696: 1891: 1868: 1786: 1735:
Additional limitations of second-order logic are described in the next section.
1720: 1557: 1423: 1207: 1203: 185: 55: 35: 3216: 3071: 3042: 2848: 2111: 1872: 1856: 1561: 1550: 1191:
In standard semantics, also called full semantics, the quantifiers range over
2318:
An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof
4368: 4271: 3324: 3241: 3201: 3165: 3101: 2913: 2903: 2876: 1876: 1756: 1651: 1618: 1569: 1565: 1560:." To say that the domain is finite, use the sentence that says that every 575:-ary function variable can be represented by a relation variable of arity 4353: 4151: 3599: 3304: 2898: 2088:
is the set of languages definable by second-order formulas with an added
2078:
is the set of languages definable by second-order formulas with an added
2056:
is the set of languages definable by existential, second-order formulas (
1589: 1447: 1443: 394:
The syntax of second-order logic tells which expressions are well formed
325: 181: 579:+1 and an appropriate formula for the uniqueness of the "result" in the 516:
elements of the domain and returning a single element of the domain. If
3949: 2741: 2561: 2380: 2346: 2085: 2046:) is the set of languages definable by monadic, second-order formulas ( 2066:
is the set of languages definable by universal, second-order formulas.
1910:
for an incomplete sentence, not the name of an object (not even of an
1572:
between every two infinite subsets of the domain. It follows from the
2639: 2291: 2075: 1894:. Quine advanced the view that in predicate-language sentences like 1890:
This rejection was actively advanced by some logicians, most notably
2553: 2372: 2338: 2206:(Fall 2021 ed.), Metaphysics Research Lab, Stanford University 1863:, but nothing so bad as Russell's paradox), and this was done (see 512:
there is a sort of variables that ranges over all functions taking
3493: 2839: 2684: 2600:. Texts in Theoretical Computer Science. An EATCS Series. Berlin: 2505:
Foundations without Foundationalism: A Case for Second-Order Logic
2063: 176: 31: 1823:
Predicate logic was introduced to the mathematical community by
2643: 2635:. The Stanford Encyclopedia of Philosophy (Fall 2021 Edition). 1584:
quantifier dependencies, like first-order logic extended with
1253: 636:
Just as in first-order logic, second-order logic may include
165:). Both first-order and second-order logic use the idea of a 414:
A sort of variables that range over sets of individuals. If
65:
only variables that range over individuals (elements of the
2072:
is the set of languages definable by second-order formulas.
1414:... has countable models and hence cannot be categorical." 2359:
Henkin, L. (1950). "Completeness in the theory of types".
2187:
https://faculty.washington.edu/smcohen/120/SecondOrder.pdf
1508:
satisfies the same first-order sentences in the signature
320:, then first-order logic cannot express the property that 2485:"First-Order Logic, Second-Order Logic, and Completeness" 2257:
These are the models originally studied by Henkin (1950).
1747:
that there is no deductive system (that is, no notion of
603:. The MSO theory of the complete infinite binary tree ( 583:+1 argument of the relation. (Shapiro 2000, p. 63) 153:). Second-order logic also includes quantification over 27:
Form of logic that allows quantification over predicates
2248:
Such a system is used without comment by Hinman (2005).
1669:
subset of the real numbers, whose members we will call
1100:{\displaystyle \forall R_{0}\ldots \forall R_{m}\phi } 961:{\displaystyle \exists R_{0}\ldots \exists R_{m}\phi } 782:{\displaystyle \exists R_{0}\ldots \exists R_{m}\phi } 1985:
can be represented by a finite structure with domain
1514: 1392: 1364: 1336: 1316: 1288: 1268: 1133: 1113: 1064: 1026: 994: 974: 925: 887: 851: 819: 795: 746: 714: 682: 650: 613: 82: 1442:= 0) but one needs second-order logic to assert the 123:{\displaystyle \forall P\,\forall x(Px\lor \neg Px)} 69:); second-order logic, in addition, quantifies over 4295: 4190: 4022: 3915: 3767: 3460: 3383: 3277: 3181: 3070: 2997: 2932: 2847: 2838: 2760: 2677: 2525:"Second-Order Logic and Foundations of Mathematics" 1657:But notice that the domain was asserted to include 1538: 1406: 1378: 1350: 1322: 1302: 1274: 1151: 1119: 1099: 1050: 1012: 980: 960: 911: 869: 837: 801: 781: 732: 700: 668: 621: 457:there is a sort of variables that ranges over all 122: 1487:This formula is a direct formalization of "every 1665:shows. That theorem implies that there is some 1539:{\displaystyle \langle +,\cdot ,\leq \rangle } 336:and closed under the Parent relation contains 2655: 8: 1533: 1515: 446:. Sets of individuals can also be viewed as 50:. Second-order logic is in turn extended by 2320:(2nd ed.). Kluwer Academic Publishers. 