Knowledge (XXG)

Flip-flop (electronics)

Source đź“ť

2453:. The input stage (the two latches on the left) processes the clock and data signals to ensure correct input signals for the output stage (the single latch on the right). If the clock is low, both the output signals of the input stage are high regardless of the data input; the output latch is unaffected and it stores the previous state. When the clock signal changes from low to high, only one of the output voltages (depending on the data signal) goes low and sets/resets the output latch: if D = 0, the lower output becomes low; if D = 1, the upper output becomes low. If the clock signal continues staying high, the outputs keep their states regardless of the data input and force the output latch to stay in the corresponding state as the input logical zero (of the output stage) remains active while the clock is high. Hence the role of the output latch is to store the data only while the clock is low. 1529:
the feedback loop. When input S = 1, then the OR gate outputs 1, regardless of the other input from the feedback loop ("set mode"). When input R = 1 then the AND gate outputs 0, regardless of the other input from the feedback loop ("reset mode"). And since the AND gate takes the output of the OR gate as input, R has priority over S. Latches drawn as cross-coupled gates may look less intuitive, as the behavior of one gate appears to be intertwined with the other gate. The standard NOR or NAND latches could also be re-drawn with the feedback loop, but in their case the feedback loop does not show the same signal value throughout the whole feedback loop. However, the SR AND-OR latch has the drawback that it would need an extra inverter, if an inverted Q output is needed.
2106: 2518:
high. As the clock signal goes high (0 to 1) the inverted "enable" of the first latch goes low (1 to 0) and the value seen at the input to the master latch is "locked". Nearly simultaneously, the twice inverted "enable" of the second or "slave" D latch transitions from low to high (0 to 1) with the clock signal. This allows the signal captured at the rising edge of the clock by the now "locked" master latch to pass through the "slave" latch. When the clock signal returns to low (1 to 0), the output of the "slave" latch is "locked", and the value seen at the last rising edge of the clock is held while the "master" latch begins to accept new values in preparation for the next rising clock edge.
3432:
data are close together in time, the flip-flop is forced to decide which event happened first. However fast the device is made, there is always the possibility that the input events will be so close together that it cannot detect which one happened first. It is therefore logically impossible to build a perfectly metastable-proof flip-flop. Flip-flops are sometimes characterized for a maximum settling time (the maximum time they will remain metastable under specified conditions). In this case, dual-ranked flip-flops that are clocked slower than the maximum allowed metastability time will provide proper conditioning for asynchronous (e.g., external) signals.
3428:
level, depending on the required reliability of the circuit. One technique for suppressing metastability is to connect two or more flip-flops in a chain, so that the output of each one feeds the data input of the next, and all devices share a common clock. With this method, the probability of a metastable event can be reduced to a negligible value, but never to zero. The probability of metastability gets closer and closer to zero as the number of flip-flops connected in series is increased. The number of flip-flops being cascaded is referred to as the "ranking"; "dual-ranked" flip flops (two flip-flops in series) is a common situation.
2434: 2620: 1035: 2486: 170: 2635:. This means that the digital output is stored on parasitic device capacitance while the device is not transitioning. This design facilities resetting by simply discharging one or more internal nodes. A common dynamic flip-flop variety is the true single-phase clock (TSPC) type which performs the flip-flop operation with little power and at high speeds. However, dynamic flip-flops will typically not work at static or low clock speeds: given enough time, leakage paths may discharge the parasitic capacitance enough to cause the flip-flop to enter invalid states. 38: 2066: 1696: 2422: 2152: 3038: 2607: 3054:
combination J = K = 1 is a command to toggle the flip-flop, i.e., change its output to the logical complement of its current value. Setting J = K = 0 maintains the current state. To synthesize a D flip-flop, simply set K equal to the complement of J (input J will act as input D). Similarly, to synthesize a T flip-flop, set K equal to J. The JK flip-flop is therefore a universal flip-flop, because it can be configured to work as an SR flip-flop, a D flip-flop, or a T flip-flop.
2587: 2050: 2400:, which are an essential part of many electronic devices. The advantage of the D flip-flop over the D-type "transparent latch" is that the signal on the D input pin is captured the moment the flip-flop is clocked, and subsequent changes on the D input will be ignored until the next clock event. An exception is that some flip-flops have a "reset" signal input, which will reset Q (to zero), and may be either asynchronous or synchronous with the clock. 1851: 2035: 2498: 2386: 3312: 2599: 3400:, which can happen when two inputs, such as data and clock or clock and reset, are changing at about the same time. When the order is not clear, within appropriate timing constraints, the result is that the output may behave unpredictably, taking many times longer than normal to settle to one state or the other, or even oscillating several times before settling. Theoretically, the time to settle down is not bounded. In a 1316: 1684: 3046: 2644: 2193: 250: 233:
Eldred Nelson, who is responsible for coining the term while working at Hughes Aircraft. Flip-flops in use at Hughes at the time were all of the type that came to be known as J-K. In designing a logical system, Nelson assigned letters to flip-flop inputs as follows: #1: A & B, #2: C & D, #3: E & F, #4: G & H, #5: J & K. Nelson used the notations "
720: 2130:
driving the latch because many common computational circuits have an OR layer followed by an AND layer as their last two levels. Merging the latch function can implement the latch with no additional gate delays. The merge is commonly exploited in the design of pipelined computers, and, in fact, was originally developed by John G. Earle to be used in the
3424:) respectively. These times are specified in the data sheet for the device, and are typically between a few nanoseconds and a few hundred picoseconds for modern devices. Depending upon the flip-flop's internal organization, it is possible to build a device with a zero (or even negative) setup or hold time requirement but not both simultaneously. 734: 4522: 2078: 3374:
transition that happens to fall between the recovery/removal time, eventually the flip-flop will transition to the appropriate state, but a very short glitch may or may not appear on the output, dependent on the synchronous input signal. This second situation may or may not have significance to a circuit design.
2164: 3053:
The JK flip-flop, augments the behavior of the SR flip-flop (J: Set, K: Reset) by interpreting the J = K = 1 condition as a "flip" or toggle command. Specifically, the combination J = 1, K = 0 is a command to set the flip-flop; the combination J = 0, K = 1 is a command to reset the flip-flop; and the
3427:
Unfortunately, it is not always possible to meet the setup and hold criteria, because the flip-flop may be connected to a real-time signal that could change at any time, outside the control of the designer. In this case, the best the designer can do is to reduce the probability of error to a certain
2283:
Most D-type flip-flops in ICs have the capability to be forced to the set or reset state (which ignores the D and clock inputs), much like an SR flip-flop. Usually, the illegal S = R = 1 condition is resolved in D-type flip-flops. Setting S = R = 0 makes the flip-flop behave as described above. Here
1528:
The SR AND-OR latch is easier to understand, because both gates can be explained in isolation, again with the control view of AND and OR from above. When neither S or R is set, then both the OR gate and the AND gate are in "hold mode", i.e., they let the input through, their output is the input from
793:
To derive the behavior of the SR NOR latch, consider S and R as control inputs and remember that, from the equations above, set and reset NOR with control 1 will fix their outputs to 0, while set and reset NOR with control 0 will act as a NOT gate. With this it is now possible to derive the behavior
381:
It is convenient to think of NAND, NOR, AND and OR as controlled operations, where one input is chosen as the control input set and the other bit as the input to be processed depending on the state of the control. Then, all of these gates have one control value that ignores the input (x) and outputs
3404:
system, this metastability can cause corruption of data or a program crash if the state is not stable before another circuit uses its value; in particular, if two different logical paths use the output of a flip-flop, one path can interpret it as a 0 and the other as a 1 when it has not resolved to
2200:
The D flip-flop is widely used, and known as a "data" flip-flop. The D flip-flop captures the value of the D-input at a definite portion of the clock cycle (such as the rising edge of the clock). That captured value becomes the Q output. At other times, the output Q does not change. The D flip-flop
1341:
The circuit uses the same feedback as SR NOR, just replacing NOR gates with NAND gates, to "remember" and retain its logical state even after the controlling input signals have changed. Again, recall that a 1-controlled NAND always outputs 0, while a 0-controlled NAND acts as a NOT gate. When the S
3431:
So-called metastable-hardened flip-flops are available, which work by reducing the setup and hold times as much as possible, but even these cannot eliminate the problem entirely. This is because metastability is more than simply a matter of circuit design. When the transitions in the clock and the
3319:
The input must be held steady in a period around the rising edge of the clock known as the aperture. Imagine taking a picture of a frog on a lily-pad. Suppose the frog then jumps into the water. If you take a picture of the frog as it jumps into the water, you will get a blurry picture of the frog
2517:
For a positive-edge triggered master–slave D flip-flop, when the clock signal is low (logical 0) the "enable" seen by the first or "master" D latch (the inverted clock signal) is high (logical 1). This allows the "master" latch to store the input value when the clock signal transitions from low to
1453:
From a teaching point of view, SR latches drawn as a pair of cross-coupled components (transistors, gates, tubes, etc.) are often hard to understand for beginners. A didactically easier explanation is to draw the latch as a single feedback loop instead of the cross-coupling. The following is an SR
785:
inputs as explained above. Notice that at this point, because everything is symmetric, it does not matter to which inputs the outputs are connected. We now break the symmetry by choosing which of the remaining control inputs will be our set and reset and we can call "set NOR" the NOR gate with the
291:
Since the elementary amplifying stages are inverting, two stages can be connected in succession (as a cascade) to form the needed non-inverting amplifier. In this configuration, each amplifier may be considered as an active inverting feedback network for the other inverting amplifier. Thus the two
283:
Clocked flip-flops are specially designed for synchronous systems; such devices ignore their inputs except at the transition of a dedicated clock signal (known as clocking, pulsing, or strobing). Clocking causes the flip-flop either to change or to retain its output signal based upon the values of
3549:
Alternatively, the two inputs may be called set 1 and set 0, which may clear confusion for some: the term set alone may be misunderstood as setting the bit to the input provided to set. This naming also makes it intuitive in the explanation below that trying to set 0 and 1 at the same time should
3381:
Differentiation between Setup/Hold and Recovery/Removal times is often necessary when verifying the timing of larger circuits because asynchronous signals may be found to be less critical than synchronous signals. The differentiation offers circuit designers the ability to define the verification
3373:
Short impulses applied to asynchronous inputs (set, reset) should not be applied completely within the recovery-removal period, or else it becomes entirely indeterminable whether the flip-flop will transition to the appropriate state. In another case, where an asynchronous signal simply makes one
232:
under Eldred Nelson, who had coined the term JK for a flip-flop which changed states when both inputs were on (a logical "one"). The other names were coined by Phister. They differ slightly from some of the definitions given below. Lindley explains that he heard the story of the JK flip-flop from
3526:) representation. The construction is similar to a conventional cross-coupled flip-flop; each output, when high, inhibits all the other outputs. Alternatively, more or less conventional flip-flops can be used, one per output, with additional circuitry to make sure only one at a time can be true. 1532:
Note that the SR AND-OR latch can be transformed into the SR NOR latch using logic transformations: inverting the output of the OR gate and also the 2nd input of the AND gate and connecting the inverted Q output between these two added inverters; with the AND gate with both inputs inverted being
1524:
Note that the SR AND-OR latch has the benefit that S = 1, R = 1 is well defined. In above version of the SR AND-OR latch it gives priority to the R signal over the S signal. If priority of S over R is needed, this can be achieved by connecting output Q to the output of the OR gate instead of the
2594:
Flip-Flops that read in a new value on the rising and the falling edge of the clock are called dual-edge-triggered flip-flops. Such a flip-flop may be built using two single-edge-triggered D-type flip-flops and a multiplexer, or by using two single-edge triggered D-type flip-flops and three XOR
2513:
input to one of them. It is called master–slave because the master latch controls the slave latch's output value Q and forces the slave latch to hold its value whenever the slave latch is enabled, as the slave latch always copies its new value from the master latch and changes its value only in
2129:
Designers looked for alternatives. A successful alternative is the Earle latch. It requires only a single data input, and its output takes a constant two gate delays. In addition, the two gate levels of the Earle latch can, in some cases, be merged with the last two gate levels of the circuits
2627:
An efficient functional alternative to a D flip-flop can be made with dynamic circuits (where information is stored in a capacitance) as long as it is clocked often enough; while not a true flip-flop, it is still called a flip-flop for its functional role. While the master–slave D element is
2125:
The classic gated latch designs have some undesirable characteristics. They require double-rail logic or an inverter. The input-to-output propagation may take up to three gate delays. The input-to-output propagation is not constant – some outputs take two gate delays while others take three.
