Knowledge (XXG)

Lagrange point

Source 📝

3728: 91: 3590: 1426: 4330: 4497:, despite the fact that the existence of a planetary body in this location had been understood as an impossibility once orbital mechanics and the perturbations of planets upon each other's orbits came to be understood, long before the Space Age; the influence of an Earth-sized body on other planets would not have gone undetected, nor would the fact that the foci of Earth's orbital ellipse would not have been in their expected places, due to the mass of the counter-Earth. The Sun–Earth L 972:, which is well inside the body of the Sun. An object at Earth's distance from the Sun would have an orbital period of one year if only the Sun's gravity is considered. But an object on the opposite side of the Sun from Earth and directly in line with both "feels" Earth's gravity adding slightly to the Sun's and therefore must orbit a little farther from the barycenter of Earth and Sun in order to have the same 1-year period. It is at the L 43: 3711:(which depends on the velocity of an orbiting object and cannot be modeled as a contour map) curves the trajectory into a path around (rather than away from) the point. Because the source of stability is the Coriolis force, the resulting orbits can be stable, but generally are not planar, but "three-dimensional": they lie on a warped surface intersecting the ecliptic plane. The kidney-shaped orbits typically shown nested around L 3604: 137: 7744: 7755: 51: 6917: 4688: 2411: 993: 4674: 4315: 3530: 3131: 763:
similar to JWST. Each of the space observatories benefit from being far enough from Earth's shadow to utilize solar panels for power, from not needing much power or propellant for station-keeping, from not being subjected to the Earth's magnetospheric effects, and from having direct line-of-sight to
2252:
are their diameters. The ratio of diameter to distance gives the angle subtended by the body, showing that viewed from these two Lagrange points, the apparent sizes of the two bodies will be similar, especially if the density of the smaller one is about thrice that of the larger, as in the case of
1065:
is greater than 24.96. This is the case for the Sun–Earth system, the Sun–Jupiter system, and, by a smaller margin, the Earth–Moon system. When a body at these points is perturbed, it moves away from the point, but the factor opposite of that which is increased or decreased by the perturbation
5827:
is in deep space far away from any planetary surface and hence the thermal, micrometeoroid, and atomic oxygen environments are vastly superior to those in LEO. Thermodynamic stasis and extended hardware life are far easier to obtain without these punishing conditions seen in LEO.
4501:, however, is a weak saddle point and exponentially unstable with time constant of roughly 150 years. Moreover, it could not contain a natural object, large or small, for very long because the gravitational forces of the other planets are stronger than that of Earth (for example, 2614: 1671: 3314: 5836:
is an ideal location to store propellants and cargos: it is close, high energy, and cold. More importantly, it allows the continuous onward movement of propellants from LEO depots, thus suppressing their size and effectively minimizing the near-Earth boiloff
3585:
occur where the acceleration is zero — see chart at right. Positive acceleration is acceleration towards the right of the chart and negative acceleration is towards the left; that is why acceleration has opposite signs on opposite sides of the gravity wells.
2222: 3697:
points are stable provided that the mass of the primary body (e.g. the Earth) is at least 25 times the mass of the secondary body (e.g. the Moon), The Earth is over 81 times the mass of the Moon (the Moon is 1.23% of the mass of the Earth). Although the
2927: 967:
point exists on the opposite side of the Sun, a little outside Earth's orbit and slightly farther from the center of the Sun than Earth is. This placement occurs because the Sun is also affected by Earth's gravity and so orbits around the two bodies'
1184:
As the Sun and Jupiter are the two most massive objects in the Solar System, there are more known Sun–Jupiter trojans than for any other pair of bodies. However, smaller numbers of objects are known at the Lagrange points of other orbital systems:
3747:
within the Solar System. Calculations assume the two bodies orbit in a perfect circle with separation equal to the semimajor axis and no other bodies are nearby. Distances are measured from the larger body's center of mass (but see
3706:
points are found at the top of a "hill", as in the effective potential contour plot above, they are nonetheless stable. The reason for the stability is a second-order effect: as a body moves away from the exact Lagrange position,
4440:, the Sun, Earth and Moon are relatively close together in the sky; this means that a large sunshade with the telescope on the dark-side can allow the telescope to cool passively to around 50 K – this is especially helpful for 1453:, could be placed so as to maintain its position relative to the two massive bodies. This occurs because the combined gravitational forces of the two massive bodies provide the exact centripetal force required to maintain the 2437: 1494: 2756: 1855: 4613:
Lagrangian points in the Earth–Moon system proposed as locations for their huge rotating space habitats. Both positions are also proposed for communication satellites covering the Moon alike communication satellites in
4352:
is suited for making observations of the Sun–Earth system. Objects here are never shadowed by Earth or the Moon and, if observing Earth, always view the sunlit hemisphere. The first mission of this type was the 1978
2398: 5236:"Celestial mechanics and polarization optics of the Kordylewski dust cloud in the Earth-Moon Lagrange point L5. Part II. Imaging polarimetric observation: new evidence for the existence of Kordylewski dust cloud" 2103: 3603: 3274:
the distances to the two masses are equal. Accordingly, the gravitational forces from the two massive bodies are in the same ratio as the masses of the two bodies, and so the resultant force acts through the
913:. On the opposite side of Earth from the Sun, the orbital period of an object would normally be greater than Earth's. The extra pull of Earth's gravity decreases the object's orbital period, and at the L 2120: 976:
point that the combined pull of Earth and Sun causes the object to orbit with the same period as Earth, in effect orbiting an Earth+Sun mass with the Earth-Sun barycenter at one focus of its orbit.
5185:"Celestial mechanics and polarization optics of the Kordylewski dust cloud in the Earth-Moon Lagrange point L5 - Part I. Three-dimensional celestial mechanical modelling of dust cloud formation" 2823: 2030: 4662:
point for use as an artificial magnetosphere for Mars was discussed at a NASA conference. The idea is that this would protect the planet's atmosphere from the Sun's radiation and solar winds.
1917: 909:
point lies on the line through the two large masses beyond the smaller of the two. Here, the combined gravitational forces of the two large masses balance the centrifugal force on a body at L
3233: 5797: 5563: 3295:
with the other two larger bodies of the system (indeed, the third body needs to have negligible mass). The general triangular configuration was discovered by Lagrange working on the
4520:
would be able to closely monitor the evolution of active sunspot regions before they rotate into a geoeffective position, so that a seven-day early warning could be issued by the
7460: 1957: 877:
would typically have a shorter orbital period than Earth, but that ignores the effect of Earth's gravitational pull. If the object is directly between Earth and the Sun, then
7001: 3525:{\displaystyle a=-{\frac {GM_{1}}{r^{2}}}\operatorname {sgn}(r)+{\frac {GM_{2}}{(R-r)^{2}}}\operatorname {sgn}(R-r)+{\frac {G{\bigl (}(M_{1}+M_{2})r-M_{2}R{\bigr )}}{R^{3}}}} 4424:
will maintain the same relative position with respect to the Sun and Earth, shielding and calibration are much simpler. It is, however, slightly beyond the reach of Earth's
1127:, it is common for natural objects to be found orbiting in those Lagrange points of planetary systems. Objects that inhabit those points are generically referred to as ' 3126:{\displaystyle {\frac {M_{1}}{\left(R-r\right)^{2}}}+{\frac {M_{2}}{\left(2R-r\right)^{2}}}=\left({\frac {M_{2}}{M_{1}+M_{2}}}R+R-r\right){\frac {M_{1}+M_{2}}{R^{3}}}} 1101:
will tend to fall out of orbit; it is therefore rare to find natural objects there, and spacecraft inhabiting these areas must employ a small but critical amount of
4521: 2623: 1722: 615:
Normally, the two massive bodies exert an unbalanced gravitational force at a point, altering the orbit of whatever is at that point. At the Lagrange points, the
881:
counteracts some of the Sun's pull on the object, increasing the object's orbital period. The closer to Earth the object is, the greater this effect is. At the L
66:
of a two-body system in a rotating frame of reference. The arrows indicate the downhill gradients of the potential around the five Lagrange points, toward them (
5884: 2298: 4406: 2037: 3291:
and center of rotation of the three-body system, this resultant force is exactly that required to keep the smaller body at the Lagrange point in orbital
5991: 5521: 5778: 4818: 4531:
would provide very important observations not only for Earth forecasts, but also for deep space support (Mars predictions and for crewed missions to
3664:
missions, it is preferable for the spacecraft to be in a large-amplitude (100,000–200,000 km or 62,000–124,000 mi) Lissajous orbit around L
1435: 7438: 7028: 5808: 532: 4551:
allows comparatively easy access to Lunar and Earth orbits with minimal change in velocity and this has as an advantage to position a habitable
6794: 7018: 6953: 5570: 1178: 5666: 5330: 681:
points are stable points, meaning that objects can orbit them and that they have a tendency to pull objects into them. Several planets have
5995: 4957: 1170: 938: 101: 6854: 6061: 3756:
showing a negative direction. The percentage columns show the distance from the orbit compared to the semimajor axis. E.g. for the Moon, L
2609:{\displaystyle {\frac {M_{1}}{(R+r)^{2}}}+{\frac {M_{2}}{r^{2}}}=\left({\frac {M_{1}}{M_{1}+M_{2}}}R+r\right){\frac {M_{1}+M_{2}}{R^{3}}}} 1666:{\displaystyle {\frac {M_{1}}{(R-r)^{2}}}-{\frac {M_{2}}{r^{2}}}=\left({\frac {M_{1}}{M_{1}+M_{2}}}R-r\right){\frac {M_{1}+M_{2}}{R^{3}}}} 1429:
Visualisation of the relationship between the Lagrange points (red) of a planet (blue) orbiting a star (yellow) counterclockwise, and the
304: 90: 4846: 2109:
effect of a body is proportional to its mass divided by the distance cubed, this means that the tidal effect of the smaller body at the L
3276: 2785: 1992: 969: 373: 1860: 7038: 4746: 4390: 4304: 1114: 816: 3194: 7058: 5030: 3645:
does not contain these periodic orbits, but does contain quasi-periodic (i.e. bounded but not precisely repeating) orbits following
799:". In the first chapter he considered the general three-body problem. From that, in the second chapter, he demonstrated two special 5706: 1015:
in the plane of orbit whose common base is the line between the centers of the two masses, such that the point lies 60° ahead of (L
6849: 6729: 6148: 5761: 4717: 3653:
are what most of Lagrangian-point space missions have used until now. Although they are not perfectly stable, a modest effort of
720:
to study solar wind coming toward Earth from the Sun and to monitor Earth's climate, by taking images and sending them back. The
5653: 3792:
from Earth's center, which is 99.3% of the Earth–Moon distance or 0.7084% inside (Earthward) of the Moon's 'negative' position.
728:. This allows the satellite's large sunshield to protect the telescope from the light and heat of the Sun, Earth and Moon. The L 7213: 6814: 6568: 4524: 4354: 3673: 46:
Lagrange points in the Sun–Earth system (not to scale). This view is from the north, so that Earth's orbit is counterclockwise.
7588: 7450: 7033: 6887: 6526: 6517: 6254: 4358: 1405:
are sometimes erroneously described as trojans, but do not occupy Lagrange points. Known objects on horseshoe orbits include
713: 194: 1066:(either gravity or angular momentum-induced speed) will also increase or decrease, bending the object's path into a stable, 1351:
about the Lagrange points, with Polydeuces describing the largest deviations, moving up to 32° away from the Saturn–Dione L
7784: 5921: 4707: 4402: 4319: 6103: 5939: 1699:
are the masses of the large and small object, respectively. The quantity in parentheses on the right is the distance of L
7779: 7154: 6834: 6304: 6027: 6004: 5012: 4425: 963:
point lies on the line defined by the two large masses, beyond the larger of the two. Within the Sun–Earth system, the L
5695:
Angular size of the Sun at 1 AU + 1.5 million kilometres: 31.6′, angular size of Earth at 1.5 million kilometres: 29.3′
7566: 7402: 7149: 6996: 6779: 5415:(May 2007). "Equipotential Surfaces and Lagrangian Points in Nonsynchronous, Eccentric Binary and Planetary Systems". 4736: 4445: 1929: 700:
Some Lagrange points are being used for space exploration. Two important Lagrange points in the Sun-Earth system are L
638:, all in the orbital plane of the two large bodies. There are five Lagrange points for the Sun–Earth system, and five 525: 458: 31: 6037: 1131:' or 'trojan asteroids'. The name derives from the names that were given to asteroids discovered orbiting at the Sun– 4475:
of roughly 23 days. Satellites at these points will wander off in a few months unless course corrections are made.
7638: 7407: 7080: 6759: 6586: 4639: 4449: 4338: 3768:
from Earth's center, which is 84.9% of the Earth–Moon distance or 15.1% "in front of" (Earthwards from) the Moon; L
934: 721: 7561: 7443: 7181: 6946: 6897: 2217:{\displaystyle \rho _{2}\left({\frac {d_{2}}{r}}\right)^{3}\approx 3\rho _{1}\left({\frac {d_{1}}{R}}\right)^{3}} 1231: 5080: 4357:(ISEE-3) mission used as an interplanetary early warning storm monitor for solar disturbances. Since June 2015, 3727: 3589: 7676: 7176: 7164: 7136: 6882: 6407: 4702: 4575: 1461: 453: 368: 7395: 5885:"TYCHO: Supporting Permanently Crewed Lunar Exploration with High-Speed Optical Communication from Everywhere" 5604:"Proposals for the masses of the three largest asteroids, the Moon-Earth mass ratio and the Astronomical Unit" 4329: 5705:
Tantardini, Marco; Fantino, Elena; Ren, Yuan; Pergola, Pierpaolo; GĂłmez, Gerard; Masdemont, Josep J. (2010).
7680: 7616: 7297: 7208: 7112: 7085: 6986: 6892: 6200: 4579: 3654: 3261: 1359: 1102: 708:, on the same line at the opposite side of the Earth; both are well outside the Moon's orbit. Currently, an 624: 597: 324: 6051: 7728: 7690: 7124: 7043: 6981: 6754: 6356: 6276: 6264: 5965: 4378: 1086: 518: 241: 6117:
See the Lagrange Points and Halo Orbits subsection under the section on Geosynchronous Transfer Orbit in
7578: 7385: 7023: 6877: 6819: 6789: 6577: 6454: 6422: 6392: 6351: 6336: 6215: 6055: 5849: 5008: 3708: 789: 426: 261: 169: 5098: 3680:
keeps a probe out of Earth's shadow and therefore ensures continuous illumination of its solar panels.