2274:, which Gödel's theorem shows cannot exist. 3481: 3076: 2844: 2662: 2648: 2640: 540:are first-order terms then the expression 485:are first-order terms then the expression 422:is a first-order term then the expression 2543: 2435: 1513: 1393: 1391: 1386:, then we can note that the reformalized 1365: 1363: 1337: 1335: 1315: 1289: 1287: 1267: 1143: 1138: 1132: 1112: 1088: 1072: 1063: 1042: 1031: 1025: 1004: 999: 993: 973: 949: 933: 924: 903: 892: 886: 861: 856: 850: 829: 824: 818: 794: 770: 754: 745: 724: 719: 713: 692: 687: 681: 660: 655: 649: 615: 614: 612: 382:Cube, Tet, and Dodec. This would require 162: 89: 81: 2629:VÀÀnĂ€nen, Jouko. Edward N. Zalta (ed.). 2598:Finite model theory and its applications 2596:; Venema, Yde; Weinstein, Scott (2007). 2181: 2179: 2490:. In V. Hendricks; et al. (eds.). 2204:The Stanford Encyclopedia of Philosophy 2166: 2031:of any finite structure (over a finite 1696:sets implies that it is not the set of 402:, second-order logic includes many new 2442:. Reprinted in Putnam, Hilary (1990), 1564:function from the domain to itself is 461:-ary relations on the individuals. If 2584:GrĂ€del, Erich; Kolaitis, Phokion G.; 2200:"Second-order and Higher-order Logic" 2035:) can be encoded by a finite string. 1640:Non-reducibility to first-order logic 1636:the comprehension and choice axioms. 7: 1947:Relation to computational complexity 1226:imports that Henkin models are just 2632:Second-order and Higher-order Logic 2185:Professor Marc Cohen lecture notes 304:properties. For example, if Parent( 161:, and other variables (see section 2398:Fundamentals of Mathematical Logic 2290:, trans. Ruy J. G. B. de Queiroz ( 2226:Introduction to Mathematical Logic 1400: 1397: 1394: 1372: 1369: 1366: 1344: 1341: 1338: 1296: 1293: 1290: 1163:for the analogous construction of 1135: 1081: 1065: 1028: 996: 942: 926: 889: 853: 845:, or even as ∃SO. The fragment of 821: 763: 747: 716: 684: 652: 378:) that is true for the predicates 108: 90: 83: 46:, which itself is an extension of 25: 1249: 1197: 1185: 912:{\displaystyle \Sigma _{k+1}^{1}} 599:, an algorithmic meta-theorem in 4381: 2150:Second-order propositional logic 2114: 2048:BĂŒchi-Elgot-Trakhtenbrot theorem 73:. For example, the second-order 1953:computational complexity theory 1578:upward Löwenheim–Skolem theorem 1152:{\displaystyle \Sigma _{k}^{1}} 838:{\displaystyle \Sigma _{1}^{1}} 733:{\displaystyle \Sigma _{1}^{1}} 669:{\displaystyle \Sigma _{0}^{1}} 418:is a variable of this sort and 1745:Gödel's incompleteness theorem 1407:{\displaystyle \mathrm {ZFC} } 1379:{\displaystyle \mathrm {ZFC} } 1351:{\displaystyle \mathrm {ZFC} } 1303:{\displaystyle \mathrm {ZFC} } 1236:Gödel's incompleteness theorem 1051:{\displaystyle \Pi _{k+1}^{1}} 811:existential second-order logic 117: 96: 18:Existential second-order logic 1: 4342:History of mathematical logic 2202:, in Zalta, Edward N. (ed.), 2008:, satisfied by those indices 4267:Primitive recursive function 2437:10.1016/0315-0860(82)90123-9 1959:studies which computational 1906:" is to be thought of as an 1499:." It can be shown that any 1228:disguised first-order models 1212:Gödel's completeness theorem 1013:{\displaystyle \Pi _{k}^{1}} 881:> 0 by mutual recursion: 870:{\displaystyle \Pi _{1}^{1}} 701:{\displaystyle \Pi _{0}^{1}} 629:,+)) can interpret the true 622:{\displaystyle \mathbb {N} } 2508:. Oxford: Clarendon Press. 2492:First-order logic revisited 1865:Zermelo–Fraenkel set theory 1594:independence-friendly logic 1222:hold for Henkin semantics, 813:and abbreviated as ESO, as 524:-ary function variable and 469:-ary relation variable and 442:to save parentheses) is an 410:) of variables. These are: 400:syntax of first-order logic 4429: 3331:Schröder–Bernstein theorem 3058:Monadic predicate calculus 2717:Foundations of mathematics 2532:Bulletin of Symbolic Logic 2224:Mendelson, Elliot (2009). 2155:Monadic second-order logic 1937:generalized quantification 1819:History and disputed value 1700:subsets of the set of all 588:Monadic second-order logic 4377: 4364:Philosophy of mathematics 4313:Automated theorem proving 3484: 3438:Von Neumann–Bernays–Gödel 3079: 2444:Realism with a Human Face 2361:Journal of Symbolic Logic 1867:), as sets are vital for 1220:Skolem–Löwenheim theorems 2448:Harvard University Press 2198:VÀÀnĂ€nen, Jouko (2021), 1813:Löwenheim–Skolem theorem 1684:upper bound has a least 1663:Löwenheim–Skolem theorem 1612:for a logic is a set of 1504:logic. (In fact, every 1330:. But if we reformalize 560:) is a first-order term. 508:For each natural number 453:For each natural number 4408:Systems of formal logic 4014:Self-verifying theories 3835:Tarski's axiomatization 2786:Tarski's undefinability 2781:incompleteness theorems 2494:. Berlin: Logos-Verlag. 