388: 2476:
NAND latches are used in the positive-edge-triggered D flip-flop. The role of these latches is to "lock" the active output producing low voltage (a logical zero); thus the positive-edge-triggered D flip-flop can also be thought of as a gated D latch with latched input gates.
3949: 3320:
jumping into the water—it's not clear which state the frog was in. But if you take a picture while the frog sits steadily on the pad (or is steadily in the water), you will get a clear picture. In the same way, the input to a flip-flop must be held steady during the
2077: 786:
set control and "reset NOR" the NOR with the reset control; in the figures the set NOR is the bottom one and the reset NOR is the top one. The output of the reset NOR will be our stored bit Q, while we will see that the output of the set NOR stores its complement
1446: 3020:
When T is held high, the toggle flip-flop divides the clock frequency by two; that is, if clock frequency is 4 MHz, the output frequency obtained from the flip-flop will be 2 MHz. This "divide by" feature has application in various types of digital
120:, the output and next state depend not only on its current input, but also on its current state (and hence, previous inputs). It can also be used for counting of pulses, and for synchronizing variably-timed input signals to some reference timing signal. 3517:
In a conventional flip-flop, exactly one of the two complementary outputs is high. This can be generalized to a memory element with N outputs, exactly one of which is high (alternatively, where exactly one of N is low). The output is therefore always a
2163: 746: 2105: 1867:
This latch exploits the fact that, in the two active input combinations (01 and 10) of a gated SR latch, R is the complement of S. The input NAND stage converts the two D input states (0 and 1) to these two input combinations for the next
3377:
Set and Reset (and other) signals may be either synchronous or asynchronous and therefore may be characterized with either Setup/Hold or Recovery/Removal times, and synchronicity is very dependent on the design of the flip-flop.
3695: 2728: 2628:
triggered on the edge of a clock, its components are each triggered by clock levels. The "edge-triggered D flip-flop", as it is called even though it is not a true flip-flop, does not have the master–slave properties.
2651:
If the T input is high, the T flip-flop changes state ("toggles") whenever the clock input is strobed. If the T input is low, the flip-flop holds the previous value. This behavior is described by the characteristic
1638:
its output (oscillate between 0 and 1) when passed the input combination of 11. Unlike the JK flip-flop, the 11 input combination for the JK latch is not very useful because there is no clock that directs toggling.
798:
While the R and S are both zero, both R NOR and S NOR simply impose the feedback being the complement of the output, this is satisfied as long as the outputs are the complement of each other. Thus the outputs Q and
3533:. In this case the memory element retains exactly one of the logic states until the control inputs induce a change. In addition, a multiple-valued clock can also be used, leading to new possible clock transitions. 715:{\displaystyle {\begin{aligned}NAND(x,0)&=1&NAND(x,1)&={\bar {x}}\\NOR(x,0)&={\bar {x}}&NOR(x,1)&=0\\AND(x,0)&=0&AND(x,1)&={x}\\OR(x,0)&=x&OR(x,1)&=1\\\end{aligned}}} 1342:
and R inputs are both high, feedback maintains the Q outputs to the previous state. When either is zero, they fix their output bits to 0 while to other adapts to the complement. S=R=0 produces the invalid state.
3117: 3505:
Flip-flops can be generalized in at least two ways: by making them 1-of-N instead of 1-of-2, and by adapting them to logic with more than two states. In the special cases of 1-of-3 encoding, or multi-valued
1153: 1338:
for Set and Reset respectively. Because the NAND inputs must normally be logic 1 to avoid affecting the latching action, the inputs are considered to be inverted in this circuit (or active low).
393: 1213: 1273: 293: 3408:
The metastability in flip-flops can be avoided by ensuring that the data and control inputs are held valid and constant for specified periods before and after the clock pulse, called the
2151: 3360:
the clock event, so that the data is reliably sampled by the clock. The recovery time for the asynchronous set or reset input is thereby similar to the setup time for the data input.
3370:
the clock event, so that the data is reliably sampled by the clock. The removal time for the asynchronous set or reset input is thereby similar to the hold time for the data input.
2403:
The above circuit shifts the contents of the register to the right, one bit position on each active transition of the clock. The input X is shifted into the leftmost bit position.
3475:) of the following flip-flop, so data present at the input of the succeeding flip-flop is properly "shifted in" following the active edge of the clock. This relationship between t 3483:
is normally guaranteed if the flip-flops are physically identical. Furthermore, for correct operation, it is easy to verify that the clock period has to be greater than the sum t
146:
When a level-triggered latch is enabled it becomes transparent, but an edge-triggered flip-flop's output only changes on a clock edge (either positive going or negative going).
2883: 2831: 1912:
comes from the fact that, when the enable input is on, the signal propagates directly through the circuit, from the input D to the output Q. Gated D-latches are also
770:
The SR NOR latch consists of two parallel NOR gates where the output of each NOR is also fanned out into one input of the other NOR, as shown in the figure. We call
5093: 1302: 364:
Its two inputs S and R can set the internal state to 1 using the combination S=1 and R=0, and can reset the internal state to 0 using the combination S=0 and R=1.
4658: 2904: 2855: 2803: 2782: 347: 4459: 4890: 4269: 4928: 2065: 4830: 154: 4517:, Lapidus, Peter D., "Flip flop supporting glitchless operation on a one-hot bus and method", published 2005-12-13, assigned to 4244: 2662: 106:(binary digit) of data; one of its two states represents a "one" and the other represents a "zero". Such data storage can be used for storage of 4933: 1425: 320:(see History section above). The behavior of a particular type can be described by the characteristic equation that derives the "next" output ( 4435: 4356: 4172: 4042: 3974: 3881: 3854: 3786: 3631: 2049: 123:
The term flip-flop has historically referred generically to both level-triggered (asynchronous, transparent, or opaque) and edge-triggered (
4765: 3025:. A T flip-flop can also be built using a JK flip-flop (J & K pins are connected together and act as T) or a D flip-flop (T input XOR Q 2632: 3063: 1663:
latches follow each other, if they are all transparent at the same time, signals will propagate through them all. However, following a
292:
stages are connected in a non-inverting loop although the circuit diagram is usually drawn as a symmetric cross-coupled pair (both the
4878: 4777: 4812: 4651: 4328: 4070: 4015: 3925: 3674: 1449:
An SR AND-OR latch. Light green means logical '1' and dark green means logical '0'. The latch is currently in hold mode (no change).
3754:
Report of the Eighty-seventh Meeting of the British Association for the Advancement of Science: Bournemouth: 1919, September 9–13
1651:
That is, input signal changes cause immediate changes in output. Additional logic can be added to a transparent latch to make it
4489: 2619: 5103: 4824: 4760: 1034: 3693:, Eccles, William Henry & Jordan, Frank Wilfred, "Improvements in ionic relays", published 1920-08-05 1095: 1760:
true), the signals can pass through the input gates to the encapsulated latch; all signal combinations except for (0, 0) =
4950: 4818: 3603: 3452:), which is the time a flip-flop takes to change its output after the clock edge. The time for a high-to-low transition (t 2485: 1064: 169: 4612: 4088:
Proceedings of the November 30--December 1, 1965, fall joint computer conference, Part I on XX - AFIPS '65 (Fall, part I)
5098: 4644: 3397: 3391: 810:=0, while the reset NOR will adapt and set Q=1. Once S is set back to zero the values are maintained as explained above. 5067: 4962: 4518: 3583: 2433: 1158: 1024: 794:
of the SR latch as simple conditions (instead of, for example, assigning values to each line see how they propagate):
254: 1919:
Transparent latches are typically used as I/O ports or in asynchronous systems, or in synchronous two-phase systems (
3941: 1466:
gate. Note that the inverter is not needed for the latch functionality, but rather to make both inputs High-active.
4982: 4940: 2460:
as both the circuits convert the two D input states (0 and 1) to two input combinations (01 and 10) for the output
1927:), where two latches operating on different clock phases prevent data transparency as in a master–slave flip-flop. 1227: 182: 173:
Schematics from the Eccles and Jordan trigger relay patent filed 1918, one drawn as a cascade of amplifiers with a
37: 31: 4883: 4868: 4794: 4754: 3568: 1545:
The JK latch is much less frequently used than the JK flip-flop. The JK latch follows the following state table:
217: 1027:
state and may eventually lock at either 1 or 0 depending on the propagation time relations between the gates (a
5118: 5108: 4895: 4800: 4788: 108: 4273: 3731: 3607: 4945: 4723: 3440:
Another important timing value for a flip-flop is the clock-to-output delay (common symbol in data sheets: t
2131: 269: 229: 201:
and such circuits and their transistorized versions were common in computers even after the introduction of
143:
for level-triggered ones. The terms "edge-triggered", and "level-triggered" may be used to avoid ambiguity.
4536:
Irving, Thurman A.; Shiva, Sajjan G.; Nagle, H. Troy (March 1976). "Flip-Flops for Multiple-Valued Logic".
4449: 3989: 2464:
latch by inverting the data input signal (both the circuits split the single D signal in two complementary
725:
Essentially, they can all be used as switches that either set a specific value or let an input value pass.
260:
Transparent or asynchronous latches can be built around a single pair of cross-coupled inverting elements:
5039: 4836: 4293: 4200: 3133: 2753: 1671:
latch (or vice-versa) causes the state and output to only change on clock edges, forming what is called a
832: 78: 5051: 5005: 4873: 4771: 4708: 2112: 1459: 273: 3713: 820:
If R=S=1, the NORs will fix both outputs to 0, which is not a valid state storing complementary values.
