Knowledge

Eddy break-up model

Source 📝

250:) became popular models. It is based on the assumption that the reaction rate is controlled by turbulent mixing because of the dependence of reaction rate on the mixing of the turbulent eddies. It is well documented that there are strong interactions between the turbulent flow and reactions. The heat released during the reaction affects the density and hence turbulence. While the turbulent flow induces changes concentration and temperature pulsations which enhance the mixing and heat transfer and affect the reaction rate. Turbulence also results in deformations in burning flame surface due to which folding occurs and the surface is also broken into pieces of different sizes. This enhances the total surface area of the flame and thus increases the combustible mixed gases burnt per unit time. Due to this, turbulent flames grow at a much faster rate than that of laminar flames. 178:
limit). After this limit further increase in the jet velocity of the fuel adds to instability of turbulent flame. The position where laminar flame is changing into turbulent flame is termed as "break-up point". Increase in jet velocity after critical limit results in decrease of the whole flame height. Beyond this point the height of the break-up point reaches a certain value where even after increasing the jet velocity of fuel the flame height will not change. Studies by Hawthorne et al. prove that the chemical reaction rates in turbulent diffusion flames and in laminar diffusion flames are almost similar.
25: 1673:
Above equations (7-9) not only show linear relation of mixture fraction with mass fraction of oxygen and products but also help in predicting their values. Magnussen and Hjertager (1976) utilize this model and conformity of experimental results with predictions supports this model. Several other
177:
inside the air flow plays an important role in deciding the flame shapes. With increase in discharging velocity of fuel into the air laminar diffusion flames tends to become turbulent diffusion flames. This leads to an increase in the flame height and finally it gains a maximum height (critical
133:
engineering. Combustion modeling has a wide range of applications. In most of the combustion systems, fuel and oxygen (or air) are separately supplied in the combustion chamber. Due to this, chemical reaction and combustion occur simultaneously in the
1674:
researchers also justified the beauty of this model for fairly good predictions which are quite close to experimental results. Hence, this model is a topic of top priority due to its simplicity, steady convergence, and implementation in
704: 1733:
Magnussen, B. F.; Hjertager, B. H., "On the mathematical modeling of turbulent combustion with special emphasis on shoot formation and combustion", Sixth symposium (International) on combustion, The combustion institute, pp. 719–729,
1655: 138:. However, the rate of the chemical reaction is faster than the rate of mixing fuel and oxygen. Therefore, that rate of combustion is controlled by rate of mixing. Such cases, where formation of pre-mixture is difficult, are called 364: 1479: 582: 169:) depending on the nature of mixed gas flow. Further, the flame shapes of this kind of burning are divided into two categories oxygen-rich diffusion flames and oxygen-deficient. Flame shapes also depend on the discharging 931: 483: 1316: 258:
Spalding (1971) defined rate of fuel consumption as a function of local flow properties of fuel and oxidant. This model is based on a single step global infinitely fast stoichiometric chemical reaction.
