Knowledge

Efflux pump

Source 📝

207:, a middle periplasmic protein, an inner membrane protein, and a transmembrane duct. The transmembrane duct is located in the outer membrane of the cell. The duct is also bound to two other proteins: a periplasmic membrane protein and an integral membrane transporter. The periplasmic membrane protein and the inner membrane protein of the system are coupled to control the opening and closing of the duct (channel). When a toxin binds to this inner membrane protein, the inner membrane proteins gives rise to a biochemical cascade that transmits signals to the periplasmic membrane protein and outer membrane protein to open the channel and move the toxin out of the cell. This mechanism uses an energy-dependent, protein-protein interaction that is generated by the transfer of the toxin for an H+ ion by the inner membrane transporter. The fully assembled 34: 22: 414:
proteins (MDRs)- also referred as P-glycoprotein, multidrug resistance-associated proteins (MRPs), peptide transporters (PEPTs), and Na+ phosphate transporters (NPTs). These transporters are distributed along particular portions of the renal proximal tubule, intestine, liver, blood–brain barrier, and
423:
Several trials are currently being conducted to develop drugs that can be co-administered with antibiotics to act as inhibitors for the efflux-mediated extrusion of antibiotics. As yet, no efflux inhibitor has been approved for therapeutic use, but some are being used to determine the prevalence of
69:. This active efflux mechanism is responsible for various types of resistance to bacterial pathogens within bacterial species - the most concerning being antibiotic resistance because microorganisms can have adapted efflux pumps to divert toxins out of the cytoplasm and into extracellular media. 366:, thus contributing to both intrinsic (natural) and acquired resistance respectively. As an intrinsic mechanism of resistance, efflux pump genes can survive a hostile environment (for example in the presence of antibiotics) which allows for the selection of 392:
Expression of several efflux pumps in a given bacterial species may lead to a broad spectrum of resistance when considering the shared substrates of some multi-drug efflux pumps, where one efflux pump may confer resistance to a wide range of
76:) to pump out unwanted toxic substances through specific efflux pumps. Some efflux systems are drug-specific, whereas others may accommodate multiple drugs with small multidrug resistance (SMR) transporters. 61:. All microorganisms, with a few exceptions, have highly conserved DNA sequences in their genome that encode efflux pumps. Efflux pumps actively move substances out of a microorganism, in a process known as 57:
in their ability to remove antibiotics. The efflux could also be the movement of heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals, bacterial metabolites and
223:
Although antibiotics are the most clinically important substrates of efflux systems, it is probable that most efflux pumps have other natural physiological functions. Examples include:
162: 298:
formation. However, the substrates for such pumps, and whether changes in their efflux activity affect biofilm formation directly or indirectly, remain to be determined.
302:
The ability of efflux systems to recognize a large number of compounds other than their natural substrates is probably because substrate recognition is based on
1370:
Molnár J, Engi H, Hohmann J, Molnár P, Deli J, Wesolowska O, Michalak K, Wang Q (2010). "Reversal of multidrug resistance by natural substances from plants".
1195:"Antibiotic inducibility of the MexXY multidrug efflux system of Pseudomonas aeruginosa: involvement of the antibiotic-inducible PA5471 gene product" 410:. Efflux pumps are one of the major causes of anticancer drug resistance in eukaryotic cells. They include monocarboxylate transporters (MCTs), 87:
of all kinds of cells. They are active transporters, meaning that they require a source of chemical energy to perform their function. Some are
945:"AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants" 614: 168: 1141:"Characterization of AcrD, a resistance-nodulation-cell division-type multidrug efflux pump from the fire blight pathogen Erwinia amylovora" 554:
Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, Bernardini A, Sanchez MB, Martinez JL (February 2016).
1406: 1332:
Juliano RL, Ling V (November 1976). "A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants".
884:
Shi X, Chen M, Yu Z, Bell JM, Wang H, Forrester I, Villarreal H, Jakana J, Du D, Luisi BF, Ludtke SJ, Wang Z (14 June 2019).
994:"Two distinct major facilitator superfamily drug efflux pumps mediate chloramphenicol resistance in Streptomyces coelicolor" 204: 146: 1243: 1457:"ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli" 338:
molecules - possessing both hydrophilic and hydrophobic characters - they are easily recognized by many efflux pumps.