4514: 4248: 3944:, Nelson, Eldred C., "High-speed printing system", published 1958-09-02, assigned to 3749: 2606: 5113: 4977: 4972: 4955: 4675: 3690: 3606:'s Logic Handfbook Flip Chip™ Modules 1969 edition calls transparent RS latches as "R/S Flip Flops" ( 3350:
is the sum of setup and hold time. The data input should be held steady throughout this time period.
2861: 2809: 117: 5024: 4967: 4806: 4728: 4703: 4667: 4205: 3945: 1880:. This configuration prevents application of the restricted input combination. It is also known as 1534: 94: 2157:
Earle latch uses complementary enable inputs: enable active low (E_L) and enable active high (E_H)
1695: 5044: 4910: 4748: 4713: 4588: 4553: 4401: 4226: 4113: 4101: 3826: 3530: 2501:
An implementation of a master–slave D flip-flop that is triggered on the rising edge of the clock
1938:
lock input is 0, the D input has no effect on the output. When E/C is high, the output equals D.
1920: 265: 202: 150: 86: 74: 2586: 3778: 3037: 5000: 4431: 4393: 4352: 4324: 4218: 4168: 4066: 4038: 4011: 3970: 3921: 3877: 3850: 3782: 3670: 3627: 3445: 3022: 2206: 198: 174: 4003: 2521:
Removing the leftmost inverter in the circuit creates a D-type flip-flop that strobes on the
4733: 4580: 4545: 4471: 4385: 4210: 4091: 3818: 3500: 3138: 2758: 2631:
Edge-triggered D flip-flops are often implemented in integrated high-speed operations using
2421: 837: 113: 90: 1876:
signal produces the inactive "11" combination. Thus a gated D-latch may be considered as a
1850: 1042:
To overcome the restricted combination, one can add gates to the inputs that would convert
357:
When using static gates as building blocks, the most fundamental latch is the asynchronous
4923: 4918: 4900: 4863: 4858: 4783: 4743: 4616: 4571:
Wu, Haomin; Zhuang Nan (July 1991). "Research into ternary edge-triggered JKL flip-flop".
4125: 3578: 3573: 2497: 2397: 2385: 2202: 2034: 1924: 1424: 1278: 382:
a constant value, while the other control value lets the input pass (maybe complemented):
4629: 2472:
signals). The difference is that NAND logical gates are used in the gated D latch, while
4008:
Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness
3311: 1330:
The circuit shown below is a basic NAND latch. The inputs are also generally designated
17: 4853: 4622: 4373: 4191:
Kunkel, Steven R.; Smith, James E. (May 1986). "Optimal Pipelining in Supercomputers".
3899: 3771: 3563: 3464: 2889: 2840: 2788: 2767: 2390: 1028: 813:
Similarly, if R=1 while S=0, then the reset NOR fixes Q=0 while the set NOR with adapt
332: 4451:
The design and application of a "flip-flap-flop" using tunnel diodes (Master's thesis)
2598: 2141:, which is commonly used because it demands less logic. However, it is susceptible to 2137:
The Earle latch is hazard free. If the middle NAND gate is omitted, then one gets the
85:
applied to one or more control inputs and will output its state (often along with its
5087: 5034: 5017: 5012: 4493: 3802: 3646: 3507: 3366:
is the minimum amount of time the asynchronous set or reset input should be inactive
3356:
is the minimum amount of time the asynchronous set or reset input should be inactive
2506: 2276: 766:
Transitioning from the restricted combination (D) to (A) leads to an unstable state.
210: 4592: 4557: 4405: 4105: 3830: 1315: 4230: 1799: 1749:(with non-inverting enable) can be made by adding a second level of AND gates to a 1683: 1445: 220:, the flip-flop types detailed below (SR, D, T, JK) were first discussed in a 1954 186: 128: 2083:
An animated gated D latch. Black and white mean logical '1' and '0', respectively.
4425: 4162: 4032: 3964: 3915: 3871: 3844: 3621: 2610:
A dual-edge triggered D flip-flop implemented using XOR gates, and no multiplexer
1000:
because, as both NOR gates then output zeros, it breaks the logical equation Q =
284:
the input signals at the transition. Some flip-flops change output on the rising
4304: 3045: 2739: 2169:
An animated Earle latch. Black and white mean logical '1' and '0', respectively.
285: 261: 194: 158: 124: 62: 4086:
Cotten, L. W. (1965). "Circuit implementation of high-speed pipeline systems".
2643: 2192: 224:
course on computer design by Montgomery Phister, and then appeared in his book
209:
are also common now. Early latches were known variously as trigger circuits or
5072: 4738: 4683: 4609: 1324: 375: 277: 206: 132: 4397: 4323:. Upper Saddle River, NJ, USA: Pearson Education International. p. 283. 4222: 3529:
Another generalization of the conventional flip-flop is a memory element for
749:
An animated SR latch. Black and white mean logical '1' and '0', respectively.
5029: 4698: 4549: 4419: 4389: 4096: 3822: 1704: 745: 372: 97:
systems used in computers, communications, and many other types of systems.
2723:{\displaystyle Q_{\text{next}}=T\oplus Q=T{\overline {Q}}+{\overline {T}}Q} 249: 100:
Flip-flops and latches are used as data storage elements to store a single
3608:
http://www.bitsavers.org/pdf/dec/handbooks/Digital_Logic_Handbook_1969.pdf
181:
The first electronic latch was invented in 1918 by the British physicists
4693: 4688: 4630:"Reverse-engineering a 1960s hybrid flip flop module with X-ray CT scans" 4475: 4446:
actually appeared much earlier in the computing literature, for example,
4376:(April 1973). "Anomalous Behavior of Synchronizer and Arbiter Circuits". 3401: 2731: 2653: 2623:
A CMOS IC implementation of a dynamic edge-triggered flip-flop with reset
1700: 1455: 772: 738: 368: 4214: 3651:"...Sometimes the terms flip-flop and latch are used interchangeably..." 2514:
response to a change in the value of the master latch and clock signal.
4584: 3519: 2115:, similar to the ones in the CD4042 or the CD74HC75 integrated circuits 1463: 781:
these output-to-input connections. The remaining inputs we will use as
4636: 3456:) is sometimes different from the time for a low-to-high transition (t 1659:
when another input (an "enable" input) is not asserted. When several
737:
An animation of a SR latch, constructed from a pair of cross-coupled
82: 3344:
the clock event, so that the data is reliably sampled by the clock.
3334:
the clock event, so that the data is reliably sampled by the clock.
3750:"A trigger relay utilising three electrode thermionic vacuum tubes" 3732:"A trigger relay utilizing three-electrode thermionic vacuum tubes" 3714:"A trigger relay utilizing three-electrode thermionic vacuum tubes" 3340:
is the minimum amount of time the data input should be held steady
3330:
is the minimum amount of time the data input should be held steady
2489:
A master–slave D flip-flop. It responds on the falling edge of the
733: 3876:(revised ed.). Research & Education Assoc. p. 1223. 3806: 3310: 3044: 3036: 2642: 2618: 2605: 2597: 2585: 2496: 2484: 2384: 2284:
is the truth table for the other possible S and R configurations:
2191: 1682: 1444: 1314: 1033: 744: 732: 248: 168: 36: 3112:{\displaystyle Q_{\text{next}}=J{\overline {Q}}+{\overline {K}}Q} 77:
that have two stable states that can store state information – a
3849:(4th ed.). Delmar Thomson (Cengage) Learning. p. 299. 221: 4640: 2145:. Intentionally skewing the clock signal can avoid the hazard. 1872:
latch by inverting the data input signal. The low state of the
1783:
and remains in the state it was left the last time E was high.
3463:
When cascading flip-flops which share the same clock (as in a
3405:
stable state, putting the machine into an inconsistent state.
102: 2396:
These flip-flops are very useful, as they form the basis for
367:
The SR latch can be constructed from a pair of cross-coupled
329:) in terms of the input signal(s) and/or the current output, 4164:
The Microarchitecture of Pipelined and Superscalar Computers
3769:
Pugh, Emerson W.; Johnson, Lyle R.; Palmer, John H. (1991).
93:. Flip-flops and latches are fundamental building blocks of 3897:
Lindley, P.L. (August 1968). "letter dated June 13, 1968".
3315:
Flip-flop setup, hold and clock-to-output timing parameters
3041:
A circuit symbol for a positive-edge-triggered JK flip-flop
149:
Different types of flip-flops and latches are available as
1007:. The combination is also inappropriate in circuits where 4139:
Earle, John G. (March 1965). "Latched Carry-Save Adder".
1916:
with respect to the level of the clock or enable signal.
1715:
can be made by adding a second level of NAND gates to an
1078:
Alternatively, the restricted combination can be made to
304:
Flip-flops and latches can be divided into common types:
3963:
Langholz, Gideon; Kandel, Abraham; Mott, Joe L. (1998).
3471:
of a preceding flip-flop is longer than the hold time (t
2505:
A master–slave D flip-flop is created by connecting two
2439:
A positive-edge-triggered D flip-flop with set and reset
1046:
to one of the non-restricted combinations. That can be:
817:=1. Again the state is maintained if R is set back to 0. 153:, usually with multiple elements per chip. For example, 3665:
Roth, Charles H. Jr. (1995). "Latches and Flip-Flops".
1691:
Latch (Clocked SR flip-flop). Note the inverted inputs.
1148:{\displaystyle Q_{\text{next}}={\bar {R}}Q+{\bar {R}}S} 803:
are maintained in a constant state, whether Q=0 or Q=1.
741:. Red and black mean logical '1' and '0', respectively. 296:
are initially introduced in the Eccles–Jordan patent).
4349:
Digital Design and Computer Architecture - ARM Edition
3660: 3658: 2590:
An implementation of a dual-edge-triggered D flip-flop
1719:. The extra NAND gates further invert the inputs so a 4002:
Hinrichsen, Diederich; Pritchard, Anthony J. (2006).
3382:
conditions for these types of signals independently.