1476:, allowing the smaller third body to remain stationary (in this frame) with respect to the first two. 7747: 7648: 7631: 7268: 7203: 7196: 7053: 6939: 6902: 6724: 6508: 6397: 6366: 6294: 6269: 6244: 6205: 6186: 6141: 5865: 5725: 5615: 5539: 5487: 5434: 5377: 5300: 5257: 5206: 5147: 4751: 4741: 4615: 1425: 1012: 709: 667: 299: 256: 246: 174: 6086:
An online calculator to compute the precise positions of the 5 Lagrange points for any 2-body system
3241:
to the larger object is less than the separation of the two objects (although the distance between L
1433:
in the plane containing the orbit (grey rubber-sheet model with purple contours of equal potential).
7643: 7621: 7556: 7275: 7119: 6764: 6559: 6299: 6107: 3292: 1469: 1430: 1394: 943: 929:
from Earth (away from the sun). An example of a spacecraft designed to operate near the Earth–Sun L
744: 546: 341: 179: 59: 7754: 7758: 7541: 7467: 7322: 7218: 7070: 6437: 6326: 6224: 5779:"Chang'e-4 relay satellite enters halo orbit around Earth-Moon L2, microsatellite in lunar orbit" 5741: 5674: 5631: 5503: 5477: 5450: 5424: 5393: 5367: 5326: 5247: 5196: 5165: 5137: 4953: 4693: 4441: 3296: 1711: 1442: 1128: 800: 796: 682: 609: 414: 289: 6112: 4963: 4436:, avoiding partial eclipses of the Sun to maintain a constant temperature. From locations near L 3245:
and the barycentre is greater than the distance between the smaller object and the barycentre).
4989: 4881: 3780:
from Earth's center, which is 116.8% of the Earth–Moon distance or 16.8% beyond the Moon; and L
7713: 7353: 7248: 7223: 7169: 7159: 6976: 6804: 6702: 6632: 6387: 6341: 6259: 6091: 6085: 5599: 4878: 4853: 4722: 4643: 4598: 4532: 4506: 4394: 4334: 3719:
are the projections of the orbits on a plane (e.g. the ecliptic) and not the full 3-D orbits.
3608: 3280: 2894: 1473: 1410: 1340: 1235: 926: 890: 740: 663: 620: 329: 266: 145: 83: 63: 7378: 5061: 1238:. Stability at these specific points is greatly complicated by solar gravitational influence. 7626: 7455: 7412: 7343: 7280: 7233: 7075: 6784: 6716: 6480: 6442: 6316: 6286: 6239: 5733: 5623: 5595: 5495: 5442: 5385: 5308: 5291: 5265: 5214: 5155: 4679: 4583: 3638: 3611:
of the Roche potential of two orbiting bodies, rendered half as a surface and half as a mesh
1715: 1465: 878: 627:, and hence fuel requirements, needed to maintain the desired orbit are kept at a minimum. 556: 499: 448: 213: 157: 623:
balance each other. This can make Lagrange points an excellent location for satellites, as
7671: 7571: 7524: 7422: 7363: 7348: 7302: 7285: 7191: 7186: 6824: 6417: 6321: 6311: 6210: 6134: 6118: 6031: 6008: 5765: 5355: 5351: 5121: 4655: 4627: 4490: 4366: 3650: 3646: 2898: 2890: 1454: 1402: 752: 504: 409: 319: 294: 4899: 3676:
on Earth–spacecraft communications. Similarly, a large-amplitude Lissajous orbit around L
3311:
of an object in orbit at a point along the line passing through both bodies is given by:
6067: 5869: 5729: 5619: 5491: 5438: 5381: 5304: 5261: 5210: 5151: 2924:
is the solution to the following equation, gravitation providing the centripetal force:
2434:
is the solution to the following equation, gravitation providing the centripetal force:
1491:
is the solution to the following equation, gravitation providing the centripetal force:
7718: 7705: 7598: 7529: 7519: 7504: 7482: 7472: 7368: 7358: 7307: 7228: 6920: 6872: 6864: 6744: 6739: 6670: 6650: 6641: 6220: 6196: 6191: 6166: 6020: 5412: 5287:"A Search for Natural or Artificial Objects Located at the Earth–Moon Libration Points" 4985: 3288: 2257: 1390: 1363: 1324: 1320: 1254: 804: 785: 476: 386: 309: 234: 228: 223: 42: 5853: 5758: 5522:"Widnall, Lecture L18 - Exploring the Neighborhood: the Restricted Three-Body Problem" 4563:
Lagrangian Point on 11 November 2004 and passed into the area dominated by the Moon's
4385:
up to an hour before Earth. Solar and heliospheric missions currently located around L
7773: 7666: 7583: 7514: 7477: 7317: 7238: 7102: 7097: 6774: 6769: 6688: 6331: 6249: 6098: 5745: 5635: 5312: 5286: 5169: 4756: 4552: 4487: 4483: 4472: 4370: 3552: 1406: 1332: 1308: 885:
point, the object's orbital period becomes exactly equal to Earth's orbital period. L
481: 314: 271: 5507: 5454: 5397: 1449:, there are five positions in space where a third body, of comparatively negligible 136: 7723: 7658: 7327: 7312: 7013: 7008: 6839: 6749: 6623: 6606: 6464: 6361: 6229: 6000:"Essay on the Three-Body Problem" by J.-L. Lagrange, translated from the above, in 5117: 4468: 4410: 3642: 1414: 1389:; if one of the stars expands past its Roche lobe, then it will lose matter to its 1328: 199: 189: 184: 55: 5759:
SMART-1: On Course for Lunar Capture | Moon Today – Your Daily Source of Moon News
5034: 736:
Lagrange points are located about 1,500,000 km (930,000 mi) from earth.
4924: 7551: 7417: 7107: 7090: 6962: 6844: 6679: 6449: 6429: 6346: 5832:
is not just a great gateway—it is a great place to store propellants. ... L
4712: 2779: 2106: 1986: 1708: 1378: 1268: 1264: 1067: 616: 363: 5943: 5160: 5125: 1070:-shaped orbit around the point (as seen in the corotating frame of reference). 50: 7685: 7593: 7536: 7496: 7290: 6991: 6412: 6073: 6016: 5903: 5737: 5627: 5099:"NASA - NASA's Wise Mission Finds First Trojan Asteroid Sharing Earth's Orbit" 4727: 4669: 4602: 4494: 4374: 3749: 3628: 2902: 2751:{\displaystyle x^{5}+x^{4}(3-\mu )+x^{3}(3-2\mu )-x^{2}(\mu )-x(2\mu )-\mu =0} 1850:{\displaystyle x^{5}+(\mu -3)x^{4}+(3-2\mu )x^{3}-(\mu )x^{2}+(2\mu )x-\mu =0} 1446: 1382: 1158: 760: 443: 399: 358: 6024: 6001: 3627:
points are nominally unstable, there are quasi-stable periodic orbits called
17: 7695: 7546: 7263: 7144: 7065: 7048: 6829: 6181: 6079: 5270: 5235: 5219: 5184: 4949: 4642:, which aimed to look back towards Earth's orbit and compile a catalogue of 4398: 3279:
of the system. Additionally, the geometry of the triangle ensures that the
1374:
point and crashed into Earth after its orbit destabilized, forming the Moon.
1284: 1154: 630:
For any combination of two orbital bodies, there are five Lagrange points, L
2827:
The same remarks about tidal influence and apparent size apply as for the L
2410: 5482: 5429: 5372: 4555:
intended to help transport cargo and personnel to the Moon and back. The
1295: 1273: 1210: 1199: 4420:
is a good spot for space-based observatories. Because an object around L
2260:, corresponding to a circular orbit with this distance as radius around 6734: 6126: 5468:
Seidov, Zakir F. (March 1, 2004). "The Roche Problem: Some Analytics".
4586:
as part of the proposed depot-based space transportation architecture.
4564: 4556: 2393:{\displaystyle T_{s,M_{2}}(r)={\frac {T_{M_{2},M_{1}}(R)}{\sqrt {3}}}.} 1348: 1242: 1132: 992: 694: 601: 4314: 1445:. For example, given two massive bodies in orbits around their common 7509: 7373: 3593:
Net radial acceleration of a point orbiting along the Earth–Moon line
2098:{\displaystyle {\frac {M_{2}}{r^{3}}}\approx 3{\frac {M_{1}}{R^{3}}}} 1441:
Lagrange points are the constant-pattern solutions of the restricted
86:
of the potential. At the points themselves these forces are balanced.
5603: 1023:) the smaller mass with regard to its orbit around the larger mass. 654:
are on the line through the centers of the two large bodies, while L
5499: 5446: 5389: 5252: 5201: 5142: 4959:
Dynamical Systems, the Three-Body Problem, and Space Mission Design
1468:
of the two co-orbiting bodies, at the Lagrange points the combined
1143:
points, which were taken from mythological characters appearing in
6539: 6158: 5922:"B612 studying smallsat missions to search for near Earth objects" 4631: 4502: 4328: 3726: 3601: 3588: 3284: 2831:
point. For example, the angular radius of the sun as viewed from L
2423: 2409: 1424: 1149: 1144: 991: 874: 866: 605: 164: 115: 89: 49: 41: 3657:
keeps a spacecraft in a desired Lissajous orbit for a long time.
1165:
point, ahead of Jupiter, are named after Greek characters in the
3559:. The terms in this function represent respectively: force from 3283:
acceleration is to the distance from the barycenter in the same
1450: 1260: 1177:
point are named after Trojan characters and referred to as the "
803:, the collinear and the equilateral, for any three masses, with 6935: 6130: 4369:, because it provides an uninterrupted view of the Sun and any 3731:
Sun–planet Lagrange points to scale (Click for clearer points.)
1959:
is the normalised distance. If the mass of the smaller object (
1197:
points contain interplanetary dust and at least two asteroids,
7390: 6931: 5990:, Tome 6, ÂŤ Essai sur le Problème des Trois Corps Âťâ€” 5904:"TYCHO mission to Earth-Moon libration point EML-4 @ IAC 2013" 2419: 870: 821:
The five Lagrange points are labelled and defined as follows:
5966:"NASA proposes a magnetic shield to protect Mars' atmosphere" 5798:"Evolving to a Depot-Based Space Transportation Architecture" 3672:, because the line between Sun and Earth has increased solar 3287:
as for the two massive bodies. The barycenter being both the
574: 5013:"Tome 6, Chapitre II: Essai sur le problème des trois corps" 2117:
point is about three times of that body. We may also write:
837:
point lies on the line defined between the two large masses
673:
When the mass ratio of the two bodies is large enough, the L
4813: 4775: 4773: 4582:, launched in 2018, and would be "an ideal location" for a 4535:). In 2010, spacecraft transfer trajectories to Sun–Earth L 1181:". Both camps are considered to be types of trojan bodies. 917:
point, that orbital period becomes equal to Earth's. Like L
562: 5234:
SlĂ­z-Balogh, Judit; Barta, AndrĂĄs; HorvĂĄth, GĂĄbor (2019).
5183:
SlĂ­z-Balogh, Judit; Barta, AndrĂĄs; HorvĂĄth, GĂĄbor (2018).