382:
is also advantageous for the microorganisms as it allows for the easy spread of efflux genes between distant species.
233:
AcrAB efflux system, which has a physiologic role of pumping out bile acids and fatty acids to lower their toxicity.
1455:
Banoee M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shahverdi HR, Moballegh A, Moghaddam KM, Shahverdi AR (May 2010).
191:, the RND family was once thought to be unique to Gram negative bacteria. They have since been found in all major 1502: 1100:"Induction of the mtrCDE-encoded efflux pump system of Neisseria gonorrhoeae requires MtrA, an AraC-like protein" 112: 411: 347: 323: 331: 265:
The MtrCDE system plays a protective role by providing resistance to faecal lipids in rectal isolates of
188: 176: 92: 481: 327: 267: 66: 1456: 735:"Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria" 1507: 1054: 897: 84: 833:
Wang Z, Fan G, Hryc CF, Blaza JN, Serysheva II, Schmid MF, Chiu W, Luisi BF, Du D (29 March 2017).
1407:"Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities" 1041:
Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T, Venter H, Chiu W, Luisi BF (May 2014).
1437: 303: 192: 1479: 1429: 1387: 1349: 1314: 1265: 1224: 1172: 1121: 1080: 1023: 974: 925: 866: 815: 764: 715: 653: 610: 587: 533: 276: 1471: 1421: 1379: 1341: 1304: 1296: 1255: 1214: 1206: 1162: 1152: 1111: 1070: 1062: 1013: 1005: 964: 956: 915: 905: 856: 846: 805: 795: 754: 746: 705: 697: 643: 632:"Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations" 577: 567: 523: 513: 229: 138: 96: 88: 73: 58: 50: 701: 441: 386: 371: 153: 402:
In eukaryotic cells, the existence of efflux pumps has been known since the discovery of
1058: 901: 1309: 1284: 1219: 1194: 1167: 1140: 1075: 1042: 1018: 993: 920: 885: 861: 834: 810: 783: 759: 734: 710: 685: 582: 555: 528: 501: 433: 403: 307: 1425: 969: 944: 258:
is suspected to have a role in the transport of the calcium-channel components in the
53:
in cells that moves out unwanted material. Efflux pumps are an important component in
1496: 1441: 1345: 1116: 1099: 556:"Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants" 248: 134:
Bacterial efflux pumps are classified into five major superfamilies, based on their
1210: 681: 465: 437: 425: 244: 238: 184: 1285:"The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria" 960: 572: 407: 335: 311: 1383: 910: 648: 631: 518: 469: 449: 445: 379: 359: 315: 291:
is inducible by antibiotics that target ribosomes via the PA5471 gene product.
135: 108: 16:
Protein complexes that move compounds, generally toxic, out of bacterial cells
800: 1157: 835:"An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump" 444:
have been shown to inhibit bacterial efflux pumps including the carotenoids
429: 281: 175:
Of these, only the ABC superfamily are primary transporters, the rest being
104: 100: 1483: 1433: 1391: 1318: 1269: 1228: 1176: 1125: 1084: 1027: 929: 870: 819: 768: 719: 657: 591: 537: 978: 750: 25:
Protein TolC, the outer membrane component of a tripartite efflux pump in
1353: 1300: 1260: 1009: 461: 453: 440:, thereby facilitating fluorescent cell sorting for DNA content. Various 375: 363: 116: 54: 1475: 1066: 886:"In situ structure and assembly of the multidrug efflux pump AcrAB-TolC" 851: 502:"Efflux pump inhibitors for bacterial pathogens: From bench to bedside" 457: 295: 80: 318:
character rather than on defined chemical properties, as in classical
1464:
Journal of Biomedical Materials Research Part B: Applied Biomaterials
549: 547: 367: 319: 215:
structures of AcrAB-TolC pump have been solved by cryoEM and cryoET.
