Knowledge (XXG)

Edgar Gilbert

Source đź“ť

360:
all points in the first generation ignoring any previously found and continue this process until it dies out. The associated branching process is one where the mean number of offspring is a Poisson random variable with intensity equal to the mean degree in the original RGG (πλR). From here only standard branching process techniques need be applied to obtain a lower bound. Furthermore, Gilbert showed that by reframing the problem into one about bond percolation, an upper bound for the giant component can obtained. The method consists of discritizing the plane such that any two nodes in adjacent squares are connected; and allowing each square to represents an edge on the lattice. By construction, if there is a giant component in the bond percolation problem then there must be a giant component in the RGG.
152:, developed by Gilbert in 1960 and E. O. Elliot in 1963, is a mathematical model for the analysis of transmission channels in which the errors occur in bursts. It posits that the channel may be in either of two different states, with different error rates, that errors occur independently of each other once the state is known, and that the changes from one state to the other are governed by a 317:(RGG), or Gilbert Disk model) where points are placed on the infinite plane using a suitable Point Process and nodes connect if and only if they are within some critical connection range R; wireless communication networks were suggested as the main the application for this work. From this formulation a simple result follows that for a stationary 350:
with density λ the expected degree of each node is the number of points found within the connectivity range, namely, πλR. A natural question to ask after formulating such a graph is what is the critical mean degree to ensure there is a giant component; in essence this question gave rise to the field
290:
with the order of merging chosen uniformly at random among all possible mergers. Equivalently, it is the inverse of a permutation formed by choosing independently at random for each card whether to put it into one of two piles (maintaining the original order of the cards within each pile), and then
359:
Gilbert was able to provide an initial lower bound for the critical mean degree (equivalently the critical transmission range). By choosing an arbitrary point in the process (call this the zeroth generation), find all points within a connection distance R (first generation). Repeat the process for
384:
in which each edge is given both a cost and a capacity, and a matrix of flow amounts between different pairs of terminal vertices; the task is to find a subnetwork of minimum cost whose capacities are sufficient to support a flow with the given flow amounts between any pair of terminals. When the
140:
code (one to which no additional codeword can be added), the Hamming balls of the given distance must cover the entire codespace, so the number of codewords must at least equal the total volume of the codespace divided by the volume of a single ball. For 30 years, until the invention of
239:-edge graphs; the number of edges is fixed, but the edges are not independent of each other, because the presence of an edge in one position is negatively correlated with the presence of an edge in a different position. Although these two models end up having similar properties, the 369: 1227: 1165:
The colossal book of mathematics: classic puzzles, paradoxes, and problems : number theory, algebra, geometry, probability, topology, game theory, infinity, and other topics of recreational mathematics
1217: 1222: 904:
Petrausch, Stefan; Sörgel, Wolfgang; Kaup, André (2004), "Serially connected channels: Capacity and video streaming application scenario for separate and joint channel coding",
348: 74: 1242: 70: 1207: 1202: 778: 1237: 1172: 1133: 982: 913: 861: 827: 748: 82: 265: 301:
introduced by Gilbert in 1967. In this model, fractures begin at a set of random points, with random orientations, chosen according to a
201:
form, each potential edge is chosen to be included in the graph or excluded from it, independently of the other edges, with probability
282:, accurately models human-generated riffle shuffles. In this model, a deck of cards is split at a point chosen randomly according to a 218:, but the actual number of edges can vary randomly and all graphs have a nonzero probability of being selected. In contrast, in the 156:. It is "very convenient and often used" in the analysis of modern communications systems such as data links to mobile telephones. 128:, proved independently in 1952 by Gilbert and in 1957 by Rom Varshamov, is a mathematical theorem that guarantees the existence of 1232: 1147: 906:
5th International ITG Conference on Source and Channel Coding (SCC): January 14–16, 2004, Erlangen : Conference Record
738: 1009: 878: 766: 670: 529: 438: 413: 397: 352: 1045:
Gray, N. H.; Anderson, J. B.; Devine, J. D.; Kwasnik, J. M. (1976), "Topological properties of random crack networks",
125: 38: 1247: 272:
and independently in unpublished work in 1981 by Jim Reeds, is a probability distribution on permutations of a set of
169: 50: 136:
between codewords (a parameter that controls the number of errors that can be corrected). The main idea is that in a
149: 46: 1212: 393: 108: 17: 401: 1128:, Annals of Discrete Mathematics (North-Holland Mathematics Studies), vol. 53, Elsevier, pp. 80–83, 142: 314: 730: 318: 283: 129: 324: 1197: 1192: 569: 373: 294: 78: 66: 305:, and then grow at a constant rate until they terminate by running into previously formed cracks. 1073: 1062: 1028: 956: 701: 644: 585: 929: 853: 847: 183: 607:
Gilbert, E. N. (1967), "Random plane networks and needle-shaped crystals", in Noble, B. (ed.),
92:
from 1944 to 1946. He finished a Ph.D. in physics at MIT in 1948, with a dissertation entitled
1168: 1129: 978: 909: 857: 823: 744: 356: 101: 34: 1121: 1102: 1054: 1018: 948: 887: 693: 636: 577: 538: 503: 447: 133: 1072:
Schreiber, Tomasz; Soja, Natalia (2010). "Limit theory for planar Gilbert tessellations".