2863:) â‰ˆ 0.264°, whereas that of the earth is arcsin( 608:
bodies. Mathematically, this involves the solution of the
580: 5654:
Stability of Lagrange Points: James Webb Space Telescope"
568: 851:. It is the point where the gravitational attraction of 724:, a powerful infrared space observatory, is located at L 5854:"Photographische Untersuchungen des Librationspunktes L 4991:
De motu rectilineo trium corporum se mutuo attrahentium
5081:"First Asteroid Companion of Earth Discovered at Last" 3547:
is the distance between the two main objects, and sgn(
3208: 3182:) is much smaller than the mass of the larger object ( 2767:) is much smaller than the mass of the larger object ( 2256:
This distance can be described as being such that the
1966:) is much smaller than the mass of the larger object ( 4365:
point. Conversely, it is also useful for space-based
3317: 3197: 2930: 2788: 2626: 2440: 2301: 2123: 2040: 1995: 1932: 1863: 1725: 1497: 577: 1985:
from the smaller object, equal to the radius of the
1039:) are stable equilibria, provided that the ratio of 571: 559: 7704: 7657: 7609: 7495: 7431: 7336: 7256: 7247: 7135: 6969: 6803: 6715: 6659: 6595: 6548: 6488: 6479: 6375: 6285: 6174: 6165: 6043:J R Stockton - Includes translations of Lagrange's 5033:. Space Telescope Science Institute. Archived from 4428:, so solar radiation is not completely blocked at L 3633:around these points in a three-body system. A full 3266:
The reason these points are in balance is that at L
2885:) â‰ˆ 0.242°. Looking toward the sun from L 565: 4840: 4838: 4539:were studied and several designs were considered. 3752:especially in the case of Moon and Jupiter) with L 3524: 3227: 3125: 2818:{\displaystyle r\approx R{\sqrt{\frac {\mu }{3}}}} 2817: 2750: 2608: 2392: 2216: 2097: 2025:{\displaystyle r\approx R{\sqrt{\frac {\mu }{3}}}} 2024: 1951: 1911: 1849: 1685:is the distance between the two main objects, and 1665: 865:combine to produce an equilibrium. An object that 6080:Locations of Lagrange points, with approximations 5656:, University of Arizona. Retrieved 17 Sept. 2018. 5240:Monthly Notices of the Royal Astronomical Society 5189:Monthly Notices of the Royal Astronomical Society 5069:, Neil J. Cornish, with input from Jeremy Goodman 1912:{\displaystyle \mu ={\frac {M_{2}}{M_{1}+M_{2}}}} 670:formed with the centers of the two large bodies. 5019:(in French). Gauthier-Villars. pp. 229–334. 2238:are the average densities of the two bodies and 1253:points contain several dozen known objects, the 3228:{\displaystyle r\approx R{\tfrac {7}{12}}\mu .} 2909:in order for its solar panels to get full sun. 889:is about 1.5 million kilometers, or 0.01 788:around 1750, a decade before the Italian-born 6947: 6142: 5796:Zegler, Frank; Kutter, Bernard (2010-09-02). 5564:"Stability of the Lagrange Points, L4 and L5" 4852:. WMAP Education and Outreach. Archived from 3504: 3449: 925:is about 1.5 million kilometers or 0.01 795:In 1772, Lagrange published an "Essay on the 784:) were discovered by the Swiss mathematician 697:has more than one million of these trojans. 526: 8: 5557: 5555: 5553: 2620:case. The corresponding quintic equation is 1011:points lie at the third vertices of the two 642:Lagrange points for the Earth–Moon system. L 6017:Considerationes de motu corporum coelestium 5805:AIAA SPACE 2010 Conference & Exposition 5718:Celestial Mechanics and Dynamical Astronomy 5608:Celestial Mechanics and Dynamical Astronomy 5285:Freitas, Robert; Valdes, Francisco (1980). 4578:covering the Moon's far side, for example, 4407:Interstellar Mapping and Acceleration Probe 27:Equilibrium points near two orbiting bodies 7253: 6954: 6940: 6932: 6916: 6485: 6171: 6149: 6135: 6127: 5711:point of the Sun–Earth three-body problem" 5056: 5054: 5052: 2760:Again, if the mass of the smaller object ( 1703:from the center of mass. The solution for 893:, from Earth in the direction of the Sun. 533: 519: 121: 94:An example of a spacecraft at Sun-Earth L2 5481: 5428: 5371: 5358:(2005). "Where Did The Moon Come From?". 5269: 5251: 5218: 5200: 5159: 5141: 3514: 3503: 3502: 3493: 3474: 3461: 3448: 3447: 3441: 3408: 3384: 3374: 3348: 3337: 3327: 3316: 3207: 3196: 3163:being defined such that the distance of L 3115: 3104: 3091: 3084: 3055: 3042: 3031: 3025: 3009: 2980: 2974: 2963: 2937: 2931: 2929: 2893:. It is necessary for a spacecraft, like 2808: 2798: 2787: 2703: 2672: 2644: 2631: 2625: 2598: 2587: 2574: 2567: 2544: 2531: 2520: 2514: 2498: 2488: 2482: 2470: 2447: 2441: 2439: 2362: 2349: 2344: 2337: 2317: 2306: 2300: 2208: 2193: 2187: 2176: 2160: 2145: 2139: 2128: 2122: 2087: 2077: 2071: 2057: 2047: 2041: 2039: 2015: 2005: 1994: 1939: 1931: 1900: 1887: 1876: 1870: 1862: 1811: 1789: 1758: 1730: 1724: 1655: 1644: 1631: 1624: 1601: 1588: 1577: 1571: 1555: 1545: 1539: 1527: 1504: 1498: 1496: 4527:. Moreover, a satellite near Sun–Earth L 4313: 3794: 3167:from the centre of the larger object is 1311:has two smaller moons of Saturn in its L 7439:Effect of spaceflight on the human body 4834: 4769: 3804:Semimajor axis, SMA (×10 m) 619:forces of the two large bodies and the 424: 339: 143: 129: 7461:Psychological and sociological effects 6795:Transposition, docking, and extraction 4516:A spacecraft orbiting near Sun–Earth L 4452:was positioned in a halo orbit about L 2778:is at approximately the radius of the 772:The three collinear Lagrange points (L 5562:Greenspan, Thomas (January 7, 2014). 4432:. Spacecraft generally orbit around L 3573:; and centripetal force. The points L 3175:. If the mass of the smaller object ( 1981:are at approximately equal distances 1105:in order to maintain their position. 7: 5411:Sepinsky, Jeremy F.; Willems, Bart; 3536:is the distance from the large body 2616:with parameters defined as for the L 939:Wilkinson Microwave Anisotropy Probe 739:The European Space Agency's earlier 6070:—also attributed to Neil J. Cornish 6047:and of two related papers by Euler 5986:Joseph-Louis, Comte Lagrange, from 4654:In 2017, the idea of positioning a 3735:This table lists sample values of L 3649:trajectories. These quasi-periodic 1457:that matches their orbital motion. 1331:also has two Lagrange co-orbitals, 7170:Weather and environment monitoring 6023:—transcription and translation at 5126:"The Second Earth Trojan 2020 XL5" 4747:List of objects at Lagrange points 4391:Solar and Heliospheric Observatory 4355:International Sun Earth Explorer 3 4305:List of objects at Lagrange points 3796:Lagrangian points in Solar System 1472:of two massive bodies balance the 1115:List of objects at Lagrange points 1109:Natural objects at Lagrange points 817:List of objects at Lagrange points 743:telescope, and its newly launched 704:, between the Sun and Earth, and L 25: 6855:Kepler's laws of planetary motion 5942:. B612 Foundation. Archived from 5807:. AIAA. p. 4. Archived from 5707:"Spacecraft trajectories to the L 5130:The Astrophysical Journal Letters 5124:; FĂśhring, Dora (November 2021). 5079:Choi, Charles Q. (27 July 2011). 4886:Eric Weisstein's World of Physics 1421:Physical and mathematical details 1230:points contain concentrations of 1119:Due to the natural stability of L 600:for small-mass objects under the 305:Kepler's laws of planetary motion 7753: 7743: 7742: 6915: 6850:Interplanetary Transport Network 6730:Collision avoidance (spacecraft) 5862:Acta Astronomica, Vol. 11, p.165 4718:Interplanetary Transport Network 4686: 4672: 4638:point to position their planned 4471:and exponentially unstable with 4341:(blue) orbits around Sun–Earth L 1952:{\displaystyle x={\frac {r}{R}}} 1362:postulates that an object named 996:Gravitational accelerations at L 693:points with respect to the Sun; 555: 135: 7214:Space launch market competition 6815:Astronomical coordinate systems 6569:Longitude of the ascending node 6113:Earth, a lone Trojan discovered 5333:from the original on 2011-07-25 4525:Space Weather Prediction Center 4405:. Planned missions include the 1681:point from the smaller object, 1409:with Earth, and Saturn's moons 937:. Earlier examples include the 7451:Health threat from cosmic rays 6888:Retrograde and prograde motion 6074:Explanation of Lagrange points 6062:Explanation of Lagrange points 5902:Hornig, Andreas (2013-10-06). 5883:Hornig, Andreas (2022-05-01). 5540:"Stability of Lagrange Points" 4482:was a popular place to put a " 4322:in an orbit around Sun–Earth L 3691: 3684: 3480: 3454: 3435: 3423: 3405: 3392: 3368: 3362: 2733: 2724: 2715: 2709: 2693: 2678: 2662: 2650: 2467: 2454: 2376: 2370: 2331: 2325: 1829: 1820: 1804: 1798: 1782: 1767: 1751: 1739: 1524: 1511: 1460:Alternatively, when seen in a 792:discovered the remaining two. 714:Deep Space Climate Observatory 1: 5864:. Vol. 11. p. 165. 4904:NASA Solar System Exploration 4559:Mission passed through the L 4403:Advanced Composition Explorer 747:, also occupy orbits around L 610:restricted three-body problem 6835:Equatorial coordinate system 6120:NASA: Basics of Space Flight 5777:Jones, Andrew (2018-06-14). 5313:10.1016/0019-1035(80)90106-2 74:). Counterintuitively, the L 7567:Self-replicating spacecraft 7403:International Space Station 6104:The Five Points of Lagrange 4962:. p. 9. Archived from 4737:Lagrange point colonization 4446:cosmic microwave background 2034:We may also write this as: 459:Tsiolkovsky rocket equation 7801: 7081:Space Liability Convention 6587:Longitude of the periapsis 6095:—Ep. 76: "Lagrange Points" 6058:page, with good animations 4708:Euler's three-body problem 4597:are the locations for the 4450:James Webb Space Telescope 4339:James Webb Space Telescope 4302: 3259: 1112: 1089:. Any object orbiting at L 935:James Webb Space Telescope 814: 801:constant-pattern solutions 722:James Webb Space Telescope 428:Engineering and efficiency 247:Bi-elliptic transfer orbit 29: 7737: 7444:Space adaptation syndrome 6911: 6898:Specific angular momentum 6052:What are Lagrange points? 5738:10.1007/s10569-010-9299-x 5648:Cacolici, Gianna Nicole, 5628:10.1007/s10569-009-9203-8 5470:The Astrophysical Journal 5417:The Astrophysical Journal 5327:"List Of Neptune Trojans" 4956:; Ross, Shane D. (2006). 