2351:. Reprinted in Boolos, 2316:Andrews, Peter (2002). 1630:second-order arithmetic 1553:" or "the domain is of 1497:has a least upper bound 1240:second-order arithmetic 1165:second-order arithmetic 631:second-order arithmetic 593:full second-order logic 505:) is an atomic formula. 149:) is true (this is the 137:, and every individual 4413:Charles Sanders Peirce 4388:Mathematics portal 3999:Proof of impossibility 3647:propositional variable 2957:Propositional calculus 2452:pp. 252–260 2353:Logic, Logic and Logic 2268:recursively enumerable 1957:descriptive complexity 1932:nonfirstorderizability 1841:Alfred North Whitehead 1827:, who coined the term 1721:complete ordered field 1546:as the real numbers.) 1540: 1408: 1380: 1352: 1324: 1304: 1276: 1153: 1121: 1101: 1052: 1020:formula, and similar, 1014: 982: 962: 913: 871: 839: 803: 783: 734: 702: 670: 623: 240:and is semantically a 189: 151:law of excluded middle 124: 4257:Kolmogorov complexity 4210:Computably enumerable 4110:Model complete theory 3902:Principia Mathematica 2962:Propositional formula 2791:Banach–Tarski paradox 2523:VÀÀnĂ€nen, J. (2001). 2483:Rossberg, M. (2004). 2420:"Peirce the Logician" 2327:Journal of Philosophy 1981:in a finite alphabet 1928:plural quantification 1797:, properly speaking. 1743:It is a corollary of 1654:of the real numbers. 1541: 1409: 1381: 1353: 1325: 1305: 1277: 1154: 1122: 1120:{\displaystyle \phi } 1102: 1053: 1015: 983: 981:{\displaystyle \phi } 963: 914: 872: 840: 804: 802:{\displaystyle \phi } 784: 735: 703: 671: 624: 398:. In addition to the 180: 125: 4205:Church–Turing thesis 4192:Computability theory 3401:continuum hypothesis 2919:Square of opposition 2777:Gödel's completeness 2458:W. V. Quine (1970). 2424:Historia Mathematica 1993:}, unary predicates 1989: = {1,..., 1729:continuum hypothesis 1512: 1470:)( ∧ → 1390: 1362: 1334: 1314: 1286: 1266: 1161:analytical hierarchy 1131: 1111: 1062: 1024: 992: 972: 923: 885: 849: 817: 793: 744: 712: 680: 648: 611: 390:Syntax and fragments 130:says that for every 80: 4359:Mathematical object 4250:P versus NP problem 4215:Computable function 4009:Reverse mathematics 3935:Logical consequence 3812:primitive recursive 3807:elementary function 3580:Free/bound variable 3433:Tarski–Grothendieck 2952:Logical connectives 2882:Logical equivalence 2732:Logical consequence 2461:Philosophy of Logic 2396:Hinman, P. (2005). 1809:compactness theorem 1739:Metalogical results 1574:compactness theorem 1224:Lindström's theorem 1216:compactness theorem 1148: 1047: 1009: 908: 866: 834: 729: 697: 665: 638:non-logical symbols 597:Courcelle's theorem 361:∧ Parent(a, b)) → P 167:domain of discourse 67:domain of discourse 48:propositional logic 42:is an extension of 4157:Transfer principle 4120:Semantics of logic 4105:Categorical theory 4081:Non-standard model 3595:Logical connective 2722:Information theory 2671:Mathematical logic 2135:Higher-order logic 2080:transitive closure 1961:complexity classes 1855:It was found that 1829:second-order logic 1667:countably infinite 1586:Henkin quantifiers 1536: 1404: 1376: 1348: 1320: 1300: 1272: 1178:standard semantics 1149: 1134: 1117: 1097: 1048: 1027: 1010: 995: 978: 958: 909: 888: 867: 852: 835: 820: 799: 779: 730: 715: 698: 683: 666: 651: 619: 406:(sometimes called 238:predicate variable 190: 120: 61:First-order logic 52:higher-order logic 40:second-order logic 4395: 4394: 4327:Abstract category 4130:Theories of truth 3940:Rule of inference 3930:Natural deduction 3911: 3910: 3456: 3455: 3161:Cartesian product 3066: 3065: 2972:Many-valued logic 2947:Boolean functions 2830:Russell's paradox 2805:diagonal argument 2702:First-order logic 2611:978-3-540-00428-8 2588:; Maarten, Marx; 2235:978-1-58488-876-5 2130:First-order logic 2122:Philosophy portal 2090:least fixed point 2044:regular languages 1941:partially ordered 1850:first-order logic 1846:Russell's paradox 1626:natural deduction 1604:Deductive systems 1596:, and VÀÀnĂ€nen's 1506:real-closed field 1444:least-upper-bound 1323:{\displaystyle V} 1275:{\displaystyle V} 384:third-order logic 44:first-order logic 16:(Redirected from 4420: 4386: 4385: 4337:History of logic 4332:Category of sets 4225:Decision problem 4004:Ordinal analysis 3945:Sequent calculus 3843:Boolean algebras 3783: 3782: 3757: 3728:logical/constant 3482: 3468: 3391:Zermelo–Fraenkel 3142:Set operations: 3077: 