180: 120: 32: 20: 287:
The MexXY component of the MexXY-OprM multidrug efflux system of
374:
these genes. Being located on transportable genetic elements as
355: 123: 33: 21: 609:. Switzerland: Springer International Publishing. p. 45. 284:, plant (host) colonization, and resistance to plant toxins. 72:
Efflux systems function via an energy-dependent mechanism (
350:
is large; this is usually attributed to the following:
141:
and the energy source used to export their substrates:
733:
Lubelski J, Konings WN, Driessen AJ (September 2007).
385:
Antibiotics can act as inducers and regulators of the
247:
pump for this organism when it turns on production of
1244:"Role of bacterial efflux pumps in biofilm formation" 992:
Vecchione JJ, Alexander B, Sello JK (November 2009).
163:
resistance-nodulation-cell division superfamily (RND)
95:
hydrolysis as a source of energy, whereas others are
294:
Efflux pumps have also been shown to play a role in
1043:"Structure of the AcrAB-TolC multidrug efflux pump" 636:
Biochemical and Biophysical Research Communications
1334:Biochimica et Biophysica Acta (BBA) - Biomembranes 1098:Rouquette C, Harmon JB, Shafer WM (August 1999). 784:"Efflux pump-mediated resistance in chemotherapy" 358:elements encoding efflux pumps may be encoded on 1405:Cushnie TP, Cushnie B, Lamb AJ (November 2014). 500:Sharma A, Gupta VK, Pathania R (February 2019). 187:as a source of energy. Whereas MFS dominates in 1188: 1186: 1242:Alav I, Sutton JM, Rahman KM (February 2018). 788:Annals of Medical and Health Sciences Research 1414:International Journal of Antimicrobial Agents 8: 158:The small multidrug resistance family (SMR) 1365: 1363: 1283:Li XZ, Plésiat P, Nikaido H (April 2015). 1193:Morita Y, Sobel ML, Poole K (March 2006). 739:Microbiology and Molecular Biology Reviews 334:recognition. Because most antibiotics are 1308: 1259: 1218: 1166: 1156: 1115: 1074: 1017: 968: 943:Okusu H, Ma D, Nikaido H (January 1996). 919: 909: 860: 850: 809: 799: 758: 709: 686:"Bacterial multidrug efflux transporters" 647: 581: 571: 527: 517: 424:efflux pumps in clinical isolates and in 607:Small Multidrug Resistance Efflux Pumps 492: 472:, also inhibit bacterial efflux pumps. 1139:Pletzer D, Weingart H (January 2014). 111:) in which transport is coupled to an 1372:Current Topics in Medicinal Chemistry 1248:Journal of Antimicrobial Chemotherapy 998:Antimicrobial Agents and Chemotherapy 702:10.1146/annurev-biophys-051013-022855 630:Sun J, Deng Z, Yan A (October 2014). 203:Efflux pumps generally consist of an 169:multi antimicrobial extrusion protein 7: 782:Ughachukwu P, Unekwe P (July 2012). 675: 673: 671: 669: 667: 113:electrochemical potential difference 346:The impact of efflux mechanisms on 37:AcrB, the other component of pump, 342:Impact on antimicrobial resistance 14: 1426:10.1016/j.ijantimicag.2014.06.001 280:is important for this organism's 1117:10.1046/j.1365-2958.1999.01517.x 436:-mediated efflux of DNA-binding 432:, for example, is used to block 1211:10.1128/JB.188.5.1847-1855.2006 83:transporters localized in the 1: 1289:Clinical Microbiology Reviews 961:10.1128/jb.178.1.306-308.1996 573:10.3390/microorganisms4010014 415:other portions of the brain. 