4845:Cornish, Neil J. (1998). 4235: 4176: 4117: 4074: 4028: 3985: 3942: 3896: 3850: 3841: 3834: 3827: 3820: 3813: 3806: 3803: 3800: 1385:has its apex located at L 1366:formed at the Sun–Earth L 764:Earth for data transfer. 759:, while Euclid follows a 604:influence of two massive 7177:Communications satellite 5671:Solar System Exploration 5360:The Astronomical Journal 5161:10.3847/2041-8213/ac37bf 4703:Co-orbital configuration 4658:shield at the Sun–Mars L 4605:'s name comes from the L 4576:communications satellite 4444:and observations of the 4297:Spaceflight applications 3307:The radial acceleration 3237:Thus the distance from L 1919:is the mass fraction of 1677:is the distance of the L 1474:centrifugal pseudo-force 1462:rotating reference frame 1169:and referred to as the " 1031:The triangular points (L 716:(DSCOVR) is located at L 454:Propellant mass fraction 353:Gravitational influences 30:Not to be confused with 7681:reusable launch systems 7298:Extravehicular activity 7209:Commercial use of space 7113:Militarisation of space 7086:Registration Convention 7002:Accidents and incidents 6893:Specific orbital energy 5764:2 November 2005 at the 5329:. Minor Planet Center. 4599:Kordylewski dust clouds 4513:every 20 months). 3832:/SMA âˆ’ 1 (%) 3262:Trojan (celestial body) 2253:the earth and the sun. 1360:giant impact hypothesis 1327:. Another Saturn moon, 751:. Gaia keeps a tighter 325:Specific orbital energy 62:due to gravity and the 7729:Mission control center 7691:Non-rocket spacelaunch 7125:Billionaire space race 6305:Geostationary transfer 5940:"The Sentinel Mission" 5850:Kordylewski, Kazimierz 5673:. NASA. Archived from 5546:. University of Texas. 5538:Fitzpatrick, Richard. 5009:Lagrange, Joseph-Louis 4505:comes within 0.3  4379:coronal mass ejections 4345: 4326: 3732: 3612: 3594: 3526: 3229: 3127: 2819: 2752: 2610: 2427: 2394: 2218: 2099: 2026: 1953: 1913: 1851: 1667: 1438: 1000: 662:each act as the third 242:Hohmann transfer orbit 119: 87: 70:) and away from them ( 47: 7579:Spacecraft propulsion 7029:European Space Agency 6878:Orbital state vectors 6820:Characteristic energy 6790:Trans-lunar injection 6578:Argument of periapsis 6255:Prograde / Retrograde 6216:Hyperbolic trajectory 6056:European Space Agency 5271:10.1093/mnras/sty2630 5220:10.1093/mnras/sty2049 5062:"The Lagrange Points" 4847:"The Lagrange Points" 4630:were planning to use 4456:on January 24, 2022. 4332: 4317: 3730: 3709:Coriolis acceleration 3607: 3592: 3527: 3260:Further information: 3230: 3128: 2820: 2753: 2611: 2413: 2395: 2219: 2100: 2027: 1954: 1914: 1852: 1668: 1428: 1401:Objects which are on 1013:equilateral triangles 995: 790:Joseph-Louis Lagrange 438:Preflight engineering 170:Argument of periapsis 93: 53: 45: 7785:Lagrangian mechanics 7204:Satellite navigation 6725:Bi-elliptic transfer 6245:Parabolic trajectory 5858:im System Erde-Mond" 5356:Gott III, J. Richard 4859:on September 7, 2015 4752:Lunar space elevator 4742:Lagrangian mechanics 4644:near-Earth asteroids 4616:geosynchronous orbit 4574:has been used for a 4533:near-Earth asteroids 3315: 3195: 3151:defined as for the L 2928: 2786: 2624: 2438: 2299: 2121: 2038: 1993: 1930: 1861: 1723: 1495: 1470:gravitational fields 1436:Click for animation. 1161:. Asteroids at the L 1087:unstable equilibrium 710:artificial satellite 668:equilateral triangle 494:Propulsive maneuvers 7780:Trojans (astronomy) 7589:Electric propulsion 7276:Life-support system 7160:Imagery and mapping 7120:Private spaceflight 6765:Low-energy transfer 6108:Neil deGrasse Tyson 6097:by Fraser Cain and 5870:1961AcA....11..165K 5730:2010CeMDA.108..215T 5620:2009CeMDA.103..365P 5492:2004ApJ...603..283S 5439:2007ApJ...660.1624S 5382:2005AJ....129.1724B 5305:1980Icar...42..442F 5262:2019MNRAS.482..762S 5211:2018MNRAS.480.5550S 5152:2021ApJ...922L..25H 4954:Marsden, Jerrold E. 3797: 3723:Solar System values 3303:Radial acceleration 1431:effective potential 1395:Roche lobe overflow 1358:One version of the 1347:. The moons wander 1232:interplanetary dust 941:and its successor, 547:celestial mechanics 471:Efficiency measures 374:Sphere of influence 343:Celestial mechanics 125:Part of a series on 60:effective potential 7542:Robotic spacecraft 7468:Space and survival 7323:Space colonization 7219:Space architecture 7071:Outer Space Treaty 6760:Inclination change 6408:Distant retrograde 6082:—David Peter Stern 6068:A NASA explanation 6030:2020-08-03 at the 6025:merlyn.demon.co.uk 6007:2019-06-23 at the 6002:merlyn.demon.co.uk 5600:Standish, E. Myles 5544:Newtonian Dynamics 5037:on 3 February 2014 5017:Œuvres de Lagrange 4900:"DSCOVR: In-Depth" 4879:Weisstein, Eric W. 4694:Spaceflight portal 4640:Sentinel telescope 4626:Scientists at the 4442:infrared astronomy 4346: 4327: 3839:(×10 m) 3825:(×10 m) 3811:(×10 m) 3795: 3733: 3613: 3595: 3522: 3297:three-body problem 3225: 3217: 3123: 2815: 2748: 2606: 2428: 2390: 2267:in the absence of 2214: 2095: 2022: 1949: 1909: 1847: 1663: 1443:three-body problem 1439: 1263:has four accepted 1236:Kordylewski clouds 1001: 873:more closely than 797:three-body problem 290:Dynamical friction 120: 88: 48: 7767: 7766: 7714:Flight controller 7491: 7490: 7249:Human spaceflight 7224:Space exploration 7150:Earth observation 6929: 6928: 6903:Two-line elements 6711: 6710: 6633:Eccentric anomaly 6475: 6474: 6342:Orbit of the Moon 6201:Highly elliptical 5596:Pitjeva, Elena V. 5576:on April 18, 2018 4948:Koon, Wang Sang; 4882:"Lagrange Points" 4764:Explanatory notes 4723:Klemperer rosette 4618:cover the Earth. 4399:Aditya-L1 Mission 4361:has orbited the L 4294: 4293: 3668:than to stay at L 3520: 3415: 3354: 3216: 3121: 3062: 3015: 2969: 2920:The location of L 2813: 2807: 2604: 2551: 2504: 2477: 2430:The location of L 2385: 2384: 2202: 2154: 2093: 2063: 2020: 2014: 1947: 1907: 1714:of the following 1661: 1608: 1561: 1534: 1487:The location of L 1464:that matches the 1173:". Those at the L 1085:are positions of 625:orbit corrections 621:centrifugal force 590:Lagrangian points 543: 542: 393:Lagrangian points 330:Vis-viva equation 300:Kepler's equation 147:Orbital mechanics 64:centrifugal force 16:(Redirected from 7792: 7757: 7746: 7745: 7456:Space psychology 7281:Animals in space 7254: 7234:Space technology 7076:Rescue Agreement 6956: 6949: 6942: 6933: 6919: 6918: 6860:Lagrangian point 6755:Hohmann transfer 6700: 6686: 6677: 6668: 6648: 6639: 6630: 6621: 6617: 6613: 6604: 6584: 6575: 6566: 6557: 6537: 6533: 6524: 6515: 6506: 6486: 6455:Heliosynchronous 6404:Lagrange points 6357:Transatmospheric 6172: 6151: 6144: 6137: 6128: 6064:—Neil J. Cornish 5974: 5973: 5962: 5956: 5955: 5953: 5951: 5936: 5930: 5929: 5928:. June 20, 2017. 5918: 5912: 5911: 5899: 5893: 5892: 5880: 5874: 5873: 5846: 5840: 5839: 5820: 5819: 5813: 5802: 5793: 5787: 5786: 5774: 5768: 5756: 5750: 5749: 5715: 5702: 5696: 5693: 5687: 5686: 5684: 5682: 5677:on July 20, 2015 5663: 5657: 5646: 5640: 5639: 5592: 5586: 5585: 5583: 5581: 5575: 5569:. Archived from 5568: 5559: 5548: 5547: 5535: 5529: 5528: 5526: 5518: 5512: 5511: 5485: 5483:astro-ph/0311272 5465: 5459: 5458: 5432: 5430:astro-ph/0612508 5423:(2): 1624–1635. 5408: 5402: 5401: 5375: 5373:astro-ph/0405372 5366:(3): 1724–1745. 5352:Belbruno, Edward 5348: 5342: 5341: 5339: 5338: 5323: 5317: 5316: 5282: 5276: 5275: 5273: 5255: 5231: 5225: 5224: 5222: 5204: 5195:(4): 5550–5559. 5180: 5174: 5173: 5163: 5145: 5122:Tholen, David J. 5118:Wiegert, Paul A. 5113: 5107: 5106: 5095: 5089: 5088: 5076: 5070: 5068: 5066: 5058: 5047: 5046: 5044: 5042: 5027: 5021: 5020: 5005: 4999: 4998: 4996: 4982: 4976: 4974: 4972: 4971: 4945: 4939: 4938: 4936: 4935: 4921: 4915: 4914: 4912: 4911: 4896: 4890: 4889: 4875: 4869: 4868: 4866: 4864: 4858: 4851: 4842: 4822: 4816: 4810: 4809: 4806: 4800: 4798: 4797: 4794: 4791: 4790: 4789: 4777: 4696: 4691: 4690: 4689: 4682: 4680:Astronomy portal 4677: 4676: 4675: 4584:propellant depot 4367:solar telescopes 4290: 4289: 4282: 4280: 4273: 4268: 4266: 4259: 4254: 4252: 4245: 4243: 4231: 4230: 4223: 4221: 4214: 4209: 4207: 4200: 4195: 4193: 4186: 4184: 4172: 4171: 4164: 4162: 4155: 4150: 4148: 4141: 4136: 4134: 4127: 4125: 4113: 4112: 4105: 4100: 4095: 4090: 4085: 4080: 4070: 4069: 4066: 4059: 4054: 4049: 4044: 4039: 4034: 4024: 4023: 4016: 4011: 4006: 4001: 3996: 3991: 3981: 3980: 3973: 3968: 3963: 3958: 3953: 3948: 3938: 3937: 3934: 3927: 3922: 3917: 3912: 3907: 3902: 3892: 3887: 3886: 3879: 3874: 3869: 3864: 3863: 3856: 3798: 3791: 3789: 3779: 3777: 3767: 3765: 3651:Lissajous orbits 3639:dynamical system 3606: 3531: 3529: 3528: 3523: 3521: 3519: 3518: 3509: 3508: 3507: 3498: 3497: 3479: 3478: 3466: 3465: 3453: 3452: 3442: 3416: 3414: 3413: 3412: 3390: 3389: 3388: 3375: 3355: 3353: 3352: 3343: 3342: 3341: 3328: 3234: 3232: 3231: 3226: 3218: 3209: 3133:with parameters 3132: 3130: 3129: 3124: 3122: 3120: 3119: 3110: 3109: 3108: 3096: 3095: 3085: 3083: 3079: 3063: 3061: 3060: 3059: 3047: 3046: 3036: 3035: 3026: 3016: 3014: 3013: 3008: 3004: 2985: 2984: 2975: 2970: 2968: 2967: 2962: 2958: 2942: 2941: 2932: 2884: 2882: 2881: 2880: 2878: 2872: 2869: 2862: 2860: 2859: 2858: 2856: 2850: 2847: 2846: 2844: 2824: 2822: 2821: 2816: 2814: 2812: 2800: 2799: 2757: 2755: 2754: 2749: 2708: 2707: 2677: 2676: 2649: 2648: 2636: 2635: 2615: 2613: 2612: 2607: 2605: 2603: 2602: 2593: 2592: 2591: 2579: 2578: 2568: 2566: 2562: 2552: 2550: 2549: 2548: 2536: 2535: 2525: 2524: 2515: 2505: 2503: 2502: 2493: 2492: 2483: 2478: 2476: 2475: 2474: 2452: 2451: 2442: 2414:The Lagrangian L 2399: 2397: 2396: 2391: 2386: 2380: 2379: 2369: 2368: 2367: 2366: 2354: 2353: 2338: 2324: 2323: 2322: 2321: 2294: 2293: 2223: 2221: 2220: 2215: 2213: 2212: 2207: 2203: 2198: 2197: 2188: 2181: 2180: 2165: 2164: 2159: 2155: 2150: 2149: 2140: 2133: 2132: 2104: 2102: 2101: 2096: 2094: 2092: 2091: 2082: 2081: 2072: 2064: 2062: 2061: 2052: 2051: 2042: 2031: 2029: 2028: 2023: 2021: 2019: 2007: 2006: 1958: 1956: 1955: 1950: 1948: 1940: 1918: 1916: 1915: 1910: 1908: 1906: 1905: 1904: 1892: 1891: 1881: 1880: 1871: 1856: 1854: 1853: 1848: 1816: 1815: 1794: 1793: 1763: 1762: 1735: 1734: 1716:quintic function 1672: 