3014: 2845: 2825:Löwenheim–Skolem 2712:Formal semantics 2664: 2657: 2650: 2641: 2636: 2623: 2573: 2547: 2529: 2519: 2495: 2489: 2479: 2441: 2439: 2411: 2392: 2350: 2321: 2303: 2281: 2275: 2272:Peano arithmetic 2264: 2258: 2255: 2249: 2246: 2240: 2239: 2220: 2214: 2213: 2212: 2211: 2195: 2189: 2183: 2174: 2171: 2140:Löwenheim number 2124: 2119: 2118: 2117: 1837:Bertrand Russell 1802:Henkin semantics 1710:Skolem's paradox 1706:Cantor's theorem 1680:set that has an 1671:internal numbers 1610:deductive system 1598:dependence logic 1545: 1543: 1542: 1537: 1498: 1494: 1490: 1481: 1479: 1456: 1418:Expressive power 1413: 1411: 1410: 1405: 1403: 1385: 1383: 1382: 1377: 1375: 1357: 1355: 1354: 1349: 1347: 1329: 1327: 1326: 1321: 1309: 1307: 1306: 1301: 1299: 1281: 1279: 1278: 1273: 1182:Henkin semantics 1158: 1156: 1155: 1150: 1147: 1142: 1126: 1124: 1123: 1118: 1106: 1104: 1103: 1098: 1093: 1092: 1077: 1076: 1057: 1055: 1054: 1049: 1046: 1041: 1019: 1017: 1016: 1011: 1008: 1003: 987: 985: 984: 979: 967: 965: 964: 959: 954: 953: 938: 937: 918: 916: 915: 910: 907: 902: 876: 874: 873: 868: 865: 860: 844: 842: 841: 836: 833: 828: 808: 806: 805: 800: 788: 786: 785: 780: 775: 774: 759: 758: 739: 737: 736: 731: 728: 723: 707: 705: 704: 699: 696: 691: 675: 673: 672: 667: 664: 659: 628: 626: 625: 620: 618: 370: 296: 266: 244:of individuals. 228: 214: 129: 127: 126: 121: 21: 4428: 4427: 4423: 4422: 4421: 4419: 4418: 4417: 4398: 4397: 4396: 4391: 4380: 4373: 4318:Category theory 4308:Algebraic logic 4291: 4262:Lambda calculus 4200:Church encoding 4186: 4162:Truth predicate 4018: 3984:Complete theory 3907: 3776: 3772: 3768: 3763: 3755: 3475: and  3471: 3466: 3452: 3428:New Foundations 3396:axiom of choice 3379: 3341:Gödel numbering 3281: and  3273: 3177: 3062: 3012: 2993: 2942:Boolean algebra 2928: 2892:Equiconsistency 2857:Classical logic 2834: 2815:Halting problem 2803: and  2779: and  2767: and  2766: 2761:Theorems ( 2756: 2673: 2668: 2628: 2612: 2602:Springer-Verlag 2594:Vardi, Moshe Y. 2583: 2580: 2578:Further reading 2554:10.2307/2687796 2527: 2522: 2516: 2498: 2487: 2482: 2476: 2457: 2414: 2408: 2395: 2373:10.2307/2266967 2358: 2339:10.2307/2026308 2324: 2315: 2312: 2307: 2306: 2296:Clarendon Press 2282: 2278: 2265: 2261: 2256: 2252: 2247: 2243: 2236: 2223: 2221: 2217: 2209: 2207: 2197: 2196: 2192: 2184: 2177: 2172: 2168: 2163: 2120: 2115: 2113: 2110: 2058:Fagin's theorem 2017: 1998: 1979: 1973: 1955:. The field of 1949: 1912:abstract object 1821: 1741: 1704:numbers (since 1689: 1676:Every nonempty 1642: 1614:inference rules 1606: 1510: 1509: 1496: 1492: 1488: 1461: 1459: 1454: 1420: 1388: 1387: 1360: 1359: 1332: 1331: 1312: 1311: 1284: 1283: 1264: 1263: 1186:(VÀÀnĂ€nen 2001) 1173: 1129: 1128: 1109: 1108: 1084: 1068: 1060: 1059: 1022: 1021: 990: 989: 970: 969: 945: 929: 921: 920: 883: 882: 847: 846: 815: 814: 791: 790: 766: 750: 742: 741: 710: 709: 678: 677: 646: 645: 609: 608: 559: 550: 539: 530: 504: 495: 484: 475: 448:unary relations 392: 344: 316:is a parent of 312:) denotes that 274: 252: 222: 204: 194:atomic sentence 175: 145:is true or not( 78: 77: 28: 23: 22: 15: 12: 11: 5: 4426: 4424: 4416: 4415: 4410: 4400: 4399: 4393: 4392: 4378: 4375: 4374: 4372: 4371: 4366: 4361: 4356: 4351: 4350: 4349: 4339: 4334: 4329: 4320: 4315: 4310: 4305: 4303:Abstract logic 4299: 4297: 4293: 4292: 4290: 4289: 4284: 4282:Turing machine 4279: 4274: 4269: 4264: 4259: 4254: 4253: 4252: 4247: 4242: 4237: 4232: 4222: 4220:Computable set 4217: 4212: 4207: 4202: 4196: 4194: 4188: 4187: 4185: 4184: 4179: 4174: 4169: 4164: 4159: 4154: 4149: 4148: 4147: 4142: 4137: 4127: 4122: 4117: 4115:Satisfiability 4112: 4107: 4102: 4101: 4100: 4090: 4089: 4088: 4078: 4077: 4076: 4071: 4066: 4061: 4056: 4046: 4045: 4044: 4039: 4032:Interpretation 4028: 4026: 4020: 4019: 4017: 4016: 4011: 4006: 4001: 3996: 3986: 3981: 3980: 3979: 3978: 3977: 3967: 3962: 3952: 3947: 3942: 3937: 3932: 3927: 3921: 3919: 3913: 3912: 3909: 3908: 3906: 3905: 3897: 3896: 3895: 3894: 3889: 3888: 3887: 3882: 3877: 3857: 3856: 3855: 3853:minimal axioms 3850: 3839: 3838: 3837: 3826: 3825: 3824: 3819: 3814: 3809: 3804: 3799: 3786: 3784: 3765: 3764: 3762: 3761: 3760: 3759: 3747: 3742: 3741: 3740: 3735: 3730: 3725: 3715: 3710: 3705: 3700: 3699: 3698: 3693: 3683: 3682: 3681: 3676: 3671: 3666: 3656: 3651: 3650: 3649: 3644: 3639: 3629: 3628: 3627: 3622: 3617: 3612: 3607: 3602: 3592: 3587: 3582: 3577: 3576: 3575: 3570: 3565: 3560: 3550: 3545: 3543:Formation rule 3540: 3535: 3534: 3533: 3528: 3518: 3517: 3516: 3506: 3501: 3496: 3491: 3485: 3479: 3462:Formal systems 3458: 3457: 3454: 3453: 3451: 3450: 3445: 3440: 3435: 3430: 3425: 