1181: 246:
have been proposed. There is a long list of such models in literature but due to simplicity the eddy break-up model originally proposed by Spalding and later modified by Magnussen and Hjertager (
189:
plays a vital role in many applications and a proper understanding of its effect on the system can be very helpful in designing the newer technologies and improving the existing ones. Nowadays,
1724:
Spalding, D. B., "Mixing and chemical reaction in steady confined turbulent flames", Thirteenth symposium (international) on combustion, The combustion institute, pp. 649–657, 1971
1502: 605: 295: 1339: 1757:
Gao, Y.; Chow, W. K., "A Brief Review on combustion modeling", International Journal on Architectural Science, Volume 6, Number 2, p. 38-69, 2005
506: 1752: 1703: 42: 756: 414: 1215: 748:
are model constants (value varies from 0.35 to 4). The reaction rate of fuel is considered to be smallest among all and is given by:
108: 89: 193:
is a most effective tool for understanding and studying such problems. But a number of problems are associated with it such as:
61: 1775: 46: 287:
is dependent on concentration of reactant and products and temperature of mixture. It can be mathematically calculated as:
68: 960: 949:
The model also leads to determination of mass fraction of product and oxygen using transport equation of mixture fraction
1675: 75: 166: 243: 57: 35: 174: 139: 1770: 190: 162: 135: 82: 1695: 1748: 247: 143: 1650:{\displaystyle {{If}f>f_{st},f={\frac {-{sm}_{fu,1}+m_{ox,0}}{{sm}_{fu,1}+m_{ox,0}}}}} 699:{\displaystyle {R_{pr}=-C_{R}^{'}\rho {\frac {m_{pr}}{(1+s)}}{\frac {\varepsilon }{k}}}} 201: 1747:
Versteeg, H. K.; Malalasekera, W., "An introduction to computational fluid dynamics",
1764: 359:{\displaystyle {\rho ={\frac {P}{RT\sum _{\text{for all j}}{\frac {m_{j}}{M_{j}}}}}}} 218: 211: 200:
Large number of control equation need to be studied which include knowledge of both
158: 1474:{\displaystyle {Iff<f_{st},f={\frac {-m_{ox}+m_{ox,0}}{{sm}_{fu,1}+m_{ox,0}}}}} 577:{\displaystyle {R_{ox}=-C_{R}\rho {\frac {m_{ox}}{s}}{\frac {\varepsilon }{k}}}} 24: 1207:
when there is no fuel and oxygen is present in products, which is defined as
226: 186: 130: 230: 222: 165:
flames (e.g. furnaces, turbo-machinery, some liquid-fuel rocket engines and
154: 170: 161:
diffusion flames (e.g. candles and matches burning in the air etc.) or
210:
There are serious time-scale problems because of mismatch in chemical
1199:
For solving we need to first find the stociometric mixture fraction
926:{\displaystyle {S_{fu}=-\rho {\frac {\varepsilon }{k}}min{\biggl }}} 478:{\displaystyle {R_{fu}=-C_{R}\rho m_{fu}{\frac {\varepsilon }{k}}}} 207:
Involvement of huge number of components in the chemical reactions.
1311:{\displaystyle {f_{st}={\frac {m_{ox,0}}{{sm}_{fu,1}+m_{ox,0}}}}} 18: 382:
It is used to express the turbulent dissipation rate of fuel
262:
1 kg of fuel + s kg of oxidant→(1+s) kg of products
406:
following the proposal from Magnussen and Hjertager as:
204:
and chemistry of chemical reactions during combustion.
197:
The control equations associated are very complicated.