1670: 1669: 1664: 1662: 1660: 1659: 1650: 1649: 1648: 1636: 1635: 1625: 1623: 1619: 1609: 1607: 1606: 1605: 1593: 1592: 1582: 1581: 1572: 1562: 1560: 1559: 1550: 1549: 1540: 1535: 1533: 1532: 1531: 1509: 1508: 1499: 1466:angular velocity 1403:horseshoe orbits 1303: 1301: 1300: 1292: 1290: 1289: 1281: 1279: 1278: 1222:The Earth–Moon L 1218: 1216: 1215: 1207: 1205: 1204: 1064: 1062: 1061: 1053: 1050: 683:trojan asteroids 596:) are points of 594:libration points 587: 586: 583: 582: 579: 576: 573: 570: 567: 564: 561: 535: 528: 521: 500:Orbital maneuver 449:Payload fraction 429: 410:Lissajous orbits 344: 315:Orbital velocity 262:Hyperbolic orbit 158:Orbital elements 148: 139: 122: 118: 113: 104: 99: 73: 69: 21: 7800: 7799: 7795: 7794: 7793: 7791: 7790: 7789: 7770: 7769: 7768: 7763: 7733: 7700: 7672:Escape velocity 7653: 7605: 7572:Space telescope 7525:Reentry capsule 7487: 7427: 7332: 7303:Overview effect 7286:Bioastronautics 7243: 7131: 6965: 6960: 6930: 6925: 6907: 6825:Escape velocity 6806: 6799: 6780:Rocket equation 6707: 6699: 6693: 6684: 6675: 6666: 6655: 6646: 6637: 6628: 6619: 6615: 6611: 6602: 6591: 6582: 6573: 6564: 6555: 6544: 6535: 6531: 6527:Semi-minor axis 6522: 6518:Semi-major axis 6513: 6504: 6498: 6471: 6393:Areosynchronous 6377: 6371: 6352:Sun-synchronous 6337:Near-equatorial 6281: 6161: 6155: 6032:Wayback Machine 6009:Wayback Machine 5996:Tome 6 (Viewer) 5983: 5978: 5977: 5964: 5963: 5959: 5949: 5947: 5946:on 30 June 2012 5938: 5937: 5933: 5920: 5919: 5915: 5901: 5900: 5896: 5882: 5881: 5877: 5857: 5848: 5847: 5843: 5835: 5831: 5826: 5817: 5815: 5811: 5800: 5795: 5794: 5790: 5776: 5775: 5771: 5766:Wayback Machine 5757: 5753: 5713: 5710: 5704: 5703: 5699: 5694: 5690: 5680: 5678: 5665: 5664: 5660: 5647: 5643: 5594: 5593: 5589: 5579: 5577: 5573: 5566: 5561: 5560: 5551: 5537: 5536: 5532: 5524: 5520: 5519: 5515: 5467: 5466: 5462: 5413:Kalogera, Vicky 5410: 5409: 5405: 5350: 5349: 5345: 5336: 5334: 5325: 5324: 5320: 5284: 5283: 5279: 5233: 5232: 5228: 5182: 5181: 5177: 5115: 5114: 5110: 5097: 5096: 5092: 5078: 5077: 5073: 5064: 5060: 5059: 5050: 5040: 5038: 5029: 5028: 5024: 5007: 5006: 5002: 4994: 4986:Euler, Leonhard 4984: 4983: 4979: 4969: 4967: 4947: 4946: 4942: 4933: 4931: 4923: 4922: 4918: 4909: 4907: 4898: 4897: 4893: 4877: 4876: 4872: 4862: 4860: 4856: 4849: 4844: 4843: 4836: 4831: 4826: 4825: 4812: 4807: 4804: 4802: 4795: 4792: 4787: 4785: 4783: 4782: 4780: 4778: 4771: 4766: 4761: 4731: 4692: 4687: 4685: 4678: 4673: 4671: 4668: 4661: 4656:magnetic dipole 4652: 4637: 4628:B612 Foundation 4624: 4612: 4608: 4596: 4592: 4573: 4562: 4550: 4545: 4538: 4530: 4519: 4512: 4500: 4491:science fiction 4481: 4466: 4462: 4455: 4439: 4435: 4431: 4423: 4419: 4409:(IMAP) and the 4388: 4384: 4373:(including the 4364: 4351: 4344: 4325: 4312: 4307: 4299: 4287: 4285: 4278: 4276: 4271: 4264: 4262: 4257: 4250: 4248: 4241: 4239: 4228: 4226: 4219: 4217: 4212: 4205: 4203: 4198: 4191: 4189: 4182: 4180: 4169: 4167: 4160: 4158: 4153: 4146: 4144: 4139: 4132: 4130: 4123: 4121: 4110: 4108: 4103: 4098: 4093: 4088: 4083: 4078: 4067: 4064: 4062: 4057: 4052: 4047: 4042: 4037: 4032: 4021: 4019: 4014: 4009: 4004: 3999: 3994: 3989: 3978: 3976: 3971: 3966: 3961: 3956: 3951: 3946: 3935: 3932: 3930: 3925: 3920: 3915: 3910: 3905: 3900: 3890: 3884: 3882: 3877: 3872: 3867: 3861: 3859: 3854: 3845: 3838: 3831: 3824: 3817: 3814:1 âˆ’ L 3810: 3787: 3785: 3783: 3775: 3773: 3771: 3763: 3761: 3759: 3755: 3746: 3742: 3738: 3725: 3718: 3714: 3705: 3701: 3695: 3688: 3679: 3671: 3667: 3663: 3660:For Sun–Earth-L 3655:station keeping 3647:Lissajous-curve 3626: 3622: 3618: 3602: 3600: 3584: 3580: 3576: 3572: 3565: 3542: 3510: 3489: 3470: 3457: 3443: 3404: 3391: 3380: 3376: 3344: 3333: 3329: 3313: 3312: 3305: 3273: 3269: 3264: 3258: 3256: 3252: 3244: 3240: 3193: 3192: 3188: 3181: 3166: 3158: 3154: 3146: 3139: 3111: 3100: 3087: 3086: 3051: 3038: 3037: 3027: 3024: 3020: 2991: 2987: 2986: 2976: 2948: 2944: 2943: 2933: 2926: 2925: 2923: 2918: 2916: 2908: 2899:Lissajous orbit 2891:annular eclipse 2888: 2876: 2874: 2873: 2870: 2867: 2866: 2864: 2854: 2852: 2851: 2848: 2842: 2840: 2839: 2838: 2836: 2834: 2830: 2784: 2783: 2777: 2773: 2766: 2699: 2668: 2640: 2627: 2622: 2621: 2619: 2594: 2583: 2570: 2569: 2540: 2527: 2526: 2516: 2513: 2509: 2494: 2484: 2466: 2453: 2443: 2436: 2435: 2433: 2417: 2408: 2406: 2358: 2345: 2340: 2339: 2313: 2302: 2297: 2296: 2291: 2289: 2287: 2280: 2273: 2266: 2251: 2244: 2237: 2230: 2189: 2183: 2182: 2172: 2141: 2135: 2134: 2124: 2119: 2118: 2116: 2112: 2083: 2073: 2053: 2043: 2036: 2035: 1991: 1990: 1980: 1976: 1972: 1965: 1928: 1927: 1924: 1896: 1883: 1882: 1872: 1859: 1858: 1807: 1785: 1754: 1726: 1721: 1720: 1702: 1698: 1691: 1680: 1651: 1640: 1627: 1626: 1597: 1584: 1583: 1573: 1570: 1566: 1551: 1541: 1523: 1510: 1500: 1493: 1492: 1490: 1485: 1483: 1455:circular motion 1434: 1423: 1388: 1373: 1369: 1354: 1346: 1338: 1318: 1314: 1298: 1297: 1294: 1287: 1286: 1283: 1276: 1275: 1272: 1255:Neptune trojans 1252: 1248: 1229: 1225: 1213: 1212: 1209: 1202: 1201: 1198: 1196: 1192: 1189:The Sun–Earth L 1176: 1164: 1157:set during the 1142: 1138: 1126: 1122: 1117: 1111: 1103:station keeping 1100: 1096: 1092: 1084: 1080: 1076: 1060: 1054: 1051: 1049: 1043: 1042: 1040: 1038: 1034: 1029: 1022: 1018: 1010: 1006: 999: 990: 987: 983: 975: 966: 962: 957: 954: 932: 924: 920: 916: 912: 908: 903: 900: 888: 884: 879:Earth's gravity 864: 857: 850: 843: 836: 831: 828: 819: 813: 811:Lagrange points 805:circular orbits 783: 779: 775: 770: 758: 753:Lissajous orbit 750: 735: 731: 727: 719: 707: 703: 692: 688: 680: 676: 661: 657: 653: 649: 645: 637: 633: 558: 554: 551:Lagrange points 539: 510: 509: 505:Orbit insertion 495: 487: 486: 472: 464: 463: 439: 431: 427: 420: 419: 415:Lyapunov orbits 406: 405: 389: 379: 378: 354: 346: 342: 335: 334: 320:Surface gravity 295:Escape velocity 285: 277: 276: 257:Parabolic orbit 253: 252: 219: 217: 214:two-body orbits 205: 204: 195:Semi-major axis 160: 150: 146: 111: 110: 97: 96: 95: 82:points are the 81: 77: 71: 67: 38: 28: 23: 22: 15: 12: 11: 5: 7798: 7796: 7788: 7787: 7782: 7772: 7771: 7765: 7764: 7762: 7761: 7750: 7738: 7735: 7734: 7732: 7731: 7726: 7721: 7719:Ground station 7716: 7710: 7708: 7706:Ground segment 7702: 7701: 7699: 7698: 7693: 7688: 7683: 7674: 7669: 7663: 7661: 7655: 7654: 7652: 7651: 7646: 7641: 7639:Interplanetary 7636: 7635: 7634: 7632:Geosynchronous 7629: 7619: 7613: 7611: 7607: 7606: 7604: 7603: 7602: 7601: 7599:Gravity assist 7596: 7591: 7586: 7576: 7575: 7574: 7569: 7564: 7559: 7554: 7549: 7539: 7534: 7533: 7532: 7530:Service module 7527: 7522: 7520:Orbital module 7512: 7507: 7505:Launch vehicle 7501: 7499: 7493: 7492: 7489: 7488: 7486: 7485: 7483:Space sexology 7480: 7475: 7473:Space medicine 7470: 7465: 7464: 7463: 7453: 7448: 7447: 7446: 7435: 7433: 7429: 7428: 7426: 7425: 7420: 7415: 7410: 7405: 7400: 7399: 7398: 7388: 7383: 7382: 7381: 7376: 7366: 7361: 7356: 7351: 7346: 7340: 7338: 7334: 7333: 7331: 7330: 7325: 7320: 7315: 7310: 7308:Weightlessness 7305: 7300: 7295: 7294: 7293: 7288: 7283: 7273: 7272: 7271: 7260: 7258: 7251: 7245: 7244: 7242: 7241: 7236: 7231: 7229:Space research 7226: 7221: 7216: 7211: 7206: 7201: 7200: 7199: 7194: 7189: 7184: 7174: 7173: 7172: 7167: 7165:Reconnaissance 7162: 7157: 7147: 7141: 7139: 7133: 7132: 7130: 7129: 7128: 7127: 7117: 7116: 7115: 7110: 7105: 7095: 7094: 7093: 7088: 7083: 7078: 7073: 7063: 7062: 7061: 7056: 7051: 7046: 7041: 7036: 7034:European Union 7031: 7026: 7021: 7011: 7006: 7005: 7004: 6999: 6994: 6989: 6979: 6973: 6971: 6967: 6966: 6961: 6959: 6958: 6951: 6944: 6936: 6927: 6926: 6924: 6923: 6921:List of orbits 6912: 6909: 6908: 6906: 6905: 6900: 6895: 6890: 6885: 6880: 6875: 6873:Orbit equation 6870: 6862: 6857: 6852: 6847: 6842: 6837: 6832: 6827: 6822: 6817: 6811: 6809: 6801: 6800: 6798: 6797: 6792: 6787: 6782: 6777: 6772: 6767: 6762: 6757: 6752: 6747: 6745:Gravity assist 6742: 6740:Delta-v budget 6737: 6732: 6727: 6721: 6719: 6713: 6712: 6709: 6708: 6706: 6705: 6697: 6691: 6682: 6673: 6671:Orbital period 6663: 6661: 6657: 6656: 6654: 6653: 6651:True longitude 6644: 6642:Mean longitude 6635: 6626: 6609: 6599: 6597: 6593: 6592: 6590: 6589: 6580: 6571: 6562: 6552: 6550: 6546: 6545: 6543: 6542: 6529: 6520: 6511: 6501: 6499: 6497: 6496: 6493: 6489: 6483: 6477: 6476: 6473: 6472: 6470: 6469: 6468: 6467: 6459: 6458: 6457: 6452: 6447: 6446: 6445: 6432: 6427: 6426: 6425: 6420: 6415: 6410: 6402: 6401: 6400: 6398:Areostationary 6395: 6390: 6381: 6379: 6373: 6372: 6370: 6369: 6367:Very low Earth 6364: 6359: 6354: 6349: 6344: 6339: 6334: 6329: 6324: 6319: 6314: 6309: 6308: 6307: 6302: 6295:Geosynchronous 6291: 6289: 6283: 6282: 6280: 6279: 6277:Transfer orbit 6274: 6273: 6272: 6267: 6257: 6252: 6247: 6242: 6237: 6235:Lagrange point 6232: 6227: 6218: 6213: 6208: 6203: 6194: 6189: 6184: 6178: 6176: 6169: 6163: 6162: 6157:Gravitational 6156: 6154: 6153: 6146: 6139: 6131: 6125: 6124: 6115: 6110: 6101: 6093:Astronomy Cast 6089: 6083: 6077: 6071: 6065: 6059: 6041: 6040: 6035: 6021:Leonhard Euler 6014: 6013: 6012: 5982: 5981:External links 5979: 5976: 5975: 5957: 5931: 5913: 5894: 5875: 5855: 5841: 5833: 5829: 5824: 5788: 5769: 5751: 5724:(3): 215–232. 5708: 5697: 5688: 5658: 5641: 5614:(4): 365–372. 5602:(2009-04-01). 5587: 5549: 5530: 5513: 5500:10.1086/381315 5476:(1): 283–284. 5460: 5447:10.1086/513736 5403: 5390:10.1086/427539 5343: 5318: 5299:(3): 442–447. 5277: 5246:(1): 762–770. 