3420: 3415: 3410: 3405: 3404: 3403: 3398: 3387: 3385: 3381: 3380: 3378: 3377: 3376: 3375: 3365: 3360: 3359: 3358: 3351:Large cardinal 3348: 3343: 3338: 3333: 3328: 3314: 3313: 3312: 3307: 3302: 3287: 3285: 3275: 3274: 3272: 3271: 3270: 3269: 3264: 3259: 3249: 3244: 3239: 3234: 3229: 3224: 3219: 3214: 3209: 3204: 3199: 3194: 3188: 3186: 3179: 3178: 3176: 3175: 3174: 3173: 3168: 3163: 3158: 3153: 3148: 3140: 3139: 3138: 3133: 3123: 3118: 3116:Extensionality 3113: 3111:Ordinal number 3108: 3098: 3093: 3092: 3091: 3080: 3074: 3068: 3067: 3064: 3063: 3061: 3060: 3055: 3050: 3045: 3040: 3035: 3030: 3029: 3028: 3018: 3017: 3016: 3003: 3001: 2995: 2994: 2992: 2991: 2990: 2989: 2984: 2979: 2969: 2964: 2959: 2954: 2949: 2944: 2938: 2936: 2930: 2929: 2927: 2926: 2921: 2916: 2911: 2906: 2901: 2896: 2895: 2894: 2884: 2879: 2874: 2869: 2864: 2859: 2853: 2851: 2842: 2836: 2835: 2833: 2832: 2827: 2822: 2817: 2812: 2807: 2795:Cantor's  2793: 2788: 2783: 2773: 2771: 2758: 2757: 2755: 2754: 2749: 2744: 2739: 2734: 2729: 2724: 2719: 2714: 2709: 2704: 2699: 2694: 2693: 2692: 2681: 2679: 2675: 2674: 2669: 2667: 2666: 2659: 2652: 2644: 2638: 2637: 2625: 2624: 2610: 2586:Libkin, Leonid 2579: 2576: 2575: 2574: 2545:10.1.1.25.5579 2538:(4): 504–520. 2520: 2514: 2496: 2480: 2474: 2455: 2430:(3): 290–301. 2416:Putnam, Hilary 2412: 2406: 2400:. A K Peters. 2393: 2356: 2322: 2311: 2308: 2305: 2304: 2276: 2270:completion of 2259: 2250: 2241: 2234: 2215: 2190: 2175: 2165: 2164: 2162: 2159: 2158: 2157: 2152: 2147: 2145:Omega language 2142: 2137: 2132: 2126: 2125: 2109: 2106: 2094: 2093: 2083: 2073: 2067: 2061: 2051: 2015: 1996: 1977: 1971: 1948: 1945: 1917:concept-object 1820: 1817: 1779: 1778: 1775:proof-checking 1767: 1760: 1740: 1737: 1675: 1641: 1638: 1605: 1602: 1535: 1532: 1529: 1526: 1523: 1520: 1517: 1485: 1484: 1483: 1482: 1419: 1416: 1402: 1399: 1396: 1374: 1371: 1368: 1346: 1343: 1340: 1319: 1298: 1295: 1292: 1282:as defined in 1271: 1246:Jouko VÀÀnĂ€nen 1172: 1169: 1159:formula. (See 1146: 1141: 1137: 1116: 1096: 1091: 1087: 1083: 1080: 1075: 1071: 1067: 1045: 1040: 1037: 1034: 1030: 1007: 1002: 998: 977: 957: 952: 948: 944: 941: 936: 932: 928: 906: 901: 898: 895: 891: 864: 859: 855: 832: 827: 823: 798: 778: 773: 769: 765: 762: 757: 753: 749: 727: 722: 718: 695: 690: 686: 663: 658: 654: 617: 562: 561: 555: 548: 535: 528: 506: 500: 493: 480: 473: 451: 450:on the domain. 444:atomic formula 430:(also written 391: 388: 372: 371: 298: 297: 268: 267: 230: 229: 216: 215: 174: 171: 119: 116: 113: 110: 107: 104: 101: 98: 95: 92: 88: 85: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4425: 4414: 4411: 4409: 4406: 4405: 4403: 4390: 4389: 4384: 4376: 4370: 4367: 4365: 4362: 4360: 4357: 4355: 4352: 4348: 4345: 4344: 4343: 4340: 4338: 4335: 4333: 4330: 4328: 4324: 4321: 4319: 4316: 4314: 4311: 4309: 4306: 4304: 4301: 4300: 4298: 4294: 4288: 4285: 4283: 4280: 4278: 4277:Recursive set 4275: 4273: 4270: 4268: 4265: 4263: 4260: 4258: 4255: 4251: 4248: 4246: 4243: 4241: 4238: 4236: 4233: 4231: 4228: 4227: 4226: 4223: 4221: 4218: 4216: 4213: 4211: 4208: 4206: 4203: 4201: 4198: 4197: 4195: 4193: 4189: 4183: 4180: 4178: 4175: 4173: 4170: 4168: 4165: 4163: 4160: 4158: 4155: 4153: 4150: 4146: 4143: 4141: 4138: 4136: 4133: 4132: 4131: 4128: 4126: 4123: 4121: 4118: 4116: 4113: 4111: 4108: 4106: 4103: 4099: 4096: 4095: 4094: 4091: 4087: 4086:of arithmetic 4084: 4083: 4082: 4079: 4075: 4072: 4070: 4067: 4065: 4062: 4060: 4057: 4055: 4052: 4051: 4050: 4047: 4043: 4040: 4038: 4035: 4034: 4033: 4030: 4029: 4027: 4025: 4021: 4015: 4012: 4010: 4007: 4005: 4002: 4000: 3997: 3994: 3993:from ZFC 3990: 3987: 3985: 3982: 3976: 3973: 3972: 3971: 3968: 3966: 3963: 3961: 3958: 3957: 3956: 3953: 3951: 3948: 3946: 3943: 3941: 3938: 3936: 3933: 3931: 3928: 3926: 3923: 3922: 3920: 3918: 3914: 3904: 3903: 3899: 3898: 3893: 3892:non-Euclidean 3890: 3886: 3883: 3881: 3878: 3876: 3875: 3871: 3870: 3868: 3865: 3864: 3862: 3858: 3854: 3851: 3849: 3846: 3845: 3844: 3840: 3836: 3833: 3832: 3831: 3827: 3823: 3820: 3818: 3815: 3813: 3810: 3808: 3805: 3803: 3800: 3798: 3795: 3794: 3792: 3788: 3787: 3785: 3780: 3774: 3769:Example  3766: 3758: 3753: 3752: 3751: 3748: 3746: 3743: 3739: 3736: 3734: 3731: 3729: 3726: 3724: 3721: 3720: 3719: 3716: 3714: 3711: 3709: 3706: 3704: 3701: 3697: 3694: 3692: 3689: 3688: 3687: 3684: 3680: 3677: 3675: 3672: 3670: 3667: 3665: 3662: 3661: 3660: 3657: 3655: 3652: 3648: 3645: 3643: 3640: 3638: 3635: 3634: 3633: 3630: 3626: 3623: 3621: 3618: 3616: 3613: 3611: 3608: 3606: 3603: 3601: 3598: 3597: 3596: 3593: 3591: 3588: 3586: 3583: 3581: 3578: 3574: 3571: 3569: 3566: 3564: 3561: 3559: 