205:outer membrane efflux protein 147:major facilitator superfamily 97:secondary active transporters 1346:10.1016/0005-2736(76)90160-7 690:Annual Review of Biophysics 274:The AcrAB efflux system of 236:The MFS family Ptr pump in 89:primary active transporters 1524: 1384:10.2174/156802610792928103 911:10.1038/s41467-019-10512-6 649:10.1016/j.bbrc.2014.05.090 605:Bay DC, Turner RJ (2016). 519:10.4103/ijmr.IJMR_2079_17 254:The AcrAB–TolC system in 65:which is a vital part of 801:10.4103/2141-9248.105671 412:multiple drug resistance 348:antimicrobial resistance 1199:Journal of Bacteriology 1158:10.1186/1471-2180-14-13 949:Journal of Bacteriology 406:in 1976 by Juliano and 249:pristinamycins I and II 1104:Molecular Microbiology 189:Gram positive bacteria 177:secondary transporters 93:adenosine triphosphate 42: 30: 890:Nature Communications 751:10.1128/MMBR.00001-07 482:Antibiotic resistance 389:of some efflux pumps. 268:Neisseria gonorrhoeae 67:xenobiotic metabolism 36: 24: 1301:10.1128/CMR.00117-14 1010:10.1128/AAC.00853-09 306:properties, such as 85:cytoplasmic membrane 1476:10.1002/jbm.b.31615 1067:10.1038/nature13205 1059:2014Natur.509..512D 902:2019NatCo..10.2635S 852:10.7554/eLife.24905 460:, and the alkaloid 115:created by pumping 1261:10.1093/jac/dky042 680:Delmar JA, Su CC, 51:active transporter 43: 31: 616:978-3-319-39658-3 452:, the flavonoids 277:Erwinia amylovora 243:appears to be an 241:pristinaespiralis 79:Efflux pumps are 59:neurotransmitters 1515: 1503:Membrane biology 1488: 1487: 1461: 1452: 1446: 1445: 1411: 1402: 1396: 1395: 1367: 1358: 1357: 1329: 1323: 1322: 1312: 1280: 1274: 1273: 1263: 1254:(8): 2003–2020. 1239: 1233: 1232: 1222: 1190: 1181: 1180: 1170: 1160: 1145:BMC Microbiology 1136: 1130: 1129: 1119: 1095: 1089: 1088: 1078: 1038: 1032: 1031: 1021: 989: 983: 982: 972: 940: 934: 933: 923: 913: 881: 875: 874: 864: 854: 830: 824: 823: 813: 803: 779: 773: 772: 762: 730: 724: 723: 713: 677: 662: 661: 651: 627: 621: 620: 602: 596: 595: 585: 575: 551: 542: 541: 531: 521: 506:Indian J Med Res 497: 442:natural products 154:ABC transporters 74:active transport 39:Escherichia coli 27:Escherichia coli 1523: 1522: 1518: 1517: 1516: 1514: 1513: 1512: 1493: 1492: 1491: 1459: 1454: 1453: 1449: 1409: 1404: 1403: 1399: 1378:(17): 1757–68. 1369: 1368: 1361: 1331: 1330: 1326: 1282: 1281: 1277: 1241: 1240: 1236: 1192: 1191: 1184: 1138: 1137: 1133: 1097: 1096: 1092: 1053:(7501): 512–5. 1040: 1039: 1035: 991: 990: 986: 942: 941: 937: 883: 882: 878: 832: 831: 827: 781: 780: 776: 732: 731: 727: 679: 678: 665: 629: 628: 624: 617: 604: 603: 599: 553: 552: 545: 499: 498: 494: 490: 478: 421: 400: 393:antimicrobials. 344: 304:physicochemical 221: 201: 132: 126:into the cell. 17: 12: 11: 5: 1521: 1519: 1511: 1510: 1505: 1495: 1494: 1490: 1489: 1447: 1397: 1359: 1324: 1295:(2): 337–418. 1275: 1234: 1205:(5): 1847–55. 