3066: 2892: 2864: 2843: 2812: 2791: 2770: 2665: 2525:
of a clock signal. This has a truth table like this:
1281: 1230: 1161: 1098: 391: 335: 177:
path, and the other as a symmetric cross-coupled pair
3057:
The characteristic equation of the JK flip-flop is:
2414:
A few different types of edge triggered D flip‑flops
2288: 378:. The stored bit is present on the output marked Q. 139:
exclusively for edge-triggered storage elements and
5060: 4993: 4909: 4846: 4674: 4321:
Logic and Computer Design Fundamentals, 3rd Edition
2602:
Circuit symbol of a dual-edge-triggered D flip-flop
2446:This circuit consists of two stages implemented by 1634:Hence, the JK latch is an SR latch that is made to 3770: 3111: 2898: 2877: 2849: 2825: 2797: 2776: 2722: 1806:(to the level of the clock signal), as opposed to 1699:A gated SR latch circuit diagram constructed from 1296: 1267: 1207: 1147: 714: 341: 216:According to P. L. Lindley, an engineer at the US 1089:The characteristic equation for the SR latch is: 131:) circuits that store a single bit of data using 3712:Eccles, W.H.; Jordan, F.W. (19 September 1919). 1218:where A + B means (A or B), AB means (A and B) 1208:{\displaystyle Q_{\text{next}}={\bar {R}}(Q+S).} 241:-input" in a patent application filed in 1953. 4652: 3990:"Summary of the Types of Flip-flop Behaviour" 2407:Classical positive-edge-triggered D flip-flop 2391:serial-in, parallel-out (SIPO) shift register 2280:condition, meaning the signal is irrelevant) 1268:{\displaystyle Q_{\text{next}}=S+{\bar {R}}Q} 81:. The circuit can be made to change state by 8: 3730:Eccles, W.H.; Jordan, F.W. (December 1919). 806:If S=1 while R=0, then the set NOR will fix 4314: 4312: 4294:A Survey of Digital Computer Memory Systems 3396:Flip-flops are subject to a problem called 197:). The design was used in the 1943 British 4659: 4645: 4637: 4430:. Princeton University Press. p. 57. 4319:Mano, M. Morris; Kime, Charles R. (2004). 3510:, such an element may be referred to as a 1930:The truth table below shows that when the 1643:Gated latches and conditional transparency 988:, that is, either 0 or 1 is a valid value. 288:of the clock, others on the falling edge. 280:have all been used in practical circuits. 205:, though latches and flip-flops made from 4342: 4340: 4204: 4186: 4184: 4156: 4154: 4095: 4004:"Example 1.5.6 (R–S latch and J–K latch)" 3096: 3083: 3071: 3065: 2891: 2869: 2863: 2842: 2817: 2811: 2790: 2769: 2707: 2694: 2670: 2664: 1280: 1251: 1250: 1235: 1229: 1176: 1175: 1166: 1160: 1131: 1130: 1113: 1112: 1103: 1097: 635: 517: 516: 470: 469: 392: 390: 334: 89:too). It is the basic storage element in 27:Electronic circuit with two stable states 4056: 4054: 4034:Digital design and computer organization 3873:The Electronics problem solver, Volume 1 3623:Digital electronics and design with VHDL 3126: 2746: 2615:Edge-triggered dynamic D storage element 2529: 2216: 2071:A gated D latch based on an SR NOR latch 2033: 1944: 1849: 1816: 1694: 1549: 1470: 1423: 1348: 825: 157:is a quadruple transparent latch in the 4831:Application-specific integrated circuit 4063:The Architecture of Pipelined Computers 4037:. Vol. 1. CRC Press. p. 274. 3595: 3550:make the SR latch behave unpredictably. 3542: 3467:), it is important to ensure that the t 2647:A circuit symbol for a T-type flip-flop 2481:Master–slave edge-triggered D flip-flop 2147: 2045: 5094:Computer-related introductions in 1918 4619:, shows interactive flipflop circuits. 4193:ACM SIGARCH Computer Architecture News 4121: 4111: 3649:(EE 42/100 Lecture 24 from Berkeley) 3122:and the corresponding truth table is: 2456:The circuit is closely related to the 1764:then immediately reproduce on the (Q, 1533:equivalent to a NOR gate according to 1071:Hold state (0, 0) – referred to as an 992:The R = S = 1 combination is called a 193:and consisted of two active elements ( 2427:A positive-edge-triggered D flip-flop 1323:latch constructed from cross-coupled 253:A transparent latch circuit based on 112:, and such a circuit is described as 7: 4766:Three-dimensional integrated circuit 226:Logical Design of Digital Computers. 3966:Foundations of Digital Logic Design 3917:Logical Design of Digital Computers 3870:Fogiel, Max; Gu, You-Liang (1998). 3748:Eccles, W.H.; Jordan, F.W. (1919). 228:Lindley was at the time working at 4778:Erasable programmable logic device 3811:Annals of the History of Computing 2457: 2447: 2201:can be viewed as a memory cell, a 2142: 135:. Modern authors reserve the term 25: 4813:Complex programmable logic device 4141:IBM Technical Disclosure Bulletin 3969:. World Scientific. p. 344. 1056:Q = 0 (0, 1) – referred to as an 1050:Q = 1 (1, 0) – referred to as an 4351:. Morgan Kaufmann, Waltham, MA. 3626:. Morgan Kaufmann. p. 329. 2432: 2420: 2162: 2150: 2104: 2076: 2064: 2048: 1023:). The output could remain in a 4825:Field-programmable object array 4761:Mixed-signal integrated circuit 4065:. McGraw-Hill. pp. 25–27. 3773:IBM's 360 and early 370 systems 2878:{\displaystyle Q_{\text{next}}} 2826:{\displaystyle Q_{\text{next}}} 2582:Dual-edge-triggered D flip-flop 1842:The same as non-gated SR latch 116:in electronics. When used in a 4573:Journal of Electronics (China) 4538:IEEE Transactions on Computers 4378:IEEE Transactions on Computers 1878:one-input synchronous SR latch 1256: 1199: 1187: 1181: 1136: 1118: 1082:the output. The result is the 695: 683: 662: 650: 625: 613: 589: 577: 551: 539: 522: 506: 494: 475: 459: 447: 420: 408: 353:Asynchronous set-reset latches 199:Colossus codebreaking computer 189:. It was initially called the 1: 4951:Hardware description language 4819:Field-programmable gate array 4628:Shirriff, Ken (August 2022). 4454:. University of North Dakota. 4347:Harris, S; Harris, D (2016). 3992:. Retrieved on 16 April 2018. 3604:Digital Equipment Corporation 2509:in series, and inverting the 1790:input signal may be called a 1083: 1065:programmable logic controller 1063:This is done in nearly every 191:Eccles–Jordan trigger circuit 4427:Number: from Ahmes to Cantor 4167:. Springer. pp. 40–42. 4010:. Springer. pp. 63–64. 3914:Phister, Montgomery (1958). 3667:Fundamentals of Logic Design 3392:Metastability in electronics 3101: 3088: 2712: 2699: 2055:A gated D latch based on an 1768:) output, i.e. the latch is 255:bipolar junction transistors 4963:Formal equivalence checking 4519:Advanced Micro Devices Inc. 4270:"Edge-Triggered Flip-flops" 3846:Introduction to electronics 3620:Pedroni, Volnei A. (2008). 3584:Static random-access memory 3049:JK flip-flop timing diagram 1854:Symbol for a gated SR latch 1647:Latches are designed to be 5135: 4983:Hierarchical state machine 4941:Transaction-level modeling 4490:"Ternary "flip-flap-flop"" 4458:Alexander, W. (Feb 1964). 4448:Bowdon, Edward K. (1960). 4031:Farhat, Hassan A. (2004). 3498: 3389: 2738:and can be described in a 2038:Symbol for a gated D latch 1946:Gated D latch truth table 1802:, the latch is said to be 1494:No change; random initial 1472:SR AND-OR latch operation 1416:No change; random initial 29: 4884:Digital signal processing 4869:Logic in computer science 4795:Programmable logic device 4755:Hybrid integrated circuit 4424:Midhat J. GazalĂ© (2000). 3569:Pulse transition detector 3137: 3132: 2757: 2752: 2294: 2291: 1956: 1818:Gated SR latch operation 1038:How an SR NOR latch works 836: 831: 762:S = 1, R = 1: Not allowed 218:Jet Propulsion Laboratory 4896:Switching circuit theory 4801:Programmable Array Logic 4789:Programmable logic array 4161:Omondi, Amos R. (1999). 4061:Kogge, Peter M. (1981). 3807:"The Design of Colossus" 2493:input (usually a clock). 1966: 1961: 1958: 1953: 1950: 1900:signal (sometimes named 1822: 1742:with inverted enable). 1525:output of the AND gate. 1015:(i.e. a transition from 270:field-effect transistors 18:Edge-triggered flip-flop 4946:Register-transfer level 4550:10.1109/TC.1976.5009250 4390:10.1109/T-C.1973.223730 4097:10.1145/1463891.1463945 3843:Gates, Earl D. (2000). 