302: 287: 137: 97: 89: 313:
In 1961, Gilbert introduced the random plane network (more commonly referred to now as a
799:
Varshamov, R. R. (1957), "Estimate of the number of signals in error correcting codes",
573: 1160: 1004: 891: 542: 451: 279: 269: 233:
model introduced by Erdős and Rényi, the graph is chosen uniformly at random among all
1186: 1066: 960: 876:
Elliott, E. O. (1963), "Estimates of error rates for codes on burst-noise channels",
734: 674: 417: 405: 179: 132:
that have a high transmission rate as a function of their length, alphabet size, and
42: 30: 389: 381: 261: 165: 153: 54: 678: 254:
model is often more convenient to work with due to the independence of its edges.
385:
flow amounts are all equal, this reduces to the classical Steiner tree problem.
977:, Princeton Studies in Complexity, Princeton University Press, pp. 36–37, 1023: 1000: 952: 843: 508: 779:"Edgar Nelson Gilbert Obituary: View Edgar Gilbert's Obituary by Star-Ledger" 762: 666: 409: 258: 933: 560:
Gilbert, E. N. (1965), "Latin squares which contain no repeated digrams",
377: 298: 1058: 1032: 737:(2000), "Time-slot allocation in wireless TDMA", in Gelenbe, E. (ed.), 705: 648: 589: 1106: 697: 640: 581: 975:
Small Worlds: The Dynamics of Networks Between Order and Randomness
1078: 104:
where he remained for the rest of his career. He retired in 1996.
86: 29:(July 25, 1923 – June 15, 2013) was an American mathematician and 145:
in 1982, codes constructed in this way were the best ones known.
436:
Gilbert, E. N. (1952), "A comparison of signalling alphabets",
1228:
Massachusetts Institute of Technology School of Science alumni
1095:
Journal of the Society for Industrial and Applied Mathematics
740:
System Performance Evaluation: Methodologies and Applications
178:
vertices. It was introduced in two forms in 1959 by Gilbert,
820:
Error correction Coding: Mathematical Methods and Algorithms
527:
Gilbert, E. N. (1960), "Capacity of a burst-noise channel",
73:, graduating in 1943. He taught mathematics briefly at the 609:
Applications of Undergraduate Mathematics in Engineering
172:, in which edges are chosen randomly for a fixed set of 376:
in 1968, formulating it in a way that unified it with
94:
Asymptotic Solution of Relaxation Oscillation Problems
1007:(1992), "Tracking the dovetail shuffle to its lair", 818:
Moon, Todd K. (2005), "The Gilbert–Varshamov Bound",
420:
on partitions of rectangles into smaller rectangles.