1505: 1342: 1218: 963: 759: 608: 509: 417: 298: 1176:{\displaystyle {f={\frac {-{}_{0}}{{}_{1}-{}_{0}}}}} 49:. Unsourced material may be challenged and removed. 1649: 1473: 1310: 1175: 925: 698: 576: 477: 358: 917: 804: 8: 1628: 1606: 1598: 1580: 1558: 1550: 1543: 1525: 1507: 1506: 1504: 1452: 1430: 1422: 1404: 1388: 1378: 1360: 1343: 1341: 1289: 1267: 1259: 1242: 1236: 1224: 1219: 1217: 1163: 1150: 1134: 1126: 1121: 1111: 1098: 1082: 1074: 1069: 1060: 1047: 1031: 1023: 1018: 1002: 986: 978: 971: 964: 962: 916: 915: 893: 887: 877: 872: 851: 845: 839: 823: 813: 803: 802: 783: 765: 760: 758: 685: 657: 651: 638: 633: 614: 609: 607: 563: 549: 543: 534: 515: 510: 508: 464: 455: 442: 423: 418: 416: 344: 334: 328: 322: 306: 299: 297: 109:Learn how and when to remove this message 1687: 217:Effect of several other processes like 7: 1706:from the original on 17 January 2013 1496: 1333: 1209: 954: 750: 599: 500: 408: 289: 47:adding citations to reliable sources 14: 726:is the turbulent kinetic energy, 23: 279:as molecular weight of species 34:needs additional citations for 1159: 1122: 1107: 1070: 1056: 1019: 1011: 974: 730:is the rate of dissipation of 679: 667: 1: 1676:computational fluid dynamics 283:; local density of mixture 167:internal combustion engines 1792: 214:and fluid transport rate. 1776:Combustion engineering 1651: 1475: 1312: 1177: 927: 700: 578: 479: 360: 1652: 1476: 1313: 1178: 928: 701: 579: 480: 361: 272:as mass fraction and 58:"Eddy break-up model" 1503: 1340: 1216: 961: 757: 606: 507: 415: 296: 140:diffusion combustion 43:improve this article 886: 647: 163:turbulent diffusion 123:eddy break-up model 16:Model in combustion 1700:CFD Online website 1678:(CFD) procedures. 1647: 1471: 1308: 1173: 923: 868: 696: 629: 574: 475: 356: 327: 191:numerical modeling 136:combustion chamber 1753:978-81-317-2048-6 1671: 1670: 1644: 1495: 1494: 1468: 1332: 1331: 1305: 1197: 1196: 1170: 947: 946: 913: 863: 791: 720: 719: 693: 683: 598: 597: 571: 561: 499: 498: 472: 380: 379: 353: 350: 325: 318: 244:combustion models 238:Combustion models 173:of fuel and air. 119: 118: 111: 93: 1783: 1735: 1731: 1725: 1722: 1716: 1715: 1713: 1711: 1692: 1665: 1656: 1654: 1653: 1648: 1646: 1645: 1643: 1642: 1641: 1620: 1619: 1605: 1595: 1594: 1593: 1572: 1571: 1557: 1544: 1533: 1532: 1514: 1497: 1489: 1480: 1478: 1477: 1472: 1470: 1469: 1467: 1466: 1465: 1444: 1443: 1429: 1419: 1418: 1417: 1396: 1395: 1379: 1368: 1367: 1334: 1326: 1317: 1315: 1314: 1309: 1307: 1306: 1304: 1303: 1302: 1281: 1280: 1266: 1256: 1255: 1237: 1232: 1231: 1210: 1191: 1182: 1180: 1179: 1174: 1172: 1171: 1169: 1168: 1167: 1162: 1158: 1157: 1142: 1141: 1133: 1116: 1115: 1110: 1106: 1105: 1090: 1089: 1081: 1066: 1065: 1064: 1059: 1055: 1054: 1039: 1038: 1030: 1010: 1009: 994: 993: 985: 972: 955: 941: 932: 930: 929: 924: 922: 921: 920: 914: 912: 901: 900: 888: 885: 884: 876: 864: 859: 858: 846: 844: 843: 831: 830: 818: 817: 808: 807: 792: 784: 773: 772: 751: 714: 705: 703: 702: 697: 695: 694: 686: 684: 682: 665: 664: 652: 646: 645: 637: 622: 621: 600: 592: 583: 581: 580: 575: 573: 572: 564: 562: 557: 556: 544: 539: 538: 523: 522: 501: 493: 484: 482: 481: 476: 474: 473: 465: 463: 462: 447: 446: 431: 430: 409: 374: 365: 363: 362: 357: 355: 354: 352: 351: 349: 348: 339: 338: 329: 326: 323: 307: 290: 150:Diffusion flames 144:diffusion flames 114: 107: 103: 100: 94: 92: 51: 27: 19: 1791: 1790: 1786: 1785: 1784: 1782: 1781: 1780: 1761: 1760: 1744: 1742:Further reading 1739: 1738: 1732: 1728: 1723: 1719: 1709: 1707: 1694: 1693: 1689: 1684: 1663: 1624: 1597: 1596: 1576: 1549: 1545: 1521: 1501: 1500: 1487: 1448: 1421: 1420: 1400: 1384: 1380: 1356: 1338: 1337: 1324: 1285: 1258: 1257: 1238: 1220: 1214: 1213: 1204: 1189: 1146: 1125: 1120: 1094: 1073: 1068: 1067: 1043: 1022: 1017: 998: 977: 973: 959: 958: 939: 902: 889: 878: 847: 835: 819: 809: 761: 755: 754: 746: 739: 712: 666: 653: 639: 610: 604: 603: 590: 545: 530: 511: 505: 504: 491: 451: 438: 419: 413: 412: 403: 395: 387: 372: 340: 330: 311: 294: 293: 277: 270: 256: 248:Magnussen model 240: 184: 152: 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 1789: 1787: 1779: 1778: 1773: 1763: 1762: 1759: 1758: 1755: 1743: 1740: 1737: 1736: 1726: 1717: 1702:. CFD Online. 