3823:10.1109/MAHC.1983.10079 3128:JK flip-flop operation 2132:IBM System/360 Model 91 1834:No action (hold state) 1810:like flip-flops below. 1734:would transform into a 1221:Another expression is: 5104:Electronic engineering 4837:Tensor Processing Unit 4460:"The ternary computer" 3920:. Wiley. p. 128. 3647:Latches and Flip Flops 3316: 3113: 3050: 3042: 2948:Hold state (no clock) 2922:Hold state (no clock) 2900: 2879: 2851: 2827: 2799: 2778: 2748:T flip-flop operation 2724: 2648: 2624: 2611: 2603: 2591: 2502: 2494: 2393: 2197: 2039: 1855: 1708: 1692: 1673:master–slave flip-flop 1450: 1433: 1327: 1298: 1269: 1209: 1149: 1039: 994:restricted combination 767: 742: 716: 343: 257: 178: 79:bistable multivibrator 58: 5052:Electronic literature 5006:Hardware acceleration 4874:Computer architecture 4772:Emitter-coupled logic 4709:Printed circuit board 4464:Electronics and Power 3777:. MIT Press. p.  3669:(4th ed.). PWS. 3314: 3302:Timing considerations 3114: 3048: 3040: 3029:drives the D input). 2901: 2880: 2852: 2828: 2800: 2779: 2725: 2646: 2622: 2609: 2601: 2589: 2500: 2488: 2388: 2195: 2176:D = 0, E_H = 1: reset 2113:pass transistor logic 2037: 1853: 1698: 1686: 1551:JK latch truth table 1448: 1427: 1318: 1299: 1270: 1210: 1150: 1037: 748: 736: 717: 344: 252: 172: 40: 4978:Finite-state machine 4956:High-level synthesis 4891:Circuit minimization 4476:10.1049/ep.1964.0037 4418:Often attributed to 4199:(2). ACM: 404–411 . 4090:. pp. 489–504. 3134:Characteristic table 3064: 2890: 2862: 2841: 2810: 2789: 2768: 2754:Characteristic table 2663: 2179:D = 1, E_H = 0: hold 1779:false) the latch is 1703:gates (on left) and 1454:latch built with an 1297:{\displaystyle SR=0} 1279: 1228: 1159: 1096: 833:Characteristic table 389: 359:Set-Reset (SR) latch 333: 118:finite-state machine 30:For other uses, see 5099:Digital electronics 5025:Digital photography 4807:Generic Array Logic 4729:Combinational logic 4704:Printed electronics 4668:Digital electronics 4372:Chaney, Thomas J.; 4305:SN7474 TI datasheet 4215:10.1145/17356.17403 3946:Hughes Aircraft Co. 3129: 2749: 2173:D = 1, E_H = 1: set 2139:polarity hold latch 2111:A gated D latch in 2096:D = 0, E = 1: reset 1947: 1921:synchronous systems 1819: 1552: 1473: 1354: 1058:R (dominated)-latch 1052:S (dominated)-latch 828: 827:SR latch operation 759:S = 0, R = 1: Reset 266:bipolar transistors 203:integrated circuits 151:integrated circuits 95:digital electronics 4973:Asynchronous logic 4749:Integrated circuit 4714:Electronic circuit 4615:2015-04-08 at the 4610:FlipFlop Hierarchy 4585:10.1007/BF02778378 4374:Molnar, Charles E. 3803:Flowers, Thomas H. 3531:multi-valued logic 3324:of the flip-flop. 3317: 3127: 3109: 3051: 3043: 2896: 2875: 2847: 2823: 2795: 2774: 2747: 2720: 2649: 2625: 2612: 2604: 2592: 2503: 2495: 2394: 2198: 2196:D flip-flop symbol 2134:for that purpose. 2093:D = 0, E = 0: hold 2090:D = 1, E = 0: hold 2040: 1945: 1856: 1817: 1709: 1693: 1550: 1471: 1451: 1434: 1349: 1328: 1294: 1265: 1205: 1145: 1040: 1011:inputs may go low 826: 768: 756:S = 0, R = 0: Hold 743: 712: 710: 339: 258: 179: 87:logical complement 59: 5081: 5080: 5030:Digital telephone 5001:Computer hardware 4968:Synchronous logic 4623:The J-K Flip-Flop 4470:(2). IET: 36–39. 4437:978-0-691-00515-7 4358:978-0-12-800056-4 4245:"The D Flip-Flop" 4174:978-0-7923-8463-2 4044:978-0-8493-1191-8 3976:978-981-02-3110-1 3883:978-0-87891-543-9 3856:978-0-7668-1698-5 3788:978-0-262-16123-7 3756:. pp. 271–2. 3633:978-0-12-374270-4 3446:propagation delay 3436:Propagation delay 3307:Timing parameters 3297: 3296: 3104: 3091: 3074: 3016: 3015: 2899:{\displaystyle T} 2872: 2850:{\displaystyle Q} 2820: 2798:{\displaystyle Q} 2777:{\displaystyle T} 2715: 2702: 2673: 2577: 2576: 2381: 2380: 2266: 2265: 2087:D = 1, E = 1: set 2044: 2043: 2030: 2029: 1882:transparent latch 1860: 1859: 1846: 1845: 1745:Alternatively, a 1717:inverted SR latch 1630: 1629: 1520: 1519: 1438: 1437: 1420: 1419: 1383:= 1; not allowed 1259: 1238: 1184: 1169: 1139: 1121: 1106: 979: 978: 753:S = 1, R = 0: Set 525: 478: 342:{\displaystyle Q} 175:positive feedback 16:(Redirected from 5126: 4734:Sequential logic 4661: 4654: 4647: 4638: 4633: 4597: 4596: 4568: 4562: 4561: 4533: 4527: 4526: 4525: 4521: 4511: 4505: 4504: 4502: 4501: 4492:. Archived from 4486: 4480: 4479: 4455: 4441: 4416: 4410: 4409: 4369: 4363: 4362: 4344: 4335: 4334: 4316: 4307: 4302: 4296: 4291: 4285: 4284: 4282: 4281: 4272:. Archived from 4266: 4260: 4259: 4257: 4256: 4247:. Archived from 4241: 4235: 4234: 4208: 4188: 4179: 4178: 4158: 4149: 4148: 4136: 4130: 4129: 4123: 4119: 4117: 4109: 4099: 4083: 4077: 4076: 4058: 4049: 4048: 4028: 4022: 4021: 3999: 3993: 3987: 3981: 3980: 3960: 3954: 3953: 3952: 3948: 3938: 3932: 3931: 3911: 3905: 3904: 3894: 3888: 3887: 3867: 3861: 3860: 3840: 3834: 3833: 3799: 3793: 3792: 3776: 3766: 3760: 3757: 3743: 3736:The Radio Review 3725: 3706: 3700: 3699: 3698: 3694: 3687: 3681: 3680: 3662: 3653: 3644: 3638: 3637: 3617: 3611: 3600: 3551: 3547: 3501:Multi-level cell 3278: 3139:Excitation table 3130: 3118: 3116: 3115: 3110: 3105: 3097: 3092: 3084: 3076: 3075: 3072: 2905: 2903: 2902: 2897: 2884: 2882: 2881: 2876: 2874: 2873: 2870: 2856: 2854: 2853: 2848: 2832: 2830: 2829: 2824: 2822: 2821: 2818: 2804: 2802: 2801: 2796: 2783: 2781: 2780: 2775: 2759:Excitation table 2750: 2729: 2727: 2726: 2721: 2716: 2708: 2703: 2695: 2675: 2674: 2671: 2530: 2475: 2471: 2467: 2463: 2450: 2436: 2424: 2317: 2289: 2217: 2166: 2154: 2108: 2080: 2068: 2058: 2052: 1986: 1964: 1948: 1941: 1940: 1871: 1820: 1813: 1812: 1767: 1739: 1723: 1707:gates (on right) 1690: 1665:transparent-high 1623: 1553: 1535:De Morgan's laws 1474: 1431: 1382: 1365: 1360: 1355: 1353:latch operation 1352: 1345: 1344: 1337: 1333: 1322: 1310: 1303: 1301: 1300: 1295: 1274: 1272: 1271: 1266: 1261: 1260: 1252: 1240: 1239: 1236: 1214: 1212: 1211: 1206: 1186: 1185: 1177: 1171: 1170: 1167: 1154: 1152: 1151: 1146: 1141: 1140: 1132: 1123: 1122: 1114: 1108: 1107: 1104: 1045: 1006: 838:Excitation table 829: 816: 809: 802: 789: 721: 719: 718: 713: 711: 639: 527: 526: 518: 480: 479: 471: 348: 346: 345: 340: 328: 316:("toggle"), and 276:, and inverting 114:sequential logic 91:sequential logic 56: 48: 21: 5134: 5133: 5129: 5128: 5127: 5125: 5124: 5123: 5119:Computer memory 5109:Digital systems 5084: 5083: 5082: 5077: 5056: 4989: 4924:Place and route 4919:Logic synthesis 4905: 4901:Gate equivalent 4864:Logic synthesis 4859:Boolean algebra 4842: 4784:Macrocell array 4744:Boolean circuit 4670: 4665: 4627: 4617:Wayback Machine 4606: 4601: 4600: 4570: 4569: 4565: 4535: 4534: 4530: 4523: 4513: 4512: 4508: 4499: 4497: 4488: 4487: 4483: 4457: 4447: 4438: 4423: 4417: 4413: 4371: 4370: 4366: 4359: 4346: 4345: 4338: 4331: 4318: 4317: 4310: 4303: 4299: 4292: 4288: 4279: 4277: 4268: 4267: 4263: 4254: 4252: 4243: 4242: 4238: 4190: 4189: 4182: 4175: 4160: 4159: 4152: 4138: 4137: 4133: 4120: 4110: 4085: 4084: 4080: 4073: 4060: 4059: 4052: 4045: 4030: 4029: 4025: 4018: 4001: 4000: 3996: 3988: 3984: 3977: 3962: 3961: 3957: 3950: 3940: 3939: 3935: 3928: 3913: 3912: 3908: 3896: 3895: 3891: 3884: 3869: 3868: 3864: 3857: 3842: 3841: 3837: 3801: 3800: 3796: 3789: 3768: 3767: 3763: 3747: 3729: 3728:Reprinted in: 3718:The Electrician 3711: 3707: 3703: 3696: 3689: 3688: 3684: 3677: 3664: 3663: 3656: 3645: 3641: 3634: 3619: 3618: 3614: 3601: 3597: 3592: 3579:Schmitt trigger 3574:Sample and hold 3560: 3555: 3554: 3548: 3544: 3539: 3503: 3497: 3495:Generalizations 3490: 3486: 3482: 3478: 3474: 3470: 3459: 3455: 3451: 3443: 3438: 3423: 3415: 3394: 3388: 3309: 3304: 3276: 3166: 3157: 3067: 3062: 3061: 3035: 3028: 2888: 2887: 2865: 2860: 2859: 2839: 2838: 2813: 2808: 2807: 2787: 2786: 2766: 2765: 