3556: 3555: 3554: 3551: 3549: 3546: 3544: 3541: 3539: 3536: 3532: 3529: 3527: 3526:by definition 3524: 3523: 3522: 3519: 3515: 3512: 3511: 3510: 3507: 3505: 3502: 3500: 3497: 3495: 3492: 3490: 3487: 3486: 3483: 3480: 3478: 3474: 3469: 3463: 3459: 3449: 3446: 3444: 3441: 3439: 3436: 3434: 3431: 3429: 3426: 3424: 3421: 3419: 3416: 3414: 3413:Kripke–Platek 3411: 3409: 3406: 3402: 3399: 3397: 3394: 3393: 3392: 3389: 3388: 3386: 3382: 3374: 3371: 3370: 3369: 3366: 3364: 3361: 3357: 3354: 3353: 3352: 3349: 3347: 3344: 3342: 3339: 3337: 3334: 3332: 3329: 3326: 3322: 3318: 3315: 3311: 3308: 3306: 3303: 3301: 3298: 3297: 3296: 3292: 3289: 3288: 3286: 3284: 3280: 3276: 3268: 3265: 3263: 3260: 3258: 3257:constructible 3255: 3254: 3253: 3250: 3248: 3245: 3243: 3240: 3238: 3235: 3233: 3230: 3228: 3225: 3223: 3220: 3218: 3215: 3213: 3210: 3208: 3205: 3203: 3200: 3198: 3195: 3193: 3190: 3189: 3187: 3185: 3180: 3172: 3169: 3167: 3164: 3162: 3159: 3157: 3154: 3152: 3149: 3147: 3144: 3143: 3141: 3137: 3134: 3132: 3129: 3128: 3127: 3124: 3122: 3119: 3117: 3114: 3112: 3109: 3107: 3103: 3099: 3097: 3094: 3090: 3087: 3086: 3085: 3082: 3081: 3078: 3075: 3073: 3069: 3059: 3056: 3054: 3051: 3049: 3046: 3044: 3041: 3039: 3036: 3034: 3031: 3027: 3024: 3023: 3022: 3019: 3015: 3010: 3009: 3008: 3005: 3004: 3002: 3000: 2996: 2988: 2985: 2983: 2980: 2978: 2975: 2974: 2973: 2970: 2968: 2965: 2963: 2960: 2958: 2955: 2953: 2950: 2948: 2945: 2943: 2940: 2939: 2937: 2935: 2934:Propositional 2931: 2925: 2922: 2920: 2917: 2915: 2912: 2910: 2907: 2905: 2902: 2900: 2897: 2893: 2890: 2889: 2888: 2885: 2883: 2880: 2878: 2875: 2873: 2870: 2868: 2865: 2863: 2862:Logical truth 2860: 2858: 2855: 2854: 2852: 2850: 2846: 2843: 2841: 2837: 2831: 2828: 2826: 2823: 2821: 2818: 2816: 2813: 2811: 2808: 2806: 2802: 2798: 2794: 2792: 2789: 2787: 2784: 2782: 2778: 2775: 2774: 2772: 2770: 2764: 2759: 2753: 2750: 2748: 2745: 2743: 2740: 2738: 2735: 2733: 2730: 2728: 2725: 2723: 2720: 2718: 2715: 2713: 2710: 2708: 2705: 2703: 2700: 2698: 2695: 2691: 2688: 2687: 2686: 2683: 2682: 2680: 2676: 2672: 2665: 2660: 2658: 2653: 2651: 2646: 2645: 2642: 2634: 2633: 2627: 2626: 2621: 2617: 2613: 2607: 2603: 2599: 2595: 2591: 2590:Spencer, Joel 2587: 2582: 2581: 2577: 2571: 2567: 2563: 2559: 2555: 2551: 2546: 2541: 2537: 2533: 2526: 2521: 2517: 2515:0-19-825029-0 2511: 2507: 2504: 2501: 2497: 2493: 2486: 2481: 2477: 2475:9780674665637 2471: 2467: 2466:Prentice Hall 2463: 2462: 2456: 2453: 2449: 2445: 2438: 2433: 2429: 2425: 2421: 2417: 2413: 2409: 2407:1-56881-262-0 2403: 2399: 2394: 2390: 2386: 2382: 2378: 2374: 2370: 2366: 2362: 2357: 2354: 2348: 2344: 2340: 2336: 2333:(8): 430–50. 2332: 2328: 2323: 2319: 2314: 2313: 2309: 2301: 2297: 2293: 2289: 2285: 2280: 2277: 2273: 2269: 2263: 2260: 2254: 2251: 2245: 2242: 2237: 2231: 2227: 2219: 2216: 2205: 2201: 2194: 2191: 2188: 2182: 2180: 2176: 2170: 2167: 2160: 2156: 2153: 2151: 2148: 2146: 2143: 2141: 2138: 2136: 2133: 2131: 2128: 2127: 2123: 2112: 2107: 2105: 2103: 2100: =  2099: 2091: 2087: 2084: 2081: 2077: 2074: 2071: 2068: 2065: 2062: 2059: 2055: 2052: 2049: 2045: 2041: 2040: 2039: 2036: 2034: 2030: 2029:Cayley tables 2026: 2022: 2019: =  2018: 2011: 2007: 2004: âˆˆ  2003: 1999: 1992: 1988: 1984: 1980: 1970: 1967: =  1966: 1962: 1958: 1954: 1946: 1944: 1942: 1938: 1933: 1929: 1924: 1922: 1921:George Boolos 1918: 1913: 1909: 1905: 1901: 1897: 1893: 1888: 1886: 1882: 1878: 1874: 1870: 1866: 1862: 1858: 1853: 1851: 1847: 1842: 1838: 1834: 1830: 1826: 1818: 1816: 1814: 1810: 1805: 1803: 1798: 1796: 1792: 1788: 1784: 1776: 1773:) There is a 1772: 1771:Effectiveness 1768: 1765: 1761: 1758: 1754: 1753: 1752: 1750: 1746: 1738: 1736: 1733: 1730: 1724: 1722: 1719: 1713: 1711: 1707: 1703: 1699: 1695: 1687: 1683: 1679: 1674: 1672: 1668: 1664: 1660: 1655: 1653: 1648: 1639: 1637: 1633: 1631: 1627: 1622: 1620: 1615: 1611: 1603: 1601: 1599: 1595: 1591: 1587: 1581: 1579: 1575: 1571: 1567: 1563: 1559: 1556: 1552: 1547: 1530: 1527: 1524: 1521: 1518: 1507: 1502: 1501:ordered field 1477: 1473: 1469: 1465: 1458: 1457: 1455:(∀ A) ( 1453: 1452: 1451: 1449: 1445: 1441: 1437: 1433: 1429: 1425: 1417: 1415: 1317: 1269: 1261: 1260: 1256:and truth in 1255: 1251: 1247: 1243: 1241: 1237: 1231: 1229: 1225: 1221: 1217: 1213: 1209: 1205: 1201: 1199: 1194: 1189: 1187: 1183: 1179: 1170: 1168: 1166: 1162: 1144: 1139: 1114: 1094: 1089: 1085: 1078: 1073: 1069: 1058:has the form 1043: 1038: 1035: 1032: 1005: 1000: 975: 955: 950: 946: 939: 934: 930: 919:has the form 904: 899: 896: 893: 880: 862: 857: 830: 825: 812: 796: 776: 771: 767: 760: 755: 751: 725: 720: 693: 688: 661: 656: 642: 639: 634: 632: 