1686: 1685: 1683: 1680: 1669: 1668: 1659: 1657: 1640: 1637: 1634: 1631: 1627: 1623: 1618: 1615: 1612: 1609: 1604: 1601: 1592: 1589: 1586: 1583: 1579: 1575: 1570: 1567: 1564: 1561: 1556: 1553: 1548: 1542: 1539: 1536: 1531: 1528: 1524: 1520: 1517: 1513: 1510: 1493: 1492: 1483: 1481: 1464: 1461: 1458: 1455: 1451: 1447: 1442: 1439: 1436: 1433: 1428: 1425: 1416: 1413: 1410: 1407: 1403: 1399: 1394: 1391: 1387: 1383: 1377: 1374: 1371: 1366: 1363: 1359: 1355: 1352: 1349: 1346: 1330: 1329: 1320: 1318: 1301: 1298: 1295: 1292: 1288: 1284: 1279: 1276: 1273: 1270: 1265: 1262: 1254: 1251: 1248: 1245: 1241: 1235: 1230: 1227: 1223: 1202: 1195: 1194: 1185: 1183: 1166: 1161: 1156: 1153: 1149: 1145: 1140: 1137: 1132: 1129: 1124: 1119: 1114: 1109: 1104: 1101: 1097: 1093: 1088: 1085: 1080: 1077: 1072: 1063: 1058: 1053: 1050: 1046: 1042: 1037: 1034: 1029: 1026: 1021: 1016: 1013: 1008: 1005: 1001: 997: 992: 989: 984: 981: 976: 970: 967: 945: 944: 935: 933: 919: 911: 908: 905: 899: 896: 892: 883: 880: 875: 871: 867: 862: 857: 854: 850: 842: 838: 834: 829: 826: 822: 816: 812: 806: 801: 798: 795: 790: 787: 782: 779: 776: 771: 768: 764: 744: 737: 718: 717: 708: 706: 692: 689: 681: 678: 675: 672: 669: 663: 660: 656: 650: 644: 641: 636: 632: 628: 625: 620: 617: 613: 596: 595: 586: 584: 570: 567: 560: 555: 552: 548: 542: 537: 533: 529: 526: 521: 518: 514: 497: 496: 487: 485: 471: 468: 461: 458: 454: 450: 445: 441: 437: 434: 429: 426: 422: 401: 393: 385: 378: 377: 368: 366: 347: 343: 337: 333: 321: 317: 314: 310: 305: 302: 275: 268: 255: 252: 239: 236: 235: 234: 215: 208: 205: 202:fluid dynamics 198: 183: 180: 157:flames can be 151: 148: 117: 116: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 1788: 1777: 1774: 1772: 1769: 1768: 1766: 1756: 1754: 1750: 1746: 1745: 1741: 1730: 1727: 1721: 1718: 1705: 1701: 1697: 1691: 1688: 1681: 1679: 1677: 1667: 1660: 1658: 1638: 1635: 1632: 1629: 1625: 1621: 1616: 1613: 1610: 1607: 1602: 1599: 1590: 1587: 1584: 1581: 1577: 1573: 1568: 1565: 1562: 1559: 1554: 1551: 1546: 1540: 1537: 1534: 1529: 1526: 1522: 1518: 1515: 1511: 1508: 1499: 1498: 1491: 1484: 1482: 1462: 1459: 1456: 1453: 1449: 1445: 1440: 1437: 1434: 1431: 1426: 1423: 1414: 1411: 1408: 1405: 1401: 1397: 1392: 1389: 1385: 1381: 1375: 1372: 1369: 1364: 1361: 1357: 1353: 1350: 1347: 1344: 1336: 1335: 1328: 1321: 1319: 1299: 1296: 1293: 1290: 1286: 1282: 1277: 1274: 1271: 1268: 1263: 1260: 1252: 1249: 1246: 1243: 1239: 1233: 1228: 1225: 1221: 1212: 1211: 1208: 1206: 1193: 1186: 1184: 1164: 1154: 1151: 1147: 1143: 1138: 1135: 1130: 1127: 1117: 1112: 1102: 1099: 1095: 1091: 1086: 1083: 1078: 1075: 1061: 1051: 1048: 1044: 1040: 1035: 1032: 1027: 1024: 1014: 1006: 1003: 999: 995: 990: 987: 982: 979: 968: 965: 957: 956: 953: 952: 943: 936: 934: 909: 906: 903: 897: 894: 890: 881: 879: 873: 869: 865: 860: 855: 852: 848: 840: 836: 832: 827: 824: 820: 814: 810: 799: 796: 793: 788: 785: 780: 777: 774: 769: 766: 762: 753: 752: 749: 747: 740: 733: 729: 725: 716: 709: 707: 690: 687: 676: 673: 670: 661: 658: 654: 648: 642: 640: 634: 630: 626: 623: 618: 615: 611: 602: 601: 594: 587: 585: 568: 565: 558: 553: 550: 546: 540: 535: 531: 527: 524: 519: 516: 512: 503: 502: 495: 488: 486: 469: 466: 459: 456: 452: 448: 443: 439: 435: 432: 