1182: 1131: 1090: 1033: 1004:(11): 4673–7. 984: 935: 876: 825: 774: 725: 663: 622: 615: 597: 560:Microorganisms 543: 512:(2): 129–145. 491: 489: 486: 485: 484: 477: 474: 468:, for example 434:P-glycoprotein 420: 417: 404:P-glycoprotein 399: 396: 395: 394: 390: 383: 343: 340: 308:hydrophobicity 300: 299: 292: 285: 272: 263: 252: 234: 220: 217: 200: 197: 173: 172: 171:family (MATE). 165: 159: 156: 150: 131: 128: 63:active efflux, 15: 13: 10: 9: 6: 4: 3: 2: 1520: 1509: 1506: 1504: 1501: 1500: 1498: 1485: 1481: 1477: 1473: 1470:(2): 557–61. 1469: 1465: 1458: 1451: 1448: 1443: 1439: 1435: 1431: 1427: 1423: 1420:(5): 377–86. 1419: 1415: 1408: 1401: 1398: 1393: 1389: 1385: 1381: 1377: 1373: 1366: 1364: 1360: 1355: 1351: 1347: 1343: 1340:(1): 152–62. 1339: 1335: 1328: 1325: 1320: 1316: 1311: 1306: 1302: 1298: 1294: 1290: 1286: 1279: 1276: 1271: 1267: 1262: 1257: 1253: 1249: 1245: 1238: 1235: 1230: 1226: 1221: 1216: 1212: 1208: 1204: 1200: 1196: 1189: 1187: 1183: 1178: 1174: 1169: 1164: 1159: 1154: 1150: 1146: 1142: 1135: 1132: 1127: 1123: 1118: 1113: 1109: 1105: 1101: 1094: 1091: 1086: 1082: 1077: 1072: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1037: 1034: 1029: 1025: 1020: 1015: 1011: 1007: 1003: 999: 995: 988: 985: 980: 976: 971: 966: 962: 958: 954: 950: 946: 939: 936: 931: 927: 922: 917: 912: 907: 903: 899: 895: 891: 887: 880: 877: 872: 868: 863: 858: 853: 848: 844: 840: 836: 829: 826: 821: 817: 812: 807: 802: 797: 793: 789: 785: 778: 775: 770: 766: 761: 756: 752: 748: 745:(3): 463–76. 744: 740: 736: 729: 726: 721: 717: 712: 707: 703: 699: 695: 691: 687: 683: 676: 674: 672: 670: 668: 664: 659: 655: 650: 645: 642:(2): 254–67. 641: 637: 633: 626: 623: 618: 612: 608: 601: 598: 593: 589: 584: 579: 574: 569: 565: 561: 557: 550: 548: 544: 539: 535: 530: 525: 520: 515: 511: 507: 503: 496: 493: 487: 483: 480: 479: 475: 473: 471: 467: 466:nanoparticles 463: 459: 455: 451: 447: 443: 439: 435: 431: 427: 418: 416: 413: 409: 405: 397: 391: 388: 384: 381: 377: 373: 369: 365: 361: 357: 353: 352: 351: 349: 341: 339: 337: 333: 329: 325: 321: 317: 313: 309: 305: 297: 293: 290: 289:P. aeruginosa 286: 283: 279: 278: 273: 270: 269: 264: 261: 257: 253: 250: 246: 242: 240: 235: 232: 231: 226: 225: 224: 218: 216: 214: 210: 206: 198: 196: 194: 190: 186: 182: 178: 170: 166: 164: 160: 157: 155: 151: 148: 144: 143: 142: 140: 137: 129: 127: 125: 122: 118: 114: 110: 106: 102: 98: 94: 90: 86: 82: 81:proteinaceous 77: 75: 70: 68: 64: 60: 56: 52: 48: 40: 35: 28: 23: 19: 1467: 1463: 1450: 1417: 1413: 1400: 1375: 1371: 1337: 1333: 1327: 1292: 1288: 1278: 1251: 1247: 1237: 1202: 1198: 1148: 1144: 1134: 1110:(3): 651–8. 1107: 1103: 1093: 1050: 1046: 1036: 1001: 997: 987: 955:(1): 306–8. 952: 948: 938: 893: 889: 879: 842: 838: 828: 794:(2): 191–8. 791: 787: 777: 742: 738: 728: 693: 689: 639: 635: 625: 606: 600: 563: 559: 509: 505: 495: 438:fluorophores 426:cell biology 422: 401: 345: 301: 288: 275: 266: 259: 255: 245:autoimmunity 239:Streptomyces 237: 228: 222: 212: 208: 202: 174: 133: 78: 71: 62: 46: 44: 38: 26: 18: 1508:Antibiotics 896:(1): 2635. 