327: 1218:Queens College, City University of New York alumni 1093:Gilbert, Edgar N (1961). "Random Plane Networks". 342: 846:(2003), "The Gilbert–Varshamov Bound revisited", 69:. He did his undergraduate studies in physics at 49:of bursty errors in signal transmission, and the 627:Gilbert, E. N. (1968), "Steiner minimal trees", 1223:University of Illinois Urbana-Champaign faculty 657: 618: 598: 551: 518: 485: 460: 427: 476: 380:problems. In Gilbert's model, one is given a 291:stacking the two piles on top of each other. 8: 71:Queens College, City University of New York 1167:, W. W. Norton & Company, p. 18, 75:University of Illinois at Urbana–Champaign 1148:An independent discovery of Costas arrays 1077: 1022: 822:, John Wiley and Sons, pp. 409–410, 507: 473:, Technical Memorandum, Bell Laboratories 392:independently of and in the same year as 334: 330: 329: 326: 494:Gilbert, E. N. (1959), "Random graphs", 278:items that, according to experiments by 207:. Thus, the expected number of edges is 908:, Margret Schneider, pp. 271–278, 720: 852:, Cambridge University Press, p.  849:Fundamentals of Error-Correcting Codes 396:, and is also known for his work with 995: 993: 83:Massachusetts Institute of Technology 7: 1243:Mathematicians from New York (state) 107:He died following a fall in 2013 at 679:"Tiling rectangles with rectangles" 629:SIAM Journal on Applied Mathematics 268:, developed in 1955 by Gilbert and 1150:, Aaron Sterling, October 9, 2011. 892:10.1002/j.1538-7305.1963.tb00955.x 733:; Gilbert, E. N.; Whiting, P. A.; 543:10.1002/j.1538-7305.1960.tb03959.x 452:10.1002/j.1538-7305.1952.tb01393.x 37:whose accomplishments include the 23:American mathematician (1923–2013) 14: 496:Annals of Mathematical Statistics 16:For the Kittitian cricketer, see 343:{\displaystyle \mathbb {R} ^{2}} 743:, CRC Press, pp. 203–214, 1208:American probability theorists 1203:American information theorists 1: 1238:People from Woodhaven, Queens 1010:Annals of Applied Probability 879:Bell System Technical Journal 767:Mathematics Genealogy Project 530:Bell System Technical Journal 439:Bell System Technical Journal 353:continuum percolation theory 297:are a mathematical model of 65:Gilbert was born in 1923 in 477:Bayer & Diaconis (1992) 266:Gilbert–Shannon–Reeds model 33:, a longtime researcher at 1264: 941:Publicationes Mathematicae 15: 973:Watts, Duncan J. (2003), 953:10.5486/PMD.1959.6.3-4.12 660: 621: 601: 554: 521: 488: 463: 430: 164:Central to the theory of 109:Basking Ridge, New Jersey 96:under the supervision of 18:Edgar Gilbert (cricketer) 1126:The Steiner Tree Problem 1124:; Winter, Pawel (1992), 286:, and the two parts are 143:algebraic geometry codes 1233:Scientists at Bell Labs 1024:10.1214/aoap/1177005705 842:Huffman, William Cary; 509:10.1214/aoms/1177706098 469:Gilbert, E. N. (1955), 408:. He collaborated with 309:Random geometric graphs 126:Gilbert–Varshamov bound 39:Gilbert–Varshamov bound 727:Author biography from 344: 315:random geometric graph 257:In the mathematics of 130:error-correcting codes 77:but then moved to the 801:Dokl. Akad. Nauk SSSR 611:, New York: Macmillan 424:Selected publications 345: 319:Poisson point process 295:Gilbert tessellations 284:binomial distribution 150:Gilbert–Elliott model 47:Gilbert–Elliott model 1047:Mathematical Geology 934:"On random graphs I" 763:Edgar Nelson Gilbert 686:Mathematics Magazine 374:Steiner tree problem 325: 100:, and took a job at 85:, where he designed 79:Radiation Laboratory 27:Edgar Nelson Gilbert 574:1965SIAMR...7..189G 471:Theory of Shuffling 