2730:(expanding the 2666: 2661: 2660: 2641: 2617: 2584: 2545: 2507:gated D latches 2483: 2473: 2469: 2465: 2461: 2448: 2444: 2443: 2442: 2441: 2440: 2437: 2429: 2428: 2425: 2416: 2415: 2409: 2398:shift registers 2315: 2229: 2203:zero-order hold 2190: 2183: 2182: 2167: 2158: 2155: 2123: 2116: 2109: 2100: 2099: 2081: 2072: 2069: 2060: 2056: 2053: 1989: 1984: 1981: 1962: 1925:two-phase clock 1914:level-sensitive 1869: 1865: 1804:level-sensitive 1781:closed (opaque) 1765: 1737: 1721: 1688: 1681: 1669:transparent-low 1653:non-transparent 1645: 1621: 1565: 1543: 1443: 1441:SR AND-OR latch 1429: 1380: 1363: 1358: 1350: 1335: 1331: 1320: 1313: 1308: 1277: 1276: 1231: 1226: 1225: 1162: 1157: 1156: 1099: 1094: 1093: 1044:(S, R) = (1, 1) 1043: 1004: 998:forbidden state 865: 853: 814: 807: 800: 787: 765: 731: 709: 708: 698: 675: 665: 641: 640: 628: 602: 592: 565: 564: 554: 528: 509: 482: 481: 462: 433: 423: 387: 386: 355: 331: 330: 327: 324: 321: 308:("set-reset"), 302: 247: 230:Hughes Aircraft 167: 54: 46: 35: 28: 23: 22: 15: 12: 11: 5: 5132: 5130: 5122: 5121: 5116: 5111: 5106: 5101: 5096: 5086: 5085: 5079: 5078: 5076: 5075: 5070: 5064: 5062: 5058: 5057: 5055: 5054: 5049: 5048: 5047: 5042: 5040:cinematography 5032: 5027: 5022: 5021: 5020: 5010: 5009: 5008: 4997: 4995: 4991: 4990: 4988: 4987: 4986: 4985: 4975: 4970: 4965: 4960: 4959: 4958: 4953: 4943: 4938: 4937: 4936: 4931: 4921: 4915: 4913: 4907: 4906: 4904: 4903: 4898: 4893: 4888: 4887: 4886: 4879:Digital signal 4876: 4871: 4866: 4861: 4856: 4854:Digital signal 4850: 4848: 4844: 4843: 4841: 4840: 4834: 4828: 4822: 4816: 4810: 4804: 4798: 4792: 4786: 4781: 4775: 4769: 4763: 4758: 4752: 4746: 4741: 4736: 4731: 4726: 4721: 4716: 4711: 4706: 4701: 4696: 4691: 4686: 4680: 4678: 4672: 4671: 4666: 4664: 4663: 4656: 4649: 4641: 4635: 4634: 4625: 4620: 4605: 4604:External links 4602: 4599: 4598: 4579:(3): 268–275. 4563: 4544:(3): 237–246. 4528: 4506: 4481: 4444:flip-flap-flop 4436: 4411: 4384:(4): 421–422. 4364: 4357: 4336: 4329: 4308: 4297: 4286: 4261: 4236: 4206:10.1.1.99.2773 4180: 4173: 4150: 4147:(10): 909–910. 4131: 4122:|journal= 4078: 4071: 4050: 4043: 4023: 4016: 3994: 3982: 3975: 3955: 3933: 3926: 3906: 3889: 3882: 3862: 3855: 3835: 3794: 3787: 3761: 3759: 3758: 3744: 3726: 3701: 3682: 3675: 3654: 3639: 3632: 3612: 3594: 3593: 3591: 3588: 3587: 3586: 3581: 3576: 3571: 3566: 3564:Latching relay 3559: 3556: 3553: 3552: 3541: 3540: 3538: 3535: 3522:(respectively 3512:flip-flap-flop 3496: 3493: 3488: 3487: + t 3484: 3480: 3476: 3472: 3468: 3465:shift register 3457: 3453: 3449: 3441: 3437: 3434: 3421: 3413: 3390:Main article: 3387: 3384: 3308: 3305: 3303: 3300: 3299: 3298: 3295: 3294: 3291: 3288: 3285: 3282: 3279: 3274: 3271: 3268: 3264: 3263: 3260: 3257: 3254: 3251: 3248: 3245: 3242: 3239: 3235: 3234: 3231: 3228: 3225: 3222: 3219: 3216: 3213: 3210: 3206: 3205: 3202: 3199: 3196: 3193: 3190: 3187: 3184: 3181: 3177: 3176: 3173: 3170: 3167: 3164: 3161: 3158: 3155: 3152: 3149: 3146: 3142: 3141: 3136: 3120: 3119: 3108: 3103: 3100: 3095: 3090: 3087: 3082: 3079: 3070: 3034: 3031: 3026: 3018: 3017: 3014: 3013: 3010: 3007: 3004: 3001: 2998: 2995: 2992: 2988: 2987: 2984: 2981: 2978: 2975: 2972: 2969: 2966: 2962: 2961: 2958: 2955: 2952: 2949: 2946: 2943: 2940: 2936: 2935: 2932: 2929: 2926: 2923: 2920: 2917: 2914: 2910: 2909: 2906: 2895: 2885: 2868: 2857: 2846: 2836: 2833: 2816: 2805: 2794: 2784: 2773: 2762: 2761: 2756: 2736: 2735: 2719: 2714: 2711: 2706: 2701: 2698: 2693: 2690: 2687: 2684: 2681: 2678: 2669: 2640: 2637: 2616: 2613: 2583: 2580: 2579: 2578: 2575: 2574: 2571: 2568: 2565: 2561: 2560: 2557: 2554: 2551: 2547: 2546: 2543: 2540: 2537: 2534: 2482: 2479: 2438: 2431: 2430: 2426: 2419: 2418: 2417: 2413: 2412: 2411: 2410: 2408: 2405: 2383: 2382: 2379: 2378: 2375: 2372: 2369: 2366: 2363: 2359: 2358: 2355: 2352: 2349: 2346: 2343: 2339: 2338: 2335: 2332: 2329: 2326: 2323: 2319: 2318: 2313: 2310: 2307: 2304: 2301: 2297: 2296: 2293: 2268: 2267: 2264: 2263: 2260: 2257: 2253: 2252: 2249: 2246: 2242: 2241: 2238: 2235: 2231: 2230: 2227: 2224: 2221: 2189: 2186: 2185: 2184: 2181: 2180: 2177: 2174: 2170: 2168: 2161: 2159: 2156: 2149: 2122: 2119: 2118: 2117: 2110: 2103: 2101: 2098: 2097: 2094: 2091: 2088: 2084: 2082: 2075: 2073: 2070: 2063: 2061: 2054: 2047: 2042: 2041: 2031: 2028: 2027: 2024: 2021: 2018: 2015: 2011: 2010: 2007: 2004: 2001: 1998: 1994: 1993: 1990: 1987: 1982: 1979: 1976: 1973: 1969: 1968: 1965: 1960: 1957: 1955: 1952: 1864: 1861: 1858: 1857: 1847: 1844: 1843: 1840: 1836: 1835: 1832: 1828: 1827: 1824: 1808:edge-sensitive 1747:gated SR latch 1728:gated SR latch 1713:gated SR latch 1680: 1679:Gated SR latch 1677: 1644: 1641: 1632: 1631: 1628: 1627: 1624: 1619: 1616: 1612: 1611: 1608: 1605: 1602: 1598: 1597: 1594: 1591: 1588: 1584: 1583: 1580: 1577: 1574: 1570: 1569: 1566: 1563: 1560: 1557: 1542: 1539: 1522: 1521: 1518: 1517: 1514: 1511: 1507: 1506: 1503: 1500: 1496: 1495: 1492: 1489: 1485: 1484: 1481: 1478: 1458:gate with one 1442: 1439: 1436: 1435: 1428:Symbol for an 1421: 1418: 1417: 1414: 1411: 1407: 1406: 1403: 1400: 1396: 1395: 1392: 1389: 1385: 1384: 1377: 1374: 1370: 1369: 1366: 1361: 1312: 1306: 1305: 1304: 1293: 1290: 1287: 1284: 1264: 1258: 1255: 1249: 1246: 1243: 1234: 1216: 1215: 1204: 1201: 1198: 1195: 1192: 1189: 1183: 1180: 1174: 1165: 1144: 1138: 1135: 1129: 1126: 1120: 1117: 1111: 1102: 1076: 1075: 1061: 1060: 1054: 1029:race condition 1013:simultaneously 984:Note: X means 981: 980: 977: 976: 973: 970: 967: 964: 961: 958: 955: 951: 950: 947: 944: 941: 938: 935: 932: 929: 925: 924: 921: 918: 915: 912: 909: 906: 903: 899: 898: 895: 892: 889: 886: 883: 880: 877: 873: 872: 869: 866: 863: 860: 857: 854: 851: 848: 845: 841: 840: 835: 822: 821: 818: 811: 804: 764: 763: 760: 757: 754: 750: 730: 727: 723: 722: 707: 704: 701: 699: 697: 694: 691: 688: 685: 682: 679: 676: 674: 671: 668: 666: 664: 661: 658: 655: 652: 649: 646: 643: 642: 638: 634: 631: 629: 627: 624: 621: 618: 615: 612: 609: 606: 603: 601: 598: 595: 593: 591: 588: 585: 582: 579: 576: 573: 570: 567: 566: 563: 560: 557: 555: 553: 550: 547: 544: 541: 538: 535: 532: 529: 524: 521: 515: 512: 510: 508: 505: 502: 499: 496: 493: 490: 487: 484: 483: 477: 474: 468: 465: 463: 461: 458: 455: 452: 449: 446: 443: 440: 437: 434: 432: 429: 426: 424: 422: 419: 416: 413: 410: 407: 404: 401: 398: 395: 394: 354: 351: 338: 325: 322: 301: 298: 246: 245:Implementation 243: 211:multivibrators 183:William Eccles 166: 163: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5131: 5120: 5117: 5115: 5112: 5110: 5107: 5105: 5102: 5100: 5097: 5095: 5092: 5091: 5089: 5074: 5071: 5069: 5068:Metastability 5066: 5065: 5063: 5061:Design issues 5059: 5053: 5050: 5046: 5043: 5041: 5038: 5037: 5036: 5035:Digital video 5033: 5031: 5028: 5026: 5023: 5019: 5016: 5015: 5014: 5013:Digital audio 5011: 5007: 5004: 5003: 5002: 4999: 4998: 4996: 4992: 4984: 4981: 4980: 4979: 4976: 4974: 4971: 4969: 4966: 4964: 4961: 4957: 4954: 4952: 4949: 4948: 4947: 4944: 4942: 4939: 4935: 4932: 4930: 4927: 4926: 4925: 4922: 4920: 4917: 4916: 4914: 4912: 4908: 4902: 4899: 4897: 4894: 4892: 4889: 4885: 4882: 4881: 4880: 4877: 4875: 4872: 4870: 4867: 4865: 4862: 4860: 4857: 4855: 4852: 4851: 4849: 4845: 4838: 4835: 4832: 4829: 4826: 4823: 4820: 4817: 4814: 4811: 4808: 4805: 4802: 4799: 4796: 4793: 4790: 4787: 4785: 4782: 4779: 4776: 4773: 4770: 4767: 4764: 4762: 4759: 4756: 4753: 4750: 4747: 4745: 4742: 4740: 4737: 4735: 4732: 4730: 4727: 4725: 4722: 4720: 4717: 4715: 4712: 4710: 4707: 4705: 4702: 4700: 4697: 4695: 4692: 4690: 4687: 4685: 4682: 4681: 4679: 4677: 4673: 4669: 4662: 4657: 4655: 4650: 4648: 4643: 4642: 4639: 4631: 4626: 4624: 4621: 4618: 4614: 4611: 4608: 4607: 4603: 4594: 4590: 4586: 4582: 4578: 4574: 4567: 4564: 4559: 4555: 4551: 4547: 4543: 4539: 4532: 4529: 4520: 4516: 4510: 4507: 4496:on 2009-01-05 4495: 4491: 4485: 4482: 