606: 602: 598: 594: 590: 589: 584: 582: 578: 574: 569: 567: 558: 554: 547: 543: 538: 534: 527: 523: 519: 515: 511: 507: 503: 499: 492: 488: 483: 479: 472: 468: 464: 460: 456: 452: 449: 445: 441: 437: 433: 429: 425: 421: 417: 413: 412: 411: 409: 405: 401: 397: 389: 387: 385: 381: 377: 368: 364: 360: 356: 352: 348: 343: 342: 341: 339: 335: 331: 327: 323: 319: 315: 311: 307: 303: 294: 290: 286: 282: 278: 273: 272: 271: 264: 260: 256: 251: 250: 249: 245: 243: 239: 235: 226: 221: 220: 219: 212: 208: 203: 202: 201: 199: 195: 187: 183: 179: 172: 170: 168: 164: 160: 156: 152: 148: 144: 140: 136: 133: 114: 111: 105: 102: 99: 93: 86: 76: 72: 68: 64: 59: 57: 53: 49: 45: 41: 37: 33: 19: 4379: 4177:Ultraproduct 4024:Model theory 3989:Independence 3925:Formal proof 3917:Proof theory 3900: 3873: 3830:real numbers 3802:second-order 3713:Substitution 3590:Metalanguage 3531:conservative 3504:Axiom schema 3448:Constructive 3418:Morse–Kelley 3384:Set theories 3363:Aleph number 3356:inaccessible 3262:Grothendieck 3146:intersection 3033:Higher-order 3021:Second-order 3020: 2967:Truth tables 2924:Venn diagram 2707:Formal proof 2631: 2597: 2535: 2531: 2506: 2503: 2491: 2460: 2443: 2427: 2423: 2397: 2367:(2): 81–91. 2364: 2360: 2352: 2330: 2326: 2317: 2288:Model Theory 2287: 2279: 2262: 2253: 2244: 2225: 2218: 2208:, retrieved 2203: 2193: 2169: 2101: 2097: 2095: 2037: 2024: 2020: 2013: 2009: 2005: 2001: 1994: 1990: 1986: 1982: 1975: 1968: 1964: 1950: 1925: 1908:abbreviation 1907: 1903: 1899: 1895: 1889: 1861:completeness 1854: 1828: 1825:C. S. Peirce 1822: 1806: 1799: 1794: 1783:proof theory 1780: 1764:Completeness 1748: 1742: 1734: 1725: 1714: 1701: 1697: 1693: 1690: 1688:upper bound. 1685: 1681: 1677: 1670: 1658: 1656: 1646: 1643: 1634: 1623: 1607: 1592:and Sandu's 1582: 1548: 1486: 1475: 1471: 1467: 1463: 1439: 1435: 1431: 1427: 1424:real numbers 1421: 1310:is the real 1257: 1244: 1232: 1227: 1202: 1192: 1190: 1181: 1177: 1174: 878: 810: 643: 635: 601:graph theory 592: 586: 585: 580: 576: 572: 570: 565: 563: 556: 552: 545: 541: 536: 532: 525: 521: 517: 513: 509: 501: 497: 490: 486: 481: 477: 470: 466: 462: 458: 454: 439: 435: 431: 427: 423: 419: 415: 407: 403: 393: 379: 375: 373: 366: 362: 358: 354: 350: 346: 337: 333: 329: 321: 317: 313: 309: 305: 302:reachability 299: 292: 291:(Px ∧ Dodec( 288: 284: 280: 279:(Px ↔ (Cube( 276: 269: 262: 258: 257:(Px ↔ (Cube( 254: 246: 233: 231: 224: 217: 210: 206: 197: 191: 146: 142: 138: 134: 60: 39: 29: 4287:Type theory 4235:undecidable 4167:Truth value 4054:equivalence 3733:non-logical 3346:Enumeration 3336:Isomorphism 3283:cardinality 3267:Von Neumann 3232:Ultrafilter 3197:Uncountable 3131:equivalence 3048:Quantifiers 3038:Fixed-point 3007:First-order 2887:Consistency 2872:Proposition 2849:Traditional 2820:Lindström's 2810:Compactness 2752:Type theory 2697:Cardinality 2500:Shapiro, S. 2284:Manzano, M. 1892:W. V. Quine 1869:mathematics 1749:provability 1718:Archimedean 1558:cardinality 1208:type theory 1204:Leon Henkin 56:type theory 36:mathematics 4402:Categories 4098:elementary 3791:arithmetic 3659:Quantifier 3637:functional 3509:Expression 3227:Transitive 3171:identities 3156:complement 3089:hereditary 3072:Set theory 2620:1133.03001 2310:References 2210:2022-05-03 2012:such that 1873:Arithmetic 1857:set theory 1562:surjective 1466:)(∀ 520:is such a 465:is such a 196:like Cube( 63:quantifies 4369:Supertask 4272:Recursion 4230:decidable 4064:saturated 4042:of models 3965:deductive 3960:axiomatic 3880:Hilbert's 3867:Euclidean 3848:canonical 3771:axiomatic 3703:Signature 3632:Predicate 3521:Extension 3443:Ackermann 3368:Operation 3247:Universal 3237:Recursive 3212:Singleton 3207:Inhabited 3192:Countable 3182:Types of 3166:power set 3136:partition 3053:Predicate 2999:Predicate 2914:Syllogism 2904:Soundness 2877:Inference 2867:Tautology 2769:paradoxes 2540:CiteSeerX 2502:(2000) . 2298:, 1999), 2092:operator. 2082:operator. 2042:REG (the 2033:signature 2000:for each 1877:mereology 1791:pp. 90–91 1757:Soundness 1652:power set 1570:bijection 1566:injective 1555:countable 1534:⟩ 1531:≤ 1525:⋅ 1516:⟨ 1462:(∃ 1171:Semantics 1136:Σ 1115:ϕ 1095:ϕ 1082:∀ 1079:… 1066:∀ 1029:Π 997:Π 976:ϕ 956:ϕ 943:∃ 940:… 927:∃ 890:Σ 854:Π 822:Σ 797:ϕ 777:ϕ 764:∃ 761:… 748:∃ 717:Σ 685:Π 653:Σ 287:))) → ÂŹ ∃ 159:functions 141:, either 109:¬ 106:∨ 91:∀ 84:∀ 71:relations 4354:Logicism 4347:timeline 4323:Concrete 4182:Validity 4152:T-schema 4145:Kripke's 4140:Tarski's 4135:semantic 4125:Strength 4074:submodel 4069:spectrum 4037:function 3885:Tarski's 3874:Elements 3861:geometry 3817:Robinson 3738:variable 3723:function 3696:spectrum 3686:Sentence 3642:variable 3585:Language 3538:Relation 3499:Automata 3489:Alphabet 3473:language 3327:-jection 3305:codomain 3291:Function 3252:Universe 3222:Infinite 3126:Relation 2909:Validity 2899:Argument 2797:theorem, 2418:(1982). 