388:Gilbert discovered 364:Other contributions 67:Woodhaven, New York 1248:Network scientists 1059:10.1007/BF01031092 673:; Shearer, J. B.; 669:; Gilbert, E. N.; 370:did important work 340: 160:Probability theory 1174:978-0-393-02023-6 1135:978-0-444-89098-6 984:978-0-691-11704-1 915:978-3-8007-2802-2 863:978-0-521-78280-7 829:978-0-471-64800-0 750:978-0-8493-2357-7 713: 712: 656: 655: 617: 616: 597: 596: 550: 549: 517: 516: 484: 483: 459: 458: 357:branching process 170:ErdĹ‘s–RĂ©nyi model 102:Bell Laboratories 51:ErdĹ‘s–RĂ©nyi model 35:Bell Laboratories 1255: 1213:Coding theorists 1178: 1177: 1157: 1151: 1145: 1139: 1138: 1117: 1111: 1110: 1090: 1084: 1083: 1081: 1069: 1042: 1036: 1035: 1026: 997: 988: 987: 970: 964: 963: 947:(3–4): 290–297, 938: 925: 919: 918: 901: 895: 894: 886:(5): 1977–1997, 873: 867: 866: 839: 833: 832: 815: 809: 808: 796: 790: 789: 787: 786: 775: 769: 760: 754: 753: 725: 708: 683: 658: 651: 619: 612: 599: 592: 552: 545: 537:(5): 1253–1265, 519: 512: 511: 502:(4): 1141–1144, 486: 474: 461: 454: 428: 349: 347: 346: 341: 339: 338: 333: 277: 253: 238: 232: 217: 206: 200: 177: 134:Hamming distance 1263: 1262: 1258: 1257: 1256: 1254: 1253: 1252: 1183: 1182: 1181: 1175: 1161:Gardner, Martin 1159: 1158: 1154: 1146: 1142: 1136: 1119: 1118: 1114: 1107:10.1137/0109045 1092: 1091: 1087: 1071: 1044: 1043: 1039: 1005:Diaconis, Persi 999: 998: 991: 985: 972: 971: 967: 936: 927: 926: 922: 916: 903: 902: 898: 875: 874: 870: 864: 841: 840: 836: 830: 817: 816: 812: 798: 797: 793: 784: 782: 777: 776: 772: 761: 757: 751: 728: 726: 722: 718: 709: 698:10.2307/2690096 681: 675:van Lint, J. H. 667:Chung, F. R. K. 665: 652: 641:10.1137/0116001 626: 613: 606: 593: 582:10.1137/1007035 559: 546: 526: 513: 493: 480: 468: 455: 435: 426: 366: 328: 323: 322: 311: 303:Poisson process 299:crack formation 273: 240: 234: 219: 208: 202: 187: 186:. In Gilbert's 173: 162: 122: 117: 98:Norman Levinson 63: 31:coding theorist 24: 21: 12: 11: 5: 1261: 1259: 1251: 1250: 1245: 1240: 1235: 1230: 1225: 1220: 1215: 1210: 1205: 1200: 1195: 1185: 1184: 1180: 1179: 1173: 1152: 1140: 1134: 1122:Richards, Dana 1120:Hwang, Frank; 1112: 1101:(4): 533–543. 1085: 1053:(6): 617–628, 1037: 1017:(2): 294–313, 989: 983: 965: 920: 914: 896: 868: 862: 834: 828: 810: 791: 781:. Obits.nj.com 770: 755: 749: 735:Winkler, P. M. 731:Coffman, E. G. 729:Borst, S. C.; 719: 717: 714: 711: 710: 692:(5): 286–291, 664: 662: 654: 653: 625: 623: 615: 614: 605: 603: 595: 594: 568:(2): 189–198, 558: 556: 548: 547: 525: 523: 515: 514: 492: 490: 482: 481: 475:. As cited by 467: 465: 457: 456: 446:(3): 504–522, 434: 432: 425: 422: 365: 362: 337: 332: 310: 307: 280:Persi Diaconis 270:Claude Shannon 161: 158: 121: 118: 116: 113: 62: 59: 22: 13: 10: 9: 6: 4: 3: 2: 1260: 1249: 1246: 1244: 1241: 1239: 1236: 1234: 1231: 1229: 1226: 1224: 1221: 1219: 1216: 1214: 1211: 1209: 1206: 1204: 1201: 1199: 1196: 1194: 1191: 1190: 1188: 1176: 1170: 1166: 1162: 1156: 1153: 1149: 1144: 1141: 1137: 1131: 1127: 1123: 1116: 1113: 1108: 1104: 1100: 1096: 1089: 1086: 1080: 1075: 1068: 1064: 1060: 1056: 1052: 1048: 1041: 1038: 1034: 1030: 1025: 1020: 1016: 1012: 1011: 1006: 1002: 996: 994: 990: 986: 980: 976: 969: 966: 962: 958: 954: 950: 946: 942: 935: 931: 924: 921: 917: 911: 907: 900: 897: 893: 889: 885: 881: 880: 872: 869: 865: 859: 855: 851: 850: 845: 838: 835: 831: 825: 821: 814: 811: 806: 802: 795: 792: 780: 774: 771: 768: 764: 759: 756: 752: 746: 742: 741: 736: 732: 724: 721: 715: 707: 703: 699: 695: 691: 687: 680: 676: 672: 671:Graham, R. L. 668: 663: 659: 650: 646: 642: 