4477: 4473: 4469: 4465: 4461: 4453: 4452: 4445: 4439: 4433: 4429: 4428: 4421: 4415: 4412: 4407: 4403: 4399: 4395: 4391: 4387: 4383: 4379: 4375: 4368: 4365: 4360: 4354: 4350: 4343: 4341: 4337: 4332: 4330:0-13-191165-1 4326: 4322: 4315: 4313: 4309: 4306: 4301: 4298: 4295: 4290: 4287: 4276:on 2013-09-08 4275: 4271: 4265: 4262: 4251:on 2014-02-23 4250: 4246: 4240: 4237: 4232: 4228: 4224: 4220: 4216: 4212: 4207: 4202: 4198: 4194: 4187: 4185: 4181: 4176: 4170: 4166: 4165: 4157: 4155: 4151: 4146: 4142: 4135: 4132: 4127: 4115: 4107: 4103: 4098: 4093: 4089: 4082: 4079: 4074: 4072:0-07-035237-2 4068: 4064: 4057: 4055: 4051: 4046: 4040: 4036: 4035: 4027: 4024: 4019: 4017:9783540264101 4013: 4009: 4005: 3998: 3995: 3991: 3986: 3983: 3978: 3972: 3968: 3967: 3959: 3956: 3947: 3943: 3937: 3934: 3929: 3927:9780608102658 3923: 3919: 3918: 3910: 3907: 3902: 3901: 3893: 3890: 3885: 3879: 3875: 3874: 3866: 3863: 3858: 3852: 3848: 3847: 3839: 3836: 3832: 3828: 3824: 3820: 3816: 3812: 3808: 3804: 3798: 3795: 3790: 3784: 3780: 3775: 3774: 3765: 3762: 3755: 3751: 3746:Summary in: 3745: 3741: 3737: 3733: 3727: 3723: 3719: 3715: 3710: 3709: 3705: 3702: 3692: 3686: 3683: 3678: 3676:9780534954727 3672: 3668: 3661: 3659: 3655: 3652: 3648: 3643: 3640: 3635: 3629: 3625: 3624: 3616: 3613: 3609: 3605: 3602:For example, 3599: 3596: 3589: 3585: 3582: 3580: 3577: 3575: 3572: 3570: 3567: 3565: 3562: 3561: 3557: 3546: 3543: 3536: 3534: 3532: 3527: 3525: 3521: 3515: 3513: 3509: 3508:ternary logic 3502: 3494: 3492: 3466: 3461: 3447: 3435: 3433: 3429: 3425: 3419: 3411: 3406: 3403: 3399: 3398:metastability 3393: 3386:Metastability 3385: 3383: 3379: 3375: 3371: 3369: 3365: 3361: 3359: 3355: 3354:Recovery time 3351: 3349: 3345: 3343: 3339: 3335: 3333: 3329: 3325: 3323: 3313: 3306: 3301: 3292: 3289: 3286: 3283: 3280: 3275: 3272: 3269: 3266: 3265: 3261: 3258: 3255: 3252: 3249: 3246: 3243: 3240: 3237: 3236: 3232: 3229: 3226: 3223: 3220: 3217: 3214: 3211: 3208: 3207: 3203: 3200: 3197: 3194: 3191: 3188: 3185: 3182: 3179: 3178: 3174: 3171: 3168: 3162: 3159: 3153: 3150: 3147: 3144: 3143: 3140: 3135: 3131: 3125: 3124: 3123: 3106: 3098: 3093: 3085: 3080: 3077: 3068: 3060: 3059: 3058: 3055: 3047: 3039: 3032: 3030: 3024: 3011: 3008: 3005: 3002: 2999: 2996: 2993: 2990: 2989: 2985: 2982: 2979: 2976: 2973: 2970: 2967: 2964: 2963: 2959: 2956: 2953: 2950: 2947: 2944: 2941: 2938: 2937: 2933: 2930: 2927: 2924: 2921: 2918: 2915: 2912: 2911: 2907: 2893: 2886: 2866: 2858: 2844: 2837: 2834: 2814: 2806: 2792: 2785: 2771: 2764: 2763: 2760: 2755: 2751: 2745: 2744: 2743: 2741: 2733: 2717: 2709: 2704: 2696: 2691: 2688: 2685: 2682: 2679: 2676: 2667: 2659: 2658: 2657: 2655: 2645: 2638: 2636: 2634: 2633:dynamic logic 2629: 2621: 2614: 2608: 2600: 2596: 2588: 2581: 2572: 2569: 2566: 2563: 2562: 2558: 2555: 2552: 2549: 2548: 2541: 2538: 2535: 2532: 2531: 2528: 2527: 2526: 2524: 2519: 2515: 2512: 2508: 2499: 2492: 2487: 2480: 2478: 2459: 2458:gated D latch 2454: 2452: 2435: 2423: 2406: 2404: 2401: 2399: 2392: 2387: 2376: 2373: 2370: 2367: 2364: 2361: 2360: 2356: 2353: 2350: 2347: 2344: 2341: 2340: 2336: 2333: 2330: 2327: 2324: 2321: 2320: 2314: 2311: 2308: 2305: 2302: 2299: 2298: 2290: 2287: 2286: 2285: 2281: 2279: 2278: 2273: 2261: 2258: 2255: 2254: 2250: 2247: 2244: 2243: 2239: 2236: 2233: 2232: 2225: 2222: 2219: 2218: 2215: 2214: 2213: 2212:Truth table: 2210: 2208: 2204: 2194: 2187: 2178: 2175: 2172: 2171: 2165: 2160: 2153: 2148: 2146: 2144: 2140: 2135: 2133: 2127: 2120: 2114: 2107: 2102: 2095: 2092: 2089: 2086: 2085: 2079: 2074: 2067: 2062: 2051: 2046: 2036: 2032: 2025: 2022: 2019: 2016: 2013: 2012: 2008: 2005: 2002: 1999: 1996: 1995: 1991: 1983: 1977: 1974: 1971: 1970: 1949: 1943: 1942: 1939: 1937: 1933: 1928: 1926: 1922: 1917: 1915: 1911: 1907: 1903: 1899: 1896:input and an 1895: 1891: 1887: 1883: 1879: 1875: 1863:Gated D latch 1862: 1852: 1848: 1841: 1838: 1837: 1833: 1830: 1829: 1825: 1821: 1815: 1814: 1811: 1809: 1805: 1801: 1797: 1793: 1789: 1784: 1782: 1778: 1773: 1771: 1763: 1759: 1756:With E high ( 1754: 1752: 1748: 1743: 1741: 1733: 1729: 1725: 1718: 1714: 1706: 1702: 1697: 1685: 1678: 1676: 1674: 1670: 1666: 1662: 1658: 1654: 1650: 1642: 1640: 1637: 1625: 1620: 1617: 1614: 1613: 1609: 1606: 1603: 1600: 1599: 1595: 1592: 1589: 1586: 1585: 1581: 1578: 1575: 1572: 1571: 1567: 1561: 1558: 1555: 1554: 1548: 1547: 1546: 1540: 1538: 1536: 1530: 1526: 1515: 1512: 1509: 1508: 1504: 1501: 1498: 1497: 1493: 1490: 1487: 1486: 1482: 1479: 1476: 1475: 1469: 1468: 1467: 1465: 1462:input and an 1461: 1457: 1447: 1440: 1426: 1422: 1415: 1412: 1409: 1408: 1404: 1401: 1398: 1397: 1393: 1390: 1387: 1386: 1378: 1375: 1372: 1371: 1367: 1362: 1357: 1356: 1347: 1346: 1343: 1339: 1326: 1317: 1307: 1291: 1288: 1285: 1282: 1262: 1253: 1247: 1244: 1241: 1232: 1224: 1223: 1222: 1219: 1202: 1196: 1193: 1190: 1178: 1172: 1163: 1142: 1133: 1127: 1124: 1115: 1109: 1100: 1092: 1091: 1090: 1087: 1085: 1081: 1074: 1070: 1069: 1068: 1066: 1059: 1055: 1053: 1049: 1048: 1047: 1036: 1032: 1030: 1026: 1022: 1018: 1014: 1010: 1003: 999: 995: 990: 989: 985: 974: 971: 968: 965: 962: 959: 956: 953: 952: 948: 945: 942: 939: 936: 933: 930: 927: 926: 922: 919: 916: 913: 910: 907: 904: 901: 900: 896: 893: 890: 887: 884: 881: 878: 875: 874: 870: 867: 861: 858: 855: 849: 846: 843: 842: 839: 834: 830: 824: 823: 819: 812: 805: 797: 796: 795: 791: 784: 780: 776: 774: 761: 758: 755: 752: 751: 747: 740: 735: 728: 726: 705: 702: 700: 692: 689: 686: 680: 677: 672: 669: 667: 659: 656: 653: 647: 644: 636: 632: 630: 622: 619: 616: 610: 607: 604: 599: 596: 594: 586: 583: 580: 574: 571: 568: 561: 558: 556: 548: 545: 542: 536: 533: 530: 519: 513: 511: 503: 500: 497: 491: 488: 485: 472: 466: 464: 456: 453: 450: 444: 441: 438: 435: 430: 427: 425: 417: 414: 411: 405: 402: 399: 396: 385: 384: 383: 379: 377: 374: 370: 365: 362: 360: 352: 350: 336: 319: 315: 311: 307: 299: 297: 295: 289: 287: 281: 279: 275: 271: 267: 263: 256: 251: 244: 242: 240: 237:-input" and " 236: 231: 227: 223: 219: 214: 212: 208: 204: 200: 196: 192: 188: 184: 176: 171: 164: 162: 160: 156: 152: 147: 144: 142: 138: 134: 130: 126: 121: 119: 115: 111: 110: 105: 104: 98: 96: 92: 88: 84: 80: 76: 72: 68: 64: 52: 44: 39: 33: 19: 4994:Applications 4718: 4576: 4572: 4566: 4541: 4537: 4531: 4509: 4498:. Retrieved 4494:the original 4484: 4467: 4463: 4450: 4443: 4442:), the term 4426: 4422:(1969) (see 4414: 4381: 4377: 4367: 4348: 4320: 4300: 4289: 4278:. Retrieved 4274:the original 4264: 4253:. Retrieved 4249:the original 4239: 4196: 4192: 4163: 4144: 4140: 4134: 4087: 4081: 4062: 4033: 4026: 4007: 3997: 3985: 3965: 3958: 3936: 3916: 3909: 3898: 3892: 3872: 3865: 3845: 3838: 3814: 3810: 3797: 3772: 3764: 3753: 3739: 3735: 3721: 3717: 3704: 3685: 3666: 3650: 3642: 3622: 3615: 3598: 3545: 3528: 3523: 3516: 3511: 3504: 3462: 3439: 3430: 3426: 3417: 3409: 3407: 3395: 3380: 3376: 3372: 3367: 3364:Removal time 3363: 3362: 3357: 3353: 3352: 3347: 3346: 3341: 3337: 3336: 3331: 3327: 3326: 3321: 3318: 3121: 3056: 3052: 3033:JK flip-flop 3019: 2737: 2650: 2630: 2626: 2593: 2523:falling edge 2522: 2520: 2516: 2510: 2504: 2490: 2455: 2451:NAND latches 2445: 2402: 2395: 2282: 2275: 2271: 2269: 2211: 2199: 2143:logic hazard 2138: 2136: 2128: 2124: 1935: 1931: 1929: 1918: 1913: 1909: 1908:). The word 1905: 1901: 1897: 1893: 1889: 1888:, or simply 1885: 1881: 1877: 1873: 1866: 1807: 1803: 1800:clock signal 1795: 1792:write strobe 1791: 1787: 1785: 1780: 1776: 1775:With E low ( 1774: 1769: 1761: 1757: 1755: 1750: 1746: 1744: 1735: 1731: 1727: 1720: 1716: 1712: 1710: 1672: 1668: 1664: 1660: 1656: 1652: 1649:transparent. 