427: 424: 420: 411: 410: 407: 405: 398:and products 397: 389: 376: 369: 367: 345: 341: 335: 331: 319: 315: 312: 308: 303: 300: 292: 291: 288: 286: 282: 278: 271: 263: 260: 253: 251: 249: 245: 237: 232: 228: 224: 220: 219:heat transfer 216: 213: 212:reaction rate 209: 206: 203: 199: 196: 195: 194: 192: 188: 181: 179: 176: 172: 168: 164: 160: 156: 149: 147: 145: 141: 137: 132: 129:) is used in 128: 124: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 1729: 1720: 1708:. Retrieved 1699: 1696:"Combustion" 1690: 1672: 1661: 1485: 1322: 1200: 1198: 1187: 950: 948: 937: 742: 735: 731: 727: 723: 721: 710: 588: 489: 399: 391: 383: 381: 370: 284: 280: 273: 266: 264: 261: 257: 241: 185: 153: 126: 122: 120: 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 1710:23 February 1771:Combustion 1765:Categories 1682:References 227:convection 187:Combustion 131:combustion 99:April 2024 69:newspapers 1547:− 1382:− 1144:− 1118:− 1092:− 1041:− 1015:− 996:− 786:ε 781:ρ 778:− 688:ε 649:ρ 627:− 566:ε 541:ρ 528:− 467:ε 449:ρ 436:− 390:, oxygen 324:for all j 320:∑ 301:ρ 231:diffusion 223:radiation 155:Diffusion 1704:Archived 882:′ 643:′ 182:Problems 171:velocity 254:Formula 159:laminar 83:scholar 1751:  722:Where 175:Eddies 85:  78:  71:  64:  56:  242:Many 90:JSTOR 76:books 1749:ISBN 1734:1976 1712:2013 1519:> 1354:< 741:and 265:For 229:and 121:The 62:news 951:(f) 285:(ρ) 142:or 127:EBU 45:by 1767:: 1698:. 1203:st 1201:(f 743:C' 734:, 402:pr 400:(R 394:ox 392:(R 386:fu 384:(R 225:, 221:, 146:. 1714:. 1666:) 1664:9 1662:( 1639:0 1636:, 1633:x 1630:o 1626:m 1622:+ 1617:1 1614:, 1611:u 1608:f 1603:m 1600:s 1591:0 1588:, 1585:x 1582:o 1578:m 1574:+ 1569:1 1566:, 1563:u 1560:f 1555:m 1552:s 1541:= 1538:f 1535:, 1530:t 1527:s 1523:f 1516:f 1512:f 1509:I 1490:) 1488:8 1486:( 1463:0 1460:, 1457:x 1454:o 1450:m 1446:+ 1441:1 1438:, 1435:u 1432:f 1427:m 1424:s 1415:0 1412:, 1409:x 1406:o 1402:m 1398:+ 1393:x 1390:o 1386:m 1376:= 1373:f 1370:, 1365:t 1362:s 1358:f 1351:f 1348:f 1345:I 1327:) 1325:7 1323:( 1300:0 1297:, 1294:x 1291:o 1287:m 1283:+ 1278:1 1275:, 1272:u 1269:f 1264:m 1261:s 1253:0 1250:, 1247:x 1244:o 1240:m 1234:= 1229:t 1226:s 1222:f 1205:) 1192:) 1190:6 1188:( 1165:0 1160:] 1155:x 1152:o 1148:m 1139:u 1136:f 1131:m 1128:s 1123:[ 1113:1 1108:] 1103:x 1100:o 1096:m 1087:u 1084:f 1079:m 1076:s 1071:[ 1062:0 1057:] 1052:x 1049:o 1045:m 1036:u 1033:f 1028:m 1025:s 1020:[ 1012:] 1007:x 1004:o 1000:m 991:u 988:f 983:m 980:s 975:[ 969:= 966:f 942:) 940:5 938:( 918:] 910:s 907:+ 904:1 898:r 895:p 891:m 874:R 870:C 866:, 861:s 856:x 853:o 849:m 841:R 837:C 833:, 828:u 825:f 821:m 815:R 811:C 805:[ 800:n 797:i 794:m 789:k 775:= 770:u 767:f 763:S 745:R 738:R 736:C 732:k 728:ε 724:k 715:) 713:4 711:( 691:k 680:) 677:s 674:+ 671:1 668:( 662:r 659:p 655:m 635:R 631:C 624:= 619:r 616:p 612:R 593:) 591:3 589:( 569:k 559:s 554:x 551:o 547:m 536:R 532:C 525:= 520:x 517:o 513:R 494:) 492:2 490:( 470:k 460:u 457:f 453:m 444:R 440:C 433:= 428:u 425:f 421:R 404:) 396:) 388:) 375:) 373:1 371:( 346:j 342:M 336:j 332:m 316:T 313:R 309:P 304:= 281:j 276:j 274:M 269:j 267:m 233:. 125:( 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Eddy break-up model"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
combustion
combustion chamber
diffusion combustion
diffusion flames
Diffusion
laminar
turbulent diffusion
internal combustion engines
velocity
Eddies
Combustion
numerical modeling
fluid dynamics
reaction rate
heat transfer
radiation
convection
diffusion
combustion models

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.