380:transposons 360:chromosomes 336:amphiphilic 312:aromaticity 109:antiporters 47:efflux pump 1497:Categories 696:: 93–117. 488:References 470:zinc oxide 450:capsorubin 446:capsanthin 428:research. 419:Inhibitors 398:Eukaryotic 387:expression 370:that over- 183:or sodium 179:utilizing 136:amino acid 105:symporters 101:uniporters 91:utilizing 1442:205171789 566:(1): 14. 430:Verapamil 324:substrate 316:ionizable 282:virulence 262:membrane. 199:Structure 130:Bacterial 1484:20225250 1434:25130096 1392:20645919 1319:25788514 1270:29506149 1229:16484195 1177:24443882 1126:10417654 1085:24747401 1028:19687245 930:31201302 871:28355133 820:23439914 769:17804667 720:24702006 684:(2014). 658:24878531 592:27681908 538:31219077 476:See also 464:. Some 462:lysergol 454:rotenone 376:plasmids 364:plasmids 332:receptor 219:Function 209:in vitro 193:kingdoms 185:gradient 139:sequence 117:hydrogen 55:bacteria 1310:4402952 1220:1426571 1168:3915751 1076:4361902 1055:Bibcode 1019:2772354 979:8550435 921:6570770 898:Bibcode 862:5404916 811:3573517 760:2168643 711:4769028 583:5029519 529:6563736 458:chrysin 372:express 368:mutants 362:and/or 356:genetic 296:biofilm 260:E. coli 256:E. coli 230:E. coli 213:in vivo 1482:  1440:  1432:  1390:  1354:990323 1352:  1317:  1307:  1268:  1227:  1217:  1175:  1165:  1151:: 13. 1124:  1083:  1073:  1047:Nature 1026:  1016:  977:  970:177656 967:  928:  918:  869:  859:  818:  808:  767:  757:  718:  708:  656:  613:  590:  580:  536:  526:  328:ligand 320:enzyme 181:proton 121:sodium 49:is an 1460:(PDF) 1438:S2CID 1410:(PDF) 839:eLife 682:Yu EW 149:(MFS) 107:, or 1480:PMID 1430:PMID 1388:PMID 1350:PMID 1315:PMID 1266:PMID 1225:PMID 1173:PMID 1122:PMID 1081:PMID 1024:PMID 975:PMID 926:PMID 867:PMID 816:PMID 765:PMID 716:PMID 654:PMID 611:ISBN 588:PMID 534:PMID 456:and 448:and 408:Ling 354:The 314:and 227:The 211:and 167:The 161:The 152:The 145:The 124:ions 1472:doi 1422:doi 1380:doi 1342:doi 1338:455 1305:PMC 1297:doi 1256:doi 1215:PMC 1207:doi 1203:188 1163:PMC 1153:doi 1112:doi 1071:PMC 1063:doi 1051:509 1014:PMC 1006:doi 965:PMC 957:doi 953:178 916:PMC 906:doi 857:PMC 847:doi 806:PMC 796:doi 755:PMC 747:doi 706:PMC 698:doi 644:doi 640:453 578:PMC 568:doi 524:PMC 514:doi 510:149 378:or 326:or 119:or 45:An 1499:: 1478:. 1468:93 1466:. 1462:. 1436:. 1428:. 1418:44 1416:. 1412:. 1386:. 1376:10 1374:. 1362:^ 1348:. 1336:. 1313:. 1303:. 1293:28 1291:. 1287:. 1264:. 1252:73 1250:. 1246:. 1223:. 1213:. 1201:. 1197:. 1185:^ 1171:. 1161:. 1149:14 1147:. 1143:. 1120:. 1108:33 1106:. 1102:. 1079:. 1069:. 1061:. 1049:. 1045:. 1022:. 1012:. 1002:53 1000:. 996:. 973:. 963:. 951:. 947:. 924:. 914:. 904:. 894:10 892:. 888:. 865:. 855:. 845:. 841:. 837:. 814:. 804:. 790:. 786:. 763:. 753:. 743:71 741:. 737:. 714:. 704:. 694:43 692:. 688:. 666:^ 652:. 638:. 634:. 586:. 576:. 562:. 558:. 546:^ 532:. 522:. 508:. 504:. 310:, 195:. 103:, 1486:. 1474:: 1444:. 1424:: 1394:. 1382:: 1356:. 1344:: 1321:. 1299:: 1272:. 1258:: 1231:. 1209:: 1179:. 1155:: 1128:. 1114:: 1087:. 