1648: 1646: 1635: 1633: 1544: 1531: 1527: 1523: 1452: 1340: 1329: 1220: 1217: 1088: 1079: 1077: 1072: 1062: 1057: 1051: 1041: 1020: 1016: 1012: 1008: 1001: 997: 993: 991: 987: 983: 982: 963:Not allowed 792: 782: 778: 777:, or simply 771: 769: 729:SR NOR latch 724: 380: 366: 363: 358: 356: 317: 313: 309: 305: 303: 290: 282: 262:vacuum tubes 259: 238: 234: 225: 215: 195:vacuum tubes 190: 187:F. W. Jordan 180: 148: 145: 140: 136: 122: 107: 101: 99: 70: 66: 60: 50: 42: 41:A SR latch ( 5114:Logic gates 4724:Memory cell 3742:(3): 143–6. 3012:Complement 2986:Complement 2740:truth table 2639:T flip-flop 2245:Rising edge 2234:Rising edge 2188:D flip-flop 2121:Earle latch 1923:that use a 1910:transparent 1892:. It has a 1890:gated latch 1798:input is a 1794:. When the 1786:A periodic 1770:transparent 1687:NAND Gated 1667:latch by a 1661:transparent 885:Hold state 376:logic gates 278:logic gates 207:logic gates 159:7400 series 125:synchronous 63:electronics 5088:Categories 5073:Runt pulse 5045:television 4739:Logic gate 4684:Transistor 4676:Components 4515:US 6975152 4500:2009-10-17 4456:, and in 4280:2011-12-15 4255:2016-06-05 3942:US 2850566 3817:(3): 249, 3590:References 3499:See also: 3416:) and the 3410:setup time 3328:Setup time 3186:Hold state 2960:No change 2934:No change 2277:don't care 2274:denotes a 2256:Non-rising 2207:delay line 2059:NAND latch 1992:No change 1886:data latch 1726:becomes a 1582:No change 1432:NAND latch 1325:NAND gates 1311:NAND latch 1025:metastable 1017:restricted 986:don't care 312:("data"), 67:flip-flops 4929:Placement 4719:Flip-flop 4699:Capacitor 4420:Don Knuth 4398:0018-9340 4223:0163-5964 4201:CiteSeerX 4124:ignored ( 4114:cite book 3691:GB 148582 3418:hold time 3338:Hold time 3287:No change 3198:No change 3102:¯ 3089:¯ 2734:operator) 2713:¯ 2700:¯ 2683:⊕ 1257:¯ 1182:¯ 1137:¯ 1119:¯ 779:feedbacks 739:NOR gates 523:¯ 476:¯ 274:inverters 137:flip-flop 32:Flip-flop 4694:Inductor 4689:Resistor 4613:Archived 4593:61275953 4558:34323423 4406:12594672 4106:15955626 3831:39816473 3805:(1983), 3610:page 44) 3558:See also 3524:one-cold 3402:computer 3348:Aperture 3322:aperture 3027:previous 3023:counters 2908:Comment 2835:Comment 2654:equation 2295:Outputs 1967:Comment 1751:SR latch 1732:SR latch 1568:Comment 1541:JK latch 1460:inverted 1084:JK latch 773:feedback 294:drawings 75:circuits 4934:Routing 4768:(3D IC) 4231:2733845 3520:one-hot 3169:Comment 3151:Comment 3000:Toggle 2974:Toggle 2595:gates. 2570:Falling 2556:Falling 2205:, or a 1906:control 1826:Action 1626:Toggle 1483:Action 1379:Q = 1, 1368:Action 1073:E-latch 856:Action 783:control 165:History 141:latches 129:clocked 83:signals 71:latches 4911:Design 4847:Theory 4833:(ASIC) 4827:(FPOA) 4821:(FPGA) 4815:(CPLD) 4780:(EPLD) 4591:  4556:  4524:  4434:  4404:  4396:  4355:  4327:  4229:  4221:  4203:  4171:  4104:  4069:  4041:  4014:  3973:  3951:  3924:  3880:  3853:  3829:  3785:  3724:: 298. 3697:  3673:  3630:  3358:before 3332:before 3273:Toggle 2511:enable 2491:enable 2389:4-bit 2292:Inputs 2009:Reset 1934:nable/ 1898:enable 1874:enable 1796:enable 1788:enable 1777:enable 1758:enable 1736:gated 1657:opaque 1636:toggle 1596:Reset 1516:Q = 0 1505:Q = 1 1405:Q = 0 1394:Q = 1 1080:toggle 911:Reset 775:inputs 155:74HC75 55:  51:R3, R4 47:  43:R1, R2 5018:radio 4839:(TPU) 4809:(GAL) 4803:(PAL) 4797:(PLD) 4791:(PLA) 4774:(ECL) 4757:(HIC) 4589:S2CID 4554:S2CID 4402:S2CID 4227:S2CID 4102:S2CID 3827:S2CID 3708:See: 3537:Notes 3479:and t 3444:) or 3368:after 3342:after 3256:Reset 3215:Reset 2220:Clock 1904:, or 1902:clock 1740:latch 1724:latch 1275:with 996:or a 300:Types 133:gates 127:, or 109:state 4751:(IC) 4542:C-25 4432:ISBN 4394:ISSN 4382:C-22 4353:ISBN 4325:ISBN 4219:ISSN 4169:ISBN 4126:help 4067:ISBN 4039:ISBN 4012:ISBN 3971:ISBN 3922:ISBN 3878:ISBN 3851:ISBN 3783:ISBN 3671:ISBN 3628:ISBN 3165:next 3156:next 3073:next 2871:next 2819:next 2672:next 2544:next 2539:> 2468:and 2309:> 2228:next 2026:Set 1988:prev 1980:prev 1951:E/C 1894:data 1762:hold 1610:Set 1564:next 1334:and 1237:next 1168:next 1105:next 1021:hold 1009:both 937:Set 864:next 852:next 373:NAND 326:next 286:edge 222:UCLA 185:and 73:are 69:and 53:= 10 49:kΩ; 4581:doi 4546:doi 4472:doi 4386:doi 4211:doi 4092:doi 3900:EDN 3819:doi 3460:). 3458:PLH 3454:PHL 3244:Set 3227:Set 2732:XOR 1823:E/C 1753:. 1730:(a 1705:NOR 1701:AND 1655:or 1456:AND 1319:An 1155:or 1031:). 1019:to 1002:not 790:. 371:or 369:NOR 361:. 161:. 103:bit 61:In 57:kΩ) 45:= 1 5090:: 4587:. 4575:. 4552:. 4540:. 4468:10 4466:. 4462:. 4400:. 4392:. 4380:. 4339:^ 4311:^ 4225:. 4217:. 4209:. 4197:14 4195:. 4183:^ 4153:^ 4143:. 4118:: 4116:}} 4112:{{ 4100:. 4053:^ 4006:. 3825:, 3813:, 3809:, 3781:. 3779:10 3752:. 3738:. 3734:. 3722:83 3720:. 3716:. 3657:^ 3514:. 3491:. 3485:su 3477:CO 3469:CO 3448:(t 3442:CO 3420:(t 3414:su 3412:(t 3293:0 3262:1 3247:1 3233:X 3218:0 3204:X 3189:Q 3175:K 2742:: 2656:: 2573:1 2559:0 2474:SR 2462:SR 2449:SR 2377:1 2357:0 2337:1 2262:Q 2251:1 2240:0 2209:. 2057:SR 1959:Q 1954:D 1884:, 1870:SR 1772:. 1738:SR 1722:SR 1711:A 1689:SR 1675:. 1537:. 1464:OR 1430:SR 1351:SR 1321:SR 1309:SR 1086:. 1067:. 975:0 949:1 923:0 897:X 871:R 349:. 318:JK 306:SR 272:, 268:, 264:, 213:. 65:, 4660:e 4653:t 4646:v 4632:. 4595:. 4583:: 4577:8 4560:. 4548:: 4503:. 4478:. 4474:: 4440:. 4408:. 4388:: 4361:. 4333:. 4283:. 4258:. 4233:. 4213:: 4177:. 4145:7 4128:) 4108:. 4094:: 4075:. 4047:. 4020:. 3979:. 3930:. 3903:. 3886:. 3859:. 3821:: 3815:5 3791:. 3740:1 3679:. 3636:. 3489:h 3481:h 3473:h 3450:P 3422:h 3290:X 3284:1 3281:1 3277:Q 3270:1 3267:1 3259:X 3253:0 3250:1 3241:0 3238:1 3230:1 3224:1 3221:0 3212:1 3209:0 3201:0 3195:0 3192:0 3183:0 3180:0 3172:J 3163:Q 3160:Q 3154:Q 3148:K 3145:J 3107:Q 3099:K 3094:+ 3086:Q 3081:J 3078:= 3069:Q 3009:1 3006:0 3003:1 2997:0 2994:1 2991:1 2983:1 2980:1 2977:0 2971:1 2968:0 2965:1 2957:0 2954:1 2951:1 2945:1 2942:1 2939:0 2931:0 2928:0 2925:0 2919:0 2916:0 2913:0 2894:T 2867:Q 2845:Q 2815:Q 2793:Q 2772:T 2718:Q 2710:T 2705:+ 2697:Q 2692:T 2689:= 2686:Q 2680:T 2677:= 2668:Q 2567:X 2564:1 2553:X 2550:0 2542:Q 2536:Q 2533:D 2470:R 2466:S 2374:1 2371:X 2368:X 2365:1 2362:1 2354:1 2351:X 2348:X 2345:0 2342:1 2334:0 2331:X 2328:X 2325:1 2322:0 2316:Q 2312:Q 2306:D 2303:R 2300:S 2272:X 2270:( 2259:X 2248:1 2237:0 2226:Q 2223:D 2023:0 2020:1 2017:1 2014:1 2006:1 2003:0 2000:0 1997:1 1985:Q 1978:Q 1975:X 1972:0 1963:Q 1936:c 1932:e 1839:1 1831:0 1766:Q 1622:Q 1618:1 1615:1 1607:1 1604:0 1601:1 1593:0 1590:1 1587:0 1579:Q 1576:0 1573:0 1562:Q 1559:K 1556:J 1513:1 1510:X 1502:0 1499:1 1491:0 1488:0 1480:R 1477:S 1413:1 1410:1 1402:0 1399:1 1391:1 1388:0 1381:Q 1376:0 1373:0 1364:R 1359:S 1336:R 1332:S 1292:0 1289:= 1286:R 1283:S 1263:Q 1254:R 1248:+ 1245:S 1242:= 1233:Q 1203:. 1200:) 1197:S 1194:+ 1191:Q 1188:( 1179:R 1173:= 1164:Q 1143:S 1134:R 1128:+ 1125:Q 1116:R 1110:= 1101:Q 1005:Q 972:X 969:1 966:1 960:X 957:1 954:1 946:0 943:0 940:1 934:1 931:0 928:1 920:1 917:1 914:0 908:0 905:1 902:0 894:0 891:0 888:0 882:Q 879:0 876:0 868:S 862:Q 859:Q 850:Q 847:R 844:S 815:Q 808:Q 801:Q 788:Q 706:1 703:= 696:) 693:1 690:, 687:x 684:( 681:R 678:O 673:x 670:= 663:) 660:0 657:, 654:x 651:( 648:R 645:O 637:x 633:= 626:) 623:1 620:, 617:x 614:( 611:D 608:N 605:A 600:0 597:= 590:) 587:0 584:, 581:x 578:( 575:D 572:N 569:A 562:0 559:= 552:) 549:1 546:, 543:x 540:( 537:R 534:O 531:N 520:x 514:= 507:) 504:0 501:, 498:x 495:( 492:R 489:O 486:N 473:x 467:= 460:) 457:1 454:, 451:x 448:( 445:D 442:N 439:A 436:N 431:1 428:= 421:) 418:0 415:, 412:x 409:( 406:D 403:N 400:A 397:N 337:Q 323:Q 314:T 310:D 239:k 235:j 34:. 20:)

Index

Edge-triggered flip-flop
Flip-flop

electronics
circuits
bistable multivibrator
signals
logical complement
sequential logic
digital electronics
bit
state
sequential logic
finite-state machine
synchronous
clocked
gates
integrated circuits
74HC75
7400 series

positive feedback
William Eccles
F. W. Jordan
vacuum tubes
Colossus codebreaking computer
integrated circuits
logic gates
multivibrators
Jet Propulsion Laboratory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