2389:36309665 2108:See also 2060:, 1974). 1811:and the 1702:internal 1694:internal 1686:internal 1682:internal 1678:internal 1590:Hintikka 1576:and the 1489:nonempty 1474:≤ 1460:→ 1448:supremum 1107:, where 968:, where 789:, where 566:sentence 396:formulas 326:ancestor 283:) √ Tet( 261:) √ Tet( 186:Neukölln 182:Graffiti 173:Examples 75:sentence 4296:Related 4093:Diagram 3991: ( 3970:Hilbert 3955:Systems 3950:Theorem 3828:of the 3773:systems 3553:Formula 3548:Grammar 3464: ( 3408:General 3121:Forcing 3106:Element 3026:Monadic 2801:paradox 2742:Theorem 2678:General 2570:7465054 2562:2687796 2381:2266967 2355:, 1998. 2347:2026308 2086:EXPTIME 2050:, 1960) 1789:(1970, 1647:sets of 1493:bounded 1358:inside 132:formula 4059:finite 3822:Skolem 3775:  3750:Theory 3718:Symbol 3708:String 3691:atomic 3568:ground 3563:closed 3558:atomic 3514:ground 3477:syntax 3373:binary 3300:domain 3217:Finite 2982:finite 2840:Logics 2799:  2747:Theory 2618:  2608:  2568:  2560:  2542:  2512:  2472:  2404:  2387:  2379:  2345:  2292:Oxford 2232:  2102:PSPACE 2076:PSPACE 1885:Skolem 1551:finite 1495:set A 438:), or 365:)) → P 345:∀P ((P 324:is an 4049:Model 3797:Peano 3654:Proof 3494:Arity 3423:Naive 3310:image 3242:Fuzzy 3202:Empty 3151:union 3096:Class 2737:Model 2727:Lemma 2685:Axiom 2566:S2CID 2558:JSTOR 2528:(PDF) 2488:(PDF) 2385:S2CID 2377:JSTOR 2343:JSTOR 2300:p. xi 2161:Notes 2064:co-NP 1898:the " 1881:Gödel 1833:Frege 1795:logic 1787:Quine 1619:sound 1127:is a 988:is a 551:,..., 531:,..., 496:,..., 476:,..., 408:types 404:sorts 275:∀P (∀ 236:is a 223:∃P P( 209:Cube( 163:below 32:logic 4172:Type 3975:list 3779:list 3756:list 3745:Term 3679:rank 3573:open 3467:list 3279:Maps 3184:sets 3043:Free 3013:list 2763:list 2690:list 2606:ISBN 2510:ISBN 2470:ISBN 2402:ISBN 2230:ISBN 1939:and 1883:and 1839:and 1807:The 1250:2001 1214:and 1198:2001 1180:and 295:))). 265:))). 253:∃P ∀ 155:sets 54:and 34:and 3859:of 3841:of 3789:of 3321:Sur 3295:Map 3102:Ur- 3084:Set 2616:Zbl 2550:doi 2432:doi 2369:doi 2335:doi 1974:··· 1871:. 1698:all 1659:all 1254:ZFC 1193:all 1167:.) 676:or 605:S2S 357:((P 349:∧ ∀ 328:of 242:set 184:in 30:In 4404:: 4245:NP 3869:: 3863:: 3793:: 3470:), 3325:Bi 3317:In 2614:. 2604:. 2592:; 2564:. 2556:. 2548:. 2534:. 2530:. 2468:. 2464:. 2450:, 2446:, 2426:. 2422:. 2383:. 2375:. 2365:15 2363:. 2341:. 2331:81 2329:. 2294:: 2286:, 2178:^ 2098:PH 2070:PH 2054:NP 1923:. 1896:Fx 1875:, 1712:. 1632:. 1608:A 1600:. 1588:, 1491:, 1438:+ 1242:. 1230:. 1188:. 633:. 440:St 426:∈ 386:. 369:). 340:: 308:, 157:, 147:Px 143:Px 58:. 38:, 4325:/ 4240:P 3995:) 3781:) 3777:( 3674:∀ 3669:! 3664:∃ 3625:= 3620:↔ 3615:→ 3610:∧ 3605:√ 3600:ÂŹ 3323:/ 3319:/ 3293:/ 3104:) 3100:( 2987:∞ 2977:3 2765:) 2663:e 2656:t 2649:v 2622:. 2572:. 2552:: 2536:7 2518:. 2478:. 2454:. 2440:. 2434:: 2428:9 2410:. 2391:. 2371:: 2349:. 2337:: 2302:. 2238:. 2222:* 2025:D 2021:a 2016:i 2014:w 2010:i 2006:A 2002:a 1997:a 1995:P 1991:n 1987:D 1983:A 1978:n 1976:w 1972:1 1969:w 1965:w 1904:F 1900:x 1769:( 1762:( 1755:( 1528:, 1522:, 1519:+ 1480:) 1478:) 1476:y 1472:x 1468:y 1464:x 1440:y 1436:x 1434:( 1432:y 1430:∃ 1428:x 1401:C 1398:F 1395:Z 1373:C 1370:F 1367:Z 1345:C 1342:F 1339:Z 1318:V 1297:C 1294:F 1291:Z 1270:V 1259:V 1248:( 1196:( 1145:1 1140:k 1090:m 1086:R 1074:0 1070:R 1044:1 1039:1 1036:+ 1033:k 1006:1 1001:k 951:m 947:R 935:0 931:R 905:1 900:1 897:+ 894:k 879:k 863:1 858:1 831:1 826:1 772:m 768:R 756:0 752:R 726:1 721:1 694:1 689:0 662:1 657:0 616:N 581:n 577:n 573:n 557:k 553:t 549:1 546:t 544:( 542:f 537:k 533:t 529:1 526:t 522:k 518:f 514:k 510:k 502:k 498:t 494:1 491:t 489:( 487:R 482:k 478:t 474:1 471:t 467:k 463:R 459:k 455:k 436:t 434:( 432:S 428:S 424:t 420:t 416:S 380:P 376:P 367:x 363:a 359:b 355:b 353:∀ 351:a 347:y 338:x 334:y 330:y 322:x 318:y 314:x 310:y 306:x 293:x 289:x 285:x 281:x 277:x 263:x 259:x 255:x 234:P 227:) 225:b 213:) 211:x 207:x 205:∃ 198:b 139:x 135:P 118:) 115:x 112:P 103:x 100:P 97:( 94:x 87:P 20:)

Index

Existential second-order logic
logic
mathematics
first-order logic
propositional logic
higher-order logic
type theory
quantifies
domain of discourse
relations
sentence
formula
law of excluded middle
sets
functions
below
domain of discourse

Graffiti
Neukölln
atomic sentence
predicate variable
set
reachability
ancestor
third-order logic
formulas
syntax of first-order logic
atomic formula
unary relations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