638: 634: 630: 624: 620: 610: 604: 600: 591: 587: 583: 579: 575: 571: 567: 563: 557: 553: 544: 540: 536: 532: 531: 524: 520: 510: 505: 501: 497: 491: 487: 478: 472: 466: 462: 453: 449: 445: 441: 440: 433: 429: 423: 421: 419: 418:Jack van Lint 415: 411: 407: 406:combinatorics 403: 399: 395: 391: 390:Costas arrays 386: 383: 379: 375: 371: 363: 361: 358: 355:. By using a 354: 335: 320: 316: 308: 306: 304: 300: 296: 292: 289: 285: 281: 276: 271: 267: 263: 262:playing cards 260: 255: 251: 247: 243: 237: 230: 226: 222: 215: 211: 205: 198: 194: 190: 185: 181: 176: 171: 167: 166:random graphs 159: 157: 155: 151: 146: 144: 139: 135: 131: 127: 120:Coding theory 119: 114: 112: 110: 105: 103: 99: 95: 91: 88: 84: 80: 76: 72: 68: 60: 58: 56: 55:random graphs 52: 48: 44: 43:coding theory 40: 36: 32: 28: 19: 1164: 1155: 1143: 1125: 1115: 1098: 1094: 1088: 1050: 1046: 1040: 1014: 1008: 974: 968: 944: 940: 923: 905: 899: 883: 877: 871: 848: 837: 819: 813: 804: 800: 794: 783:. Retrieved 773: 758: 739: 723: 689: 685: 632: 628: 608: 565: 561: 534: 528: 499: 495: 470: 443: 437: 400:on counting 398:John Riordan 387: 382:flow network 378:network flow 367: 312: 293: 274: 256: 249: 245: 241: 235: 228: 224: 220: 216:− 1)/2 213: 209: 203: 196: 192: 188: 184:AlfrĂ©d RĂ©nyi 174: 163: 154:Markov chain 147: 123: 106: 93: 64: 26: 25: 1198:2013 deaths 1193:1923 births 1001:Bayer, Dave 928:ErdĹ‘s, P.; 844:Pless, Vera 635:(1): 1–29, 562:SIAM Review 1187:Categories 785:2013-06-21 716:References 414:Ron Graham 180:Paul ErdĹ‘s 1079:1005.0023 1067:119949515 961:253789267 930:RĂ©nyi, A. 807:: 739–741 410:Fan Chung 402:necklaces 259:shuffling 61:Biography 1163:(2001), 932:(2022), 677:(1982), 368:Gilbert 115:Research 90:antennas 1033:2959752 765:at the 706:2690096 649:2099400 590:2027267 570:Bibcode 372:on the 168:is the 138:maximal 81:at the 1171:  1132:  1065:  1031:  981:  959:  912:  860:  826:  747:  704:  647:  588:  416:, and 394:Costas 288:merged 264:, the 182:, and 45:, the 1074:arXiv 1063:S2CID 1029:JSTOR 957:S2CID 937:(PDF) 702:JSTOR 682:(PDF) 645:JSTOR 586:JSTOR 87:radar 1169:ISBN 1130:ISBN 979:ISBN 910:ISBN 858:ISBN 824:ISBN 745:ISBN 661:CGG. 622:G68. 602:G67. 555:G65. 522:G60. 489:G59. 464:G55. 431:G52. 148:The 124:The 53:for 1103:doi 1055:doi 1019:doi 949:doi 888:doi 854:541 805:117 694:doi 637:doi 578:doi 539:doi 504:doi 448:doi 404:in 351:of 321:in 41:in 1189:: 1097:. 1070:; 1061:, 1049:, 1027:, 1013:, 1003:; 992:^ 955:, 943:, 939:, 884:42 882:, 856:, 803:, 700:, 690:55 688:, 684:, 643:, 633:16 631:, 584:, 576:, 564:, 535:39 533:, 500:30 498:, 444:31 442:, 412:, 248:, 227:, 210:pn 195:, 111:. 57:. 1109:. 1105:: 1099:9 1082:. 1076:: 1057:: 1051:8 1021:: 1015:2 951:: 945:6 890:: 788:. 696:: 639:: 580:: 572:: 566:7 541:: 506:: 479:. 450:: 336:2 331:R 275:n 252:) 250:p 246:n 244:( 242:G 236:M 231:) 229:M 225:n 223:( 221:G 214:n 212:( 204:p 199:) 197:p 193:n 191:( 189:G 175:n 20:.

Index

Edgar Gilbert (cricketer)
coding theorist
Bell Laboratories
Gilbert–Varshamov bound
coding theory
Gilbert–Elliott model
Erdős–Rényi model
random graphs
Woodhaven, New York
Queens College, City University of New York
University of Illinois at Urbana–Champaign
Radiation Laboratory
Massachusetts Institute of Technology
radar
antennas
Norman Levinson
Bell Laboratories
Basking Ridge, New Jersey
Gilbert–Varshamov bound
error-correcting codes
Hamming distance
maximal
algebraic geometry codes
Gilbert–Elliott model
Markov chain
random graphs
Erdős–Rényi model
Paul Erdős
Alfréd Rényi
shuffling

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