5226: 5175: 5108: 5090: 5071: 5048: 5022: 5000: 4977: 4940: 4916: 4891: 4870: 4833: 4832: 4830: 4827: 4824: 4823: 4768: 4767: 4765: 4762: 4760: 4759: 4754: 4749: 4744: 4739: 4734: 4729: 4725: 4720: 4715: 4710: 4705: 4699: 4698: 4697: 4683: 4667: 4664: 4659: 4651: 4648: 4635: 4623: 4620: 4610: 4606: 4594: 4590: 4571: 4560: 4548: 4544: 4541: 4536: 4528: 4517: 4510: 4498: 4479: 4464: 4460: 4453: 4437: 4433: 4429: 4421: 4417: 4386: 4382: 4362: 4349: 4342: 4323: 4318:The satellite 4311: 4308: 4303:Main article: 4298: 4295: 4292: 4291: 4283: 4274: 4269: 4260: 4255: 4246: 4237: 4233: 4232: 4224: 4215: 4210: 4201: 4196: 4187: 4178: 4174: 4173: 4165: 4156: 4151: 4142: 4137: 4128: 4119: 4115: 4114: 4106: 4101: 4096: 4091: 4086: 4081: 4076: 4072: 4071: 4060: 4055: 4050: 4045: 4040: 4035: 4030: 4026: 4025: 4017: 4012: 4007: 4002: 3997: 3992: 3987: 3983: 3982: 3974: 3969: 3964: 3959: 3954: 3949: 3944: 3940: 3939: 3928: 3923: 3918: 3913: 3908: 3903: 3898: 3894: 3893: 3888: 3880: 3875: 3870: 3865: 3857: 3852: 3848: 3847: 3843: 3840: 3836: 3833: 3829: 3826: 3822: 3819: 3815: 3812: 3808: 3805: 3802: 3781: 3769: 3757: 3753: 3744: 3740: 3736: 3724: 3721: 3716: 3712: 3703: 3699: 3693: 3686: 3677: 3669: 3665: 3661: 3624: 3620: 3616: 3615:Although the L 3599: 3596: 3582: 3578: 3574: 3570: 3563: 3540: 3517: 3513: 3506: 3501: 3496: 3492: 3488: 3485: 3482: 3477: 3473: 3469: 3464: 3460: 3456: 3451: 3446: 3440: 3437: 3434: 3431: 3428: 3425: 3422: 3419: 3411: 3407: 3403: 3400: 3397: 3394: 3387: 3383: 3379: 3373: 3370: 3367: 3364: 3361: 3358: 3351: 3347: 3340: 3336: 3332: 3326: 3323: 3320: 3304: 3301: 3289:center of mass 3271: 3267: 3257: 3254: 3250: 3247: 3242: 3238: 3224: 3221: 3215: 3212: 3206: 3203: 3200: 3186: 3179: 3164: 3156: 3152: 3144: 3137: 3118: 3114: 3107: 3103: 3099: 3094: 3090: 3082: 3078: 3075: 3072: 3069: 3066: 3058: 3054: 3050: 3045: 3041: 3034: 3030: 3023: 3019: 3012: 3007: 3003: 3000: 2997: 2994: 2990: 2983: 2979: 2973: 2966: 2961: 2957: 2954: 2951: 2947: 2940: 2936: 2921: 2917: 2914: 2911: 2906: 2897:, to follow a 2886: 2832: 2828: 2811: 2806: 2803: 2797: 2794: 2791: 2775: 2771: 2764: 2747: 2744: 2741: 2738: 2735: 2732: 2729: 2726: 2723: 2720: 2717: 2714: 2711: 2706: 2702: 2698: 2695: 2692: 2689: 2686: 2683: 2680: 2675: 2671: 2667: 2664: 2661: 2658: 2655: 2652: 2647: 2643: 2639: 2634: 2630: 2617: 2601: 2597: 2590: 2586: 2582: 2577: 2573: 2565: 2561: 2558: 2555: 2547: 2543: 2539: 2534: 2530: 2523: 2519: 2512: 2508: 2501: 2497: 2491: 2487: 2481: 2473: 2469: 2465: 2462: 2459: 2456: 2450: 2446: 2431: 2418:point for the 2415: 2407: 2404: 2401: 2389: 2383: 2378: 2375: 2372: 2365: 2361: 2357: 2352: 2348: 2343: 2336: 2333: 2330: 2327: 2320: 2316: 2312: 2309: 2305: 2285: 2278: 2271: 2264: 2258:orbital period 2249: 2242: 2235: 2228: 2211: 2206: 2201: 2196: 2192: 2186: 2179: 2175: 2171: 2168: 2163: 2158: 2153: 2148: 2144: 2138: 2131: 2127: 2114: 2110: 2090: 2086: 2080: 2076: 2070: 2067: 2060: 2056: 2050: 2046: 2018: 2013: 2010: 2004: 2001: 1998: 1978: 1974: 1970: 1963: 1946: 1943: 1938: 1935: 1922: 1903: 1899: 1895: 1890: 1886: 1879: 1875: 1869: 1866: 1846: 1843: 1840: 1837: 1834: 1831: 1828: 1825: 1822: 1819: 1814: 1810: 1806: 1803: 1800: 1797: 1792: 1788: 1784: 1781: 1778: 1775: 1772: 1769: 1766: 1761: 1757: 1753: 1750: 1747: 1744: 1741: 1738: 1733: 1729: 1700: 1696: 1689: 1678: 1658: 1654: 1647: 1643: 1639: 1634: 1630: 1622: 1618: 1615: 1612: 1604: 1600: 1596: 1591: 1587: 1580: 1576: 1569: 1565: 1558: 1554: 1548: 1544: 1538: 1530: 1526: 1522: 1519: 1516: 1513: 1507: 1503: 1488: 1484: 1481: 1478: 1422: 1419: 1399: 1398: 1391:companion star 1386: 1375: 1371: 1367: 1356: 1352: 1344: 1336: 1316: 1312: 1307:Saturn's moon 1305: 1258: 1250: 1246: 1239: 1227: 1223: 1220: 1194: 1190: 1174: 1162: 1140: 1136: 1124: 1120: 1113:Main article: 1110: 1107: 1098: 1094: 1090: 1082: 1078: 1074: 1058: 1047: 1036: 1032: 1028: 1025: 1020: 1019:) or behind (L 1016: 1008: 1004: 997: 989: 985: 981: 978: 973: 964: 960: 956: 952: 949: 930: 922: 918: 914: 910: 906: 902: 898: 895: 886: 882: 862: 855: 848: 841: 834: 830: 826: 823: 812: 809: 786:Leonhard Euler 781: 777: 773: 769: 766: 756: 748: 733: 729: 725: 717: 705: 701: 690: 686: 678: 674: 659: 655: 651: 647: 643: 635: 631: 541: 540: 538: 537: 530: 523: 515: 512: 511: 508: 507: 502: 496: 493: 492: 489: 488: 485: 484: 479: 477:Gravity assist 473: 470: 469: 466: 465: 462: 461: 456: 451: 446: 440: 437: 436: 433: 432: 425: 422: 421: 418: 417: 412: 404: 403: 395: 391: 390: 385: 384: 381: 380: 377: 376: 371: 366: 361: 355: 352: 351: 348: 347: 340: 337: 336: 333: 332: 327: 322: 317: 312: 310:Orbital period 307: 302: 297: 292: 286: 283: 282: 279: 278: 275: 274: 272:Decaying orbit 269: 264: 259: 251: 250: 244: 237: 235:Transfer orbit 233: 232: 231: 229:Elliptic orbit 226: 224:Circular orbit 220: 211: 210: 207: 206: 203: 202: 197: 192: 187: 182: 177: 172: 167: 161: 156: 155: 152: 151: 144: 141: 140: 132: 131: 127: 126: 79: 75: 33:Lagrange Point 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 7797: 7786: 7783: 7781: 7778: 7777: 7775: 7760: 7756: 7751: 7749: 7740: 7739: 7736: 7730: 7727: 7725: 7722: 7720: 7717: 7715: 7712: 7711: 7709: 7707: 7703: 7697: 7694: 7692: 7689: 7687: 7684: 7682: 7678: 7675: 7673: 7670: 7668: 7667:Direct ascent 7665: 7664: 7662: 7660: 7656: 7650: 7649:Intergalactic 7647: 7645: 7642: 7640: 7637: 7633: 7630: 7628: 7625: 7624: 7623: 7620: 7618: 7615: 7614: 7612: 7608: 7600: 7597: 7595: 7592: 7590: 7587: 7585: 7584:Rocket engine 7582: 7581: 7580: 7577: 7573: 7570: 7568: 7565: 7563: 7560: 7558: 7555: 7553: 7550: 7548: 7545: 7544: 7543: 7540: 7538: 7535: 7531: 7528: 7526: 7523: 7521: 7518: 7517: 7516: 7515:Space capsule 7513: 7511: 7508: 7506: 7503: 7502: 7500: 7498: 7494: 7484: 7481: 7479: 7478:Space nursing 7476: 7474: 7471: 7469: 7466: 7462: 7459: 7458: 7457: 7454: 7452: 7449: 7445: 7442: 7441: 7440: 7437: 7436: 7434: 7432:Health issues 7430: 7424: 7421: 7419: 7416: 7414: 7411: 7409: 7406: 7404: 7401: 7397: 7394: 7393: 7392: 7389: 7387: 7386:Space Shuttle 7384: 7380: 7377: 7375: 7372: 7371: 7370: 7367: 7365: 7362: 7360: 7357: 7355: 7352: 7350: 7347: 7345: 7342: 7341: 7339: 7335: 7329: 7326: 7324: 7321: 7319: 7318:Space tourism 7316: 7314: 7311: 7309: 7306: 7304: 7301: 7299: 7296: 7292: 7289: 7287: 7284: 7282: 7279: 7278: 7277: 7274: 7270: 7267: 7266: 7265: 7262: 7261: 7259: 7255: 7252: 7250: 7246: 7240: 7239:Space weather 7237: 7235: 7232: 7230: 7227: 7225: 7222: 7220: 7217: 7215: 7212: 7210: 7207: 7205: 7202: 7198: 7195: 7193: 7190: 7188: 7185: 7183: 7180: 7179: 7178: 7175: 7171: 7168: 7166: 7163: 7161: 7158: 7156: 7153: 7152: 7151: 7148: 7146: 7143: 7142: 7140: 7138: 7134: 7126: 7123: 7122: 7121: 7118: 7114: 7111: 7109: 7106: 7104: 7103:Space command 7101: 7100: 7099: 7098:Space warfare 7096: 7092: 7089: 7087: 7084: 7082: 7079: 7077: 7074: 7072: 7069: 7068: 7067: 7064: 7060: 7059:United States 7057: 7055: 7052: 7050: 7047: 7045: 7042: 7040: 7037: 7035: 7032: 7030: 7027: 7025: 7022: 7020: 7017: 7016: 7015: 7012: 7010: 7007: 7003: 7000: 6998: 6995: 6993: 6990: 6988: 6985: 6984: 6983: 6980: 6978: 6977:Astrodynamics 6975: 6974: 6972: 6968: 6964: 6957: 6952: 6950: 6945: 6943: 6938: 6937: 6934: 6922: 6914: 6913: 6910: 6904: 6901: 6899: 6896: 6894: 6891: 6889: 6886: 6884: 6881: 6879: 6876: 6874: 6871: 6869: 6868:-body problem 6867: 6863: 6861: 6858: 6856: 6853: 6851: 6848: 6846: 6843: 6841: 6838: 6836: 6833: 6831: 6828: 6826: 6823: 6821: 6818: 6816: 6813: 6812: 6810: 6808: 6802: 6796: 6793: 6791: 6788: 6786: 6783: 6781: 6778: 6776: 6773: 6771: 6770:Oberth effect 6768: 6766: 6763: 6761: 6758: 6756: 6753: 6751: 6748: 6746: 6743: 6741: 6738: 6736: 6733: 6731: 6728: 6726: 6723: 6722: 6720: 6718: 6714: 6704: 6696: 6692: 6690: 6689:Orbital speed 6683: 6681: 6674: 6672: 6665: 6664: 6662: 6658: 6652: 6645: 6643: 6636: 6634: 6627: 6625: 6610: 6608: 6601: 6600: 6598: 6594: 6588: 6581: 6579: 6572: 6570: 6563: 6561: 6554: 6553: 6551: 6547: 6541: 6530: 6528: 6521: 6519: 6512: 6510: 6503: 6502: 6500: 6494: 6491: 6490: 6487: 6484: 6482: 6478: 6466: 6463: 6462: 6460: 6456: 6453: 6451: 6448: 6444: 6443:Earth's orbit 6441: 6440: 6439: 6436: 6435: 6433: 6431: 6428: 6424: 6421: 6419: 6416: 6414: 6411: 6409: 6406: 6405: 6403: 6399: 6396: 6394: 6391: 6389: 6386: 6385: 6383: 6382: 6380: 6374: 6368: 6365: 6363: 6360: 6358: 6355: 6353: 6350: 6348: 6345: 6343: 6340: 6338: 6335: 6333: 6330: 6328: 6325: 6323: 6320: 6318: 6315: 6313: 6310: 6306: 6303: 6301: 6300:Geostationary 6298: 6297: 6296: 6293: 6292: 6290: 6288: 6284: 6278: 6275: 6271: 6268: 6266: 6263: 6262: 6261: 6258: 6256: 6253: 6251: 6248: 6246: 6243: 6241: 6238: 6236: 6233: 6231: 6228: 6226: 6222: 6219: 6217: 6214: 6212: 6209: 6207: 6204: 6202: 6198: 6195: 6193: 6190: 6188: 6185: 6183: 6180: 6179: 6177: 6173: 6170: 6168: 6164: 6160: 6152: 6147: 6145: 6140: 6138: 6133: 6132: 6129: 6123: 6121: 6116: 6114: 6111: 6109: 6105: 6102: 6100: 6099:Pamela L. Gay 6096: 6094: 6090: 6087: 6084: 6081: 6078: 6075: 6072: 6069: 6066: 6063: 6060: 6057: 6053: 6050: 6049: 6048: 6046: 6039: 6036: 6033: 6029: 6026: 6022: 6018: 6015: 6010: 6006: 6003: 5999: 5998: 5997: 5993: 5989: 5985: 5984: 5980: 5971: 5967: 5961: 5958: 5945: 5941: 5935: 5932: 5927: 5926:SpaceNews.com 5923: 5917: 5914: 5909: 5905: 5898: 5895: 5890: 5886: 5879: 5876: 5871: 5867: 5863: 5859: 5851: 5845: 5842: 5838: 5814:on 2014-06-24 5810: 5806: 5799: 5792: 5789: 5784: 5780: 5773: 5770: 5767: 5763: 5760: 5755: 5752: 5747: 5743: 5739: 5735: 5731: 5727: 5723: 5719: 5712: 5701: 5698: 5692: 5689: 5676: 5672: 5668: 5662: 5659: 5655: 5651: 5645: 5642: 5637: 5633: 5629: 5625: 5621: 5617: 5613: 5609: 5605: 5601: 5597: 5591: 5588: 5572: 5565: 5558: 5556: 5554: 5550: 5545: 5541: 5534: 5531: 5523: 5517: 5514: 5509: 5505: 5501: 5497: 5493: 5489: 5484: 5479: 5475: 5471: 5464: 5461: 5456: 5452: 5448: 5444: 5440: 5436: 5431: 5426: 5422: 5418: 5414: 5407: 5404: 5399: 5395: 5391: 5387: 5383: 5379: 5374: 5369: 5365: 5361: 5357: 5353: 5347: 5344: 5332: 5328: 5322: 5319: 5314: 5310: 5306: 5302: 5298: 5294: 5293: 5288: 5281: 5278: 5272: 5267: 5263: 5259: 5254: 5249: 5245: 5241: 5237: 5230: 5227: 5221: 5216: 5212: 5208: 5203: 5198: 5194: 5190: 5186: 5179: 5176: 5171: 5167: 5162: 5157: 5153: 5149: 5144: 5139: 5135: 5131: 5127: 5123: 5119: 5116:Hui, Man-To; 5112: 5109: 5104: 5100: 5094: 5091: 5086: 5082: 5075: 5072: 5067:. NASA. 1998. 5063: 5057: 5055: 5053: 5049: 5036: 5032: 5026: 5023: 5018: 5014: 5010: 5004: 5001: 4993: 4992: 4987: 4981: 4978: 4966:on 2008-05-27 4965: 4961: 4960: 4955: 4951: 4950:Lo, Martin W. 4944: 4941: 4930: 4926: 4925:"About Orbit" 4920: 4917: 4905: 4901: 4895: 4892: 4887: 4883: 4880: 4874: 4871: 4855: 4848: 4841: 4839: 4835: 4828: 4820: 4815: 4776: 4774: 4770: 4763: 4758: 4757:Oberth effect 4755: 4753: 4750: 4748: 4745: 4743: 4740: 4738: 4735: 4733: 4726: 4724: 4721: 4719: 4716: 4714: 4711: 4709: 4706: 4704: 4701: 4700: 4695: 4684: 4681: 4670: 4665: 4663: 4657: 4649: 4647: 4645: 4641: 4633: 4629: 4621: 4619: 4617: 4604: 4600: 4587: 4585: 4581: 4577: 4568: 4566: 4565:gravitational 4558: 4554: 4553:space station 4542: 4540: 4534: 4526: 4523: 4514: 4508: 4504: 4496: 4492: 4489: 4485: 4484:Counter-Earth 4476: 4474: 4473:time constant 4470: 4469:saddle points 4457: 4451: 4447: 4443: 4427: 4414: 4412: 4408: 4404: 4400: 4396: 4392: 4380: 4376: 4372: 4371:space weather 4368: 4360: 4356: 4340: 4337:(yellow) and 4336: 4331: 4321: 4316: 4309: 4306: 4301: 4296: 4284: 4275: 4270: 4261: 4256: 4247: 4238: 4234: 4225: 4216: 4211: 4202: 4197: 4188: 4179: 4175: 4166: 4157: 4152: 4143: 4138: 4129: 4120: 4116: 4107: 4102: 4097: 4092: 4087: 4082: 4077: 4073: 4061: 4056: 4051: 4046: 4041: 4036: 4031: 4027: 4018: 4013: 4008: 4003: 3998: 3993: 3988: 3984: 3975: 3970: 3965: 3960: 3955: 3950: 3945: 3941: 3929: 3924: 3919: 3914: 3909: 3904: 3899: 3895: 3889: 3881: 3876: 3871: 3866: 3858: 3853: 3849: 3799: 3793: 3751: 3729: 3722: 3720: 3710: 3696: 3689: 3681: 3675: 3658: 3656: 3652: 3648: 3644: 3640: 3636: 3632: 3631: 3610: 3605: 3597: 3591: 3587: 3569: 3566:; force from 3562: 3558: 3554: 3553:sign function 3550: 3546: 3539: 3535: 3515: 3511: 3499: 3494: 3490: 3486: 3483: 3475: 3471: 3467: 3462: 3458: 3444: 3438: 3432: 3429: 3426: 3420: 3417: 3409: 3401: 3398: 3395: 3385: 3381: 3377: 3371: 3365: 3359: 3356: 3349: 3345: 3338: 3334: 3330: 3324: 3321: 3318: 3310: 3302: 3300: 3298: 3294: 3290: 3286: 3282: 3278: 3263: 3248: 3246: 3235: 3222: 3219: 3213: 3210: 3204: 3201: 3198: 3190: 3185: 3178: 3174: 3171: âˆ’  3170: 3162: 3150: 3143: 3136: 3116: 3112: 3105: 3101: 3097: 3092: 3088: 3080: 3076: 3073: 3070: 3067: 3064: 3056: 3052: 3048: 3043: 3039: 3032: 3028: 3021: 3017: 3010: 3005: 3001: 2998: 2995: 2992: 2988: 2981: 2977: 2971: 2964: 2959: 2955: 2952: 2949: 2945: 2938: 2934: 2912: 2910: 2904: 2900: 2896: 2892: 2825: 2809: 2804: 2801: 2795: 2792: 2789: 2781: 2770: 2763: 2758: 2745: 2742: 2739: 2736: 2730: 2727: 2721: 2718: 2712: 2704: 2700: 2696: 2690: 2687: 2684: 2681: 2673: 2669: 2665: 2659: 2656: 2653: 2645: 2641: 2637: 2632: 2628: 2599: 2595: 2588: 2584: 2580: 2575: 2571: 2563: 2559: 2556: 2553: 2545: 2541: 2537: 2532: 2528: 2521: 2517: 2510: 2506: 2499: 2495: 2489: 2485: 2479: 2471: 2463: 2460: 2457: 2448: 2444: 2425: 2421: 2412: 2402: 2400: 2387: 2381: 2373: 2363: 2359: 2355: 2350: 2346: 2341: 2334: 2328: 2318: 2314: 2310: 2307: 2303: 2288:, divided by 2284: 2277: 2274:, is that of 2270: 2263: 2259: 2254: 2248: 2241: 2234: 2227: 2209: 2204: 2199: 2194: 2190: 2184: 2177: 2173: 2169: 2166: 2161: 2156: 2151: 2146: 2142: 2136: 2129: 2125: 2108: 2088: 2084: 2078: 2074: 2068: 2065: 2058: 2054: 2048: 2044: 2032: 2016: 2011: 2008: 2002: 1999: 1996: 1988: 1984: 1969: 1962: 1944: 1941: 1936: 1933: 1925: 1901: 1897: 1893: 1888: 1884: 1877: 1873: 1867: 1864: 1844: 1841: 1838: 1835: 1832: 1826: 1823: 1817: 1812: 1808: 1801: 1795: 1790: 1786: 1779: 1776: 1773: 1770: 1764: 1759: 1755: 1748: 1745: 1742: 1736: 1731: 1727: 1718: 1717: 1713: 1710: 1706: 1695: 1688: 1684: 1676: 1656: 1652: 1645: 1641: 1637: 1632: 1628: 1620: 1616: 1613: 1610: 1602: 1598: 1594: 1589: 1585: 1578: 1574: 1567: 1563: 1556: 1552: 1546: 1542: 1536: 1528: 1520: 1517: 1514: 1505: 1501: 1479: 1477: 1475: 1471: 1467: 1463: 1458: 1456: 1452: 1448: 1444: 1437: 1432: 1427: 1420: 1418: 1416: 1412: 1408: 1407:3753 Cruithne 1404: 1396: 1392: 1384: 1380: 1376: 1365: 1361: 1357: 1350: 1342: 1334: 1330: 1326: 1322: 1310: 1306: 1302: 1291: 1280: 1270: 1266: 1262: 1259: 1256: 1244: 1240: 1237: 1233: 1221: 1217: 1206: 1188: 1187: 1186: 1182: 1180: 1172: 1168: 1160: 1156: 1152: 1151: 1146: 1134: 1130: 1116: 1108: 1106: 1104: 1088: 1071: 1069: 1057: 1046: 1026: 1024: 1014: 994: 979: 977: 971: 950: 948: 946: 945: 940: 936: 928: 896: 894: 892: 880: 876: 872: 868: 861: 854: 847: 840: 824: 822: 818: 810: 808: 806: 802: 798: 793: 791: 787: 767: 765: 762: 754: 746: 742: 737: 723: 715: 711: 698: 696: 684: 671: 669: 665: 641: 628: 626: 622: 618: 617:gravitational 613: 611: 607: 603: 602:gravitational 599: 595: 591: 585: 552: 548: 536: 531: 529: 524: 522: 517: 516: 514: 513: 506: 503: 501: 498: 497: 491: 490: 483: 482:Oberth effect 480: 478: 475: 474: 468: 467: 460: 457: 455: 452: 450: 447: 445: 442: 441: 435: 434: 430: 423: 416: 413: 411: 408: 407: 401: 397: 396: 394: 388: 387:N-body orbits 383: 382: 375: 372: 370: 369:Perturbations 367: 365: 362: 360: 357: 356: 350: 349: 345: 338: 331: 328: 326: 323: 321: 318: 316: 313: 311: 308: 306: 303: 301: 298: 296: 293: 291: 288: 287: 281: 280: 273: 270: 268: 265: 263: 260: 258: 255: 254: 248: 245: 243: 239: 238: 236: 230: 227: 225: 222: 221: 215: 209: 208: 201: 198: 196: 193: 191: 190:Orbital nodes 188: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 162: 159: 154: 153: 149: 142: 138: 134: 133: 130:Astrodynamics 128: 124: 123: 117: 108: 103: 92: 85: 65: 61: 57: 52: 44: 40: 36: 34: 19: 18:Earth–Moon L2 7659:Space launch 7644:Interstellar 7610:Destinations 7379:Apollo–Soyuz 7328:Space diving 7313:Space toilet 7137:Applications 7054:Soviet Union 7014:Space policy 7009:Space launch 6883:Perturbation 6865: 6859: 6840:Ground track 6750:Gravity turn 6701:   6694: 6687:   6678:   6669:   6649:   6640:   6631:   6624:True anomaly 6622:   6607:Mean anomaly 6605:   6585:   6576:   6567:   6558:   6538:   6525:   6516:   6509:Eccentricity 6507:   6465:Lunar cycler 6438:Heliocentric 6378:other points 6327:Medium Earth 6234: 6225:Non-inclined 6119: 6092: 6044: 6042: 5987: 5969: 5960: 5948:. Retrieved 5944:the original 5934: 5925: 5916: 5907: 5897: 5888: 5878: 5861: 5844: 5822: 5816:. Retrieved 5809:the original 5804: 5791: 5782: 5772: 5754: 5721: 5717: 5700: 5691: 5679:. Retrieved 5675:the original 5670: 5667:"ISEE-3/ICE" 5661: 5649: 5644: 5611: 5607: 5590: 5580:February 28, 5578:. Retrieved 5571:the original 5543: 5533: 5516: 5473: 5469: 5463: 5420: 5416: 5406: 5363: 5359: 5346: 5335:. Retrieved 5321: 5296: 5290: 5280: 5243: 5239: 5229: 5192: 5188: 5178: 5133: 5129: 5111: 5103:www.nasa.gov 5102: 5093: 5084: 5074: 5039:. Retrieved 5035:the original 5025: 5016: 5003: 4990: 4980: 4968:. Retrieved 4964:the original 4958: 4943: 4932:. Retrieved 4928: 4919: 4908:. Retrieved 4903: 4894: 4885: 4873: 4861:. Retrieved 4854:the original 4653: 4625: 4589:Earth–Moon L 4588: 4570:Earth–Moon L 4569: 4547:Earth–Moon L 4546: 4515: 4477: 4458: 4415: 4411:NEO Surveyor 4389:include the 4347: 4300: 4236:Sun–Neptune 4075:Sun–Jupiter 3897:Sun–Mercury 3734: 3682: 3674:interference 3659: 3643:Solar System 3641:such as the 3634: 3629: 3614: 3609:STL 3D model 3567: 3560: 3556: 3548: 3544: 3537: 3533: 3308: 3306: 3265: 3236: 3191: 3183: 3176: 3172: 3168: 3160: 3148: 3141: 3134: 2919: 2889:one sees an 2826: 2782:, given by: 2768: 2761: 2759: 2429: 2282: 2275: 2268: 2261: 2255: 2246: 2239: 2232: 2225: 2033: 1989:, given by: 1982: 1967: 1960: 1920: 1719: 1707:is the only 1704: 1693: 1686: 1682: 1674: 1486: 1459: 1440: 1400: 1379:binary stars 1265:Mars trojans 1183: 1166: 1148: 1118: 1073:The points L 1072: 1055: 1044: 1030: 1002: 958: 942: 904: 859: 858:and that of 852: 845: 838: 832: 820: 794: 771: 738: 699: 685:near their L 672: 639: 629: 614: 593: 589: 550: 544: 392: 267:Radial orbit 218:eccentricity 200:True anomaly 185:Mean anomaly 175:Eccentricity 106: 56:contour plot 39: 35:(video game) 32: 7617:Sub-orbital 7552:Space probe 7418:New Shepard 7396:Shuttle–Mir 7155:Archaeology 7108:Space force 7091:Moon Treaty 6963:Spaceflight 6845:Hill sphere 6680:Mean motion 6560:Inclination 6549:Orientation 6450:Mars cycler 6388:Areocentric 6260:Synchronous 6122:, Chapter 5 5992:Essai (PDF) 5011:(1867–92). 4713:Gegenschein 4567:influence. 4495:comic books 4478:Sun–Earth L 4459:Sun–Earth L 4416:Sun–Earth L 4381:) reaches L 4348:Sun–Earth L 4177:Sun–Uranus 4118:Sun–Saturn 3851:Earth–Moon 3784:is located 3772:is located 3630:halo orbits 3293:equilibrium 3159:cases, and 2780:Hill sphere 2113:or at the L 1987:Hill sphere 1393:, known as 1349:azimuthally 1269:5261 Eureka 1234:, known as 1179:Trojan camp 1068:kidney bean 712:called the 598:equilibrium 400:Halo orbits 364:Hill sphere 180:Inclination 84:high points 7774:Categories 7686:Launch pad 7677:Expendable 7627:Geocentric 7594:Solar sail 7537:Spaceplane 7497:Spacecraft 7291:Space suit 7269:commercial 7197:Television 6992:Space Race 6785:Rendezvous 6481:Parameters 6317:High Earth 6287:Geocentric 6240:Osculating 6197:Elliptical 6088:—Tony Dunn 6076:—John Baez 5950:1 February 5837:penalties. 5818:2011-01-25 5337:2010-10-27 5253:1910.07471 5202:1910.07466 5143:2111.05058 5136:(2): L25. 5031:"L2 Orbit" 4970:2008-06-09 4934:2022-01-01 4910:2021-10-27 4829:References 4811:(sequence 4603:L5 Society 4543:Earth–Moon 4375:solar wind 3986:Sun–Earth 3943:Sun–Venus 3801:Body pair 3750:barycenter 3277:barycenter 2903:halo orbit 2835:is arcsin( 2105:Since the 1447:barycenter 1411:Epimetheus 1383:Roche lobe 1341:Polydeuces 1339:point and 1171:Greek camp 1159:Trojan War 970:barycenter 815:See also: 761:halo orbit 444:Mass ratio 359:Barycenter 7696:Spaceport 7547:Satellite 7264:Astronaut 7192:Telephone 7145:Astronomy 7066:Space law 7019:Australia 6830:Ephemeris 6807:mechanics 6717:Maneuvers 6660:Variation 6423:Libration 6418:Lissajous 6322:Low Earth 6312:Graveyard 6211:Horseshoe 5994:; source 5783:SpaceNews 5746:121179935 5681:August 8, 5636:121374703 5170:243860678 5085:Space.com 5041:28 August 4779:Actually 4622:Sun–Venus 4509:of this L 4310:Sun–Earth 4029:Sun–Mars 3846:/SMA (%) 3818:/SMA (%) 3598:Stability 3551:) is the 3487:− 3430:− 3421:⁡ 3399:− 3360:⁡ 3325:− 3281:resultant 3220:μ 3202:≈ 3189:), then: 3074:− 2999:− 2953:− 2802:μ 2793:≈ 2740:μ 2737:− 2731:μ 2719:− 2713:μ 2697:− 2691:μ 2685:− 2660:μ 2657:− 2174:ρ 2167:≈ 2126:ρ 2066:≈ 2009:μ 2000:≈ 1865:μ 1839:μ 1836:− 1827:μ 1802:μ 1796:− 1780:μ 1774:− 1746:− 1743:μ 1614:− 1537:− 1518:− 1155:epic poem 1027:Stability 640:different 284:Equations 212:Types of 7748:Category 7413:Tiangong 7408:Shenzhou 7337:Programs 7182:Internet 6987:Timeline 6596:Position 6221:Inclined 6192:Circular 6038:ZIP file 6028:Archived 6005:Archived 5970:phys.org 5852:(1961). 5762:Archived 5508:16724058 5455:15519581 5398:12983980 5331:Archived 4988:(1765). 4666:See also 4650:Sun–Mars 4401:and the 3790: km 3778: km 3766: km 2905:around L 2774:) then L 2295:≈ 1.73: 1973:) then L 1335:at its L 1319:points, 1241:The Sun– 755:around L 606:orbiting 7622:Orbital 7423:Artemis 7354:Voskhod 7349:Mercury 7257:General 6997:Records 6982:History 6970:General 6805:Orbital 6775:Phasing 6735:Delta-v 6540:Apsides 6534:,  6332:Molniya 6250:Parking 6187:Capture 6175:General 5908:IAC2013 5866:Bibcode 5726:Bibcode 5650:et al., 5616:Bibcode 5488:Bibcode 5435:Bibcode 5378:Bibcode 5301:Bibcode 5258:Bibcode 5207:Bibcode 5148:Bibcode 4817:in the 4814:A230242 4799:⁠ 4786:√ 4781:⁠ 4732:Society 4580:Queqiao 4557:SMART-1 4104:−777.91 4058:−227.94 3990:149.598 3972:−108.21 3926:−57.909 3743:, and L 3623:, and L 2883:⁠ 2865:⁠ 2861:⁠ 2837:⁠ 2290:√ 2281:around 1325:Calypso 1321:Telesto 1296:2007 NS 1285:1998 VF 1274:1999 UJ 1243:Neptune 1211:2020 XL 1200:2010 TK 1133:Jupiter 1129:trojans 1081:, and L 1063:⁠ 1041:⁠ 933:is the 768:History 695:Jupiter 650:, and L 588:; also 58:of the 7759:Portal 7752:  7741:  7557:Lander 7510:Rocket 7374:Skylab 7369:Apollo 7359:Gemini 7344:Vostok 7049:Russia 6461:Other 6362:Tundra 6230:Kepler 6206:Escape 6159:orbits 5988:Œuvres 5744:  5634:  5506:  5453:  5396:  5292:Icarus 5168:  4975:(16MB) 4906:. NASA 4863:15 Dec 4803:24.959 4784:25 + 3 4601:. The 4448:. The 4359:DSCOVR 4094:832.65 4084:726.45 4079:778.34 4053:0.4763 4048:229.03 4043:0.4748 4038:226.86 4033:227.94 4015:−149.6 3995:148.11 3967:0.9373 3962:109.22 3957:0.9315 3947:108.21 3921:0.3815 3911:0.3806 3906:57.689 3901:57.909 3891:0.7084 3883:−0.381 3873:0.4489 3855:0.3844 3637:-body 3532:where 3147:, and 2426:system 2224:where 1857:where 1673:where 1381:, the 1355:point. 1333:Helene 1309:Tethys 1293:, and 1097:, or L 988:points 944:Planck 867:orbits 745:Euclid 666:of an 664:vertex 549:, the 114:  112:  107:· 105:  100:  98:  7562:Rover 7364:Soyuz 7187:Radio 7044:Japan 7039:India 7024:China 6703:Epoch 6492:Shape 6430:Lunar 6384:Mars 6376:About 6347:Polar 6167:Types 6045:Essai 5812:(PDF) 5801:(PDF) 5742:S2CID 5714:(PDF) 5632:S2CID 5574:(PDF) 5567:(PDF) 5525:(PDF) 5504:S2CID 5478:arXiv 5451:S2CID 5425:arXiv 5394:S2CID 5368:arXiv 5248:arXiv 5197:arXiv 5166:S2CID 5138:arXiv 5065:(PDF) 4995:(PDF) 4857:(PDF) 4850:(PDF) 4632:Venus 4609:and L 4593:and L 4503:Venus 4486:" in 4463:and L 4426:umbra 4286:0.003 4272:2.602 4258:2.557 4227:0.002 4213:2.461 4199:2.421 4168:0.016 4154:4.635 4140:4.496 4109:0.055 4099:6.978 4089:6.667 4063:0.000 4020:0.000 4010:1.004 4005:151.1 4000:0.997 3977:0.000 3952:107.2 3931:0.000 3916:58.13 3878:16.78 3868:15.09 3860:0.326 3842:1 + L 3715:and L 3702:and L 3285:ratio 3270:and L 3253:and L 3155:and L 2901:or a 2853:151.1 2841:695.5 2424:Earth 2107:tidal 1977:and L 1415:Janus 1364:Theia 1329:Dione 1315:and L 1249:and L 1226:and L 1193:and L 1167:Iliad 1153:, an 1150:Iliad 1145:Homer 1139:and L 1123:and L 1035:and L 1007:and L 1003:The L 984:and L 959:The L 955:point 905:The L 901:point 875:Earth 833:The L 829:point 732:and L 689:and L 677:and L 658:and L 165:Apsis 116:Earth 109: 78:and L 7724:Pass 7679:and 6495:Size 6434:Sun 6413:Halo 6265:semi 5952:2014 5683:2015 5582:2018 5043:2016 4929:NASA 4865:2015 4819:OEIS 4808:7944 4634:'s L 4522:NOAA 4493:and 4488:pulp 4467:are 4395:Wind 4377:and 4335:Gaia 4333:The 4022:1752 3979:1428 3786:−381 3690:and 3683:The 2895:Gaia 2868:6371 2245:and 2231:and 1926:and 1712:root 1709:real 1692:and 1451:mass 1413:and 1370:or L 1343:at L 1323:and 1261:Mars 1208:and 869:the 844:and 741:Gaia 634:to L 102:WMAP 72:blue 7391:Mir 6270:sub 6182:Box 6106:by 5889:ESA 5734:doi 5722:108 5624:doi 5612:103 5496:doi 5474:603 5443:doi 5421:660 5386:doi 5364:129 5309:doi 5266:doi 5244:482 5215:doi 5193:480 5156:doi 5134:922 4805:935 4320:ACE 4288:004 4279:498 4265:615 4251:383 4242:498 4229:546 4220:870 4206:941 4192:801 4183:870 4161:426 4147:492 4133:362 4124:426 4065:018 3936:683 3933:009 3788:700 3776:900 3774:448 3764:400 3762:326 3760:is 3739:, L 3619:, L 3581:, L 3577:, L 3555:of 3418:sgn 3357:sgn 2875:1.5 2420:Sun 1377:In 1147:'s 1093:, L 1077:, L 921:, L 871:Sun 780:, L 776:, L 646:, L 592:or 545:In 216:by 68:red 7776:: 6618:, 6614:, 6223:/ 6199:/ 5968:. 5924:. 5906:. 5887:. 5860:. 5821:. 5803:. 5781:. 5740:. 5732:. 5720:. 5716:. 5669:. 5630:. 5622:. 5610:. 5606:. 5598:; 5552:^ 5542:. 5502:. 5494:. 5486:. 5472:. 5449:. 5441:. 5433:. 5419:. 5392:. 5384:. 5376:. 5362:. 5354:; 5307:. 5297:42 5295:. 5289:. 5264:. 5256:. 5242:. 5238:. 5213:. 5205:. 5191:. 5187:. 5164:. 5154:. 5146:. 5132:. 5128:. 5120:; 5101:. 5083:. 5051:^ 5015:. 4952:; 4927:. 4902:. 4884:. 4837:^ 4801:≈ 4788:69 4772:^ 4646:. 4507:AU 4413:. 4397:, 4393:, 4281:.3 4277:−4 4267:.4 4253:.4 4244:.4 4222:.6 4218:−2 4208:.3 4194:.1 4185:.7 4170:67 4163:.4 4159:−1 4149:.8 4135:.5 4126:.7 4111:63 4068:82 3885:68 3862:39 3543:, 3299:. 3214:12 3140:, 2879:10 2857:10 2845:10 1417:. 1288:31 1282:, 1271:, 1267:: 947:. 927:au 891:au 807:. 612:. 581:dʒ 575:ɑː 54:A 6955:e 6948:t 6941:v 6866:n 6698:0 6695:t 6685:v 6676:n 6667:T 6647:l 6638:L 6629:E 6620:f 6616:θ 6612:ν 6603:M 6583:ϖ 6574:ω 6565:Ί 6556:i 6536:q 6532:Q 6523:b 6514:a 6505:e 6150:e 6143:t 6136:v 6054:— 6034:. 6019:— 6011:. 5972:. 5954:. 5910:. 5891:. 5872:. 5868:: 5856:5 5834:2 5830:2 5828:L 5825:2 5823:L 5785:. 5748:. 5736:: 5728:: 5709:3 5685:. 5652:" 5638:. 5626:: 5618:: 5584:. 5527:. 5510:. 5498:: 5490:: 5480:: 5457:. 5445:: 5437:: 5427:: 5400:. 5388:: 5380:: 5370:: 5340:. 5315:. 5311:: 5303:: 5274:. 5268:: 5260:: 5250:: 5223:. 5217:: 5209:: 5199:: 5172:. 5158:: 5150:: 5140:: 5105:. 5087:. 5045:. 4997:. 4973:. 4937:. 4913:. 4888:. 4867:. 4821:) 4796:2 4793:/ 4730:5 4728:L 4660:1 4636:3 4611:5 4607:4 4595:5 4591:4 4572:2 4561:1 4549:1 4537:3 4529:3 4518:3 4511:3 4499:3 4480:3 4465:2 4461:1 4454:2 4438:2 4434:2 4430:2 4422:2 4418:2 4387:1 4383:1 4363:1 4350:1 4343:2 4324:1 4263:4 4249:4 4240:4 4204:2 4190:2 4181:2 4145:1 4131:1 4122:1 3844:3 3837:3 3835:L 3830:2 3828:L 3823:2 3821:L 3816:1 3809:1 3807:L 3782:3 3770:2 3758:1 3754:3 3745:3 3741:2 3737:1 3717:5 3713:4 3704:5 3700:4 3698:L 3694:5 3692:L 3687:4 3685:L 3678:2 3670:1 3666:1 3662:1 3635:n 3625:3 3621:2 3617:1 3583:2 3579:1 3575:3 3571:2 3568:M 3564:1 3561:M 3557:x 3549:x 3545:R 3541:1 3538:M 3534:r 3516:3 3512:R 3505:) 3500:R 3495:2 3491:M 3484:r 3481:) 3476:2 3472:M 3468:+ 3463:1 3459:M 3455:( 3450:( 3445:G 3439:+ 3436:) 3433:r 3427:R 3424:( 3410:2 3406:) 3402:r 3396:R 3393:( 3386:2 3382:M 3378:G 3372:+ 3369:) 3366:r 3363:( 3350:2 3346:r 3339:1 3335:M 3331:G 3322:= 3319:a 3309:a 3272:5 3268:4 3255:5 3251:4 3249:L 3243:3 3239:3 3223:. 3211:7 3205:R 3199:r 3187:1 3184:M 3180:2 3177:M 3173:r 3169:R 3165:3 3161:r 3157:2 3153:1 3149:R 3145:2 3142:M 3138:1 3135:M 3117:3 3113:R 3106:2 3102:M 3098:+ 3093:1 3089:M 3081:) 3077:r 3071:R 3068:+ 3065:R 3057:2 3053:M 3049:+ 3044:1 3040:M 3033:2 3029:M 3022:( 3018:= 3011:2 3006:) 3002:r 2996:R 2993:2 2989:( 2982:2 2978:M 2972:+ 2965:2 2960:) 2956:r 2950:R 2946:( 2939:1 2935:M 2922:3 2915:3 2913:L 2907:2 2887:2 2877:× 2871:/ 2855:× 2849:/ 2843:× 2833:2 2829:1 2810:3 2805:3 2796:R 2790:r 2776:2 2772:1 2769:M 2765:2 2762:M 2746:0 2743:= 2734:) 2728:2 2725:( 2722:x 2716:) 2710:( 2705:2 2701:x 2694:) 2688:2 2682:3 2679:( 2674:3 2670:x 2666:+ 2663:) 2654:3 2651:( 2646:4 2642:x 2638:+ 2633:5 2629:x 2618:1 2600:3 2596:R 2589:2 2585:M 2581:+ 2576:1 2572:M 2564:) 2560:r 2557:+ 2554:R 2546:2 2542:M 2538:+ 2533:1 2529:M 2522:1 2518:M 2511:( 2507:= 2500:2 2496:r 2490:2 2486:M 2480:+ 2472:2 2468:) 2464:r 2461:+ 2458:R 2455:( 2449:1 2445:M 2432:2 2422:– 2416:2 2405:2 2403:L 2388:. 2382:3 2377:) 2374:R 2371:( 2364:1 2360:M 2356:, 2351:2 2347:M 2342:T 2335:= 2332:) 2329:r 2326:( 2319:2 2315:M 2311:, 2308:s 2304:T 2292:3 2286:1 2283:M 2279:2 2276:M 2272:1 2269:M 2265:2 2262:M 2250:2 2247:d 2243:1 2240:d 2236:2 2233:ρ 2229:1 2226:ρ 2210:3 2205:) 2200:R 2195:1 2191:d 2185:( 2178:1 2170:3 2162:3 2157:) 2152:r 2147:2 2143:d 2137:( 2130:2 2115:2 2111:1 2089:3 2085:R 2079:1 2075:M 2069:3 2059:3 2055:r 2049:2 2045:M 2017:3 2012:3 2003:R 1997:r 1983:r 1979:2 1975:1 1971:1 1968:M 1964:2 1961:M 1945:R 1942:r 1937:= 1934:x 1923:2 1921:M 1902:2 1898:M 1894:+ 1889:1 1885:M 1878:2 1874:M 1868:= 1845:0 1842:= 1833:x 1830:) 1824:2 1821:( 1818:+ 1813:2 1809:x 1805:) 1799:( 1791:3 1787:x 1783:) 1777:2 1771:3 1768:( 1765:+ 1760:4 1756:x 1752:) 1749:3 1740:( 1737:+ 1732:5 1728:x 1705:r 1701:1 1697:2 1694:M 1690:1 1687:M 1683:R 1679:1 1675:r 1657:3 1653:R 1646:2 1642:M 1638:+ 1633:1 1629:M 1621:) 1617:r 1611:R 1603:2 1599:M 1595:+ 1590:1 1586:M 1579:1 1575:M 1568:( 1564:= 1557:2 1553:r 1547:2 1543:M 1529:2 1525:) 1521:r 1515:R 1512:( 1506:1 1502:M 1489:1 1482:1 1480:L 1397:. 1387:1 1372:5 1368:4 1353:5 1345:5 1337:4 1317:5 1313:4 1304:. 1299:2 1277:7 1257:. 1251:5 1247:4 1245:L 1228:5 1224:4 1219:. 1214:5 1203:7 1195:5 1191:4 1175:5 1163:4 1141:5 1137:4 1135:L 1125:5 1121:4 1099:3 1095:2 1091:1 1083:3 1079:2 1075:1 1059:2 1056:M 1052:/ 1048:1 1045:M 1037:5 1033:4 1021:5 1017:4 1009:5 1005:4 998:4 986:5 982:4 980:L 974:3 965:3 961:3 953:3 951:L 931:2 923:2 919:1 915:2 911:2 907:2 899:2 897:L 887:1 883:1 863:1 860:M 856:2 853:M 849:2 846:M 842:1 839:M 835:1 827:1 825:L 782:3 778:2 774:1 757:2 749:2 734:2 730:1 726:2 718:1 706:2 702:1 691:5 687:4 679:5 675:4 660:5 656:4 652:3 648:2 644:1 636:5 632:1 584:/ 578:n 572:r 569:ÉĄ 566:ˈ 563:ə 560:l 557:/ 553:( 534:e 527:t 520:v 402:) 398:( 249:) 240:( 80:5 76:4 37:. 20:)

Index

Earth–Moon L2
Lagrange Point (video game)


contour plot
effective potential
centrifugal force
high points

WMAP
Earth

Orbital mechanics
Orbital elements
Apsis
Argument of periapsis
Eccentricity
Inclination
Mean anomaly
Orbital nodes
Semi-major axis
True anomaly
two-body orbits
Circular orbit
Elliptic orbit
Transfer orbit
Hohmann transfer orbit
Bi-elliptic transfer orbit
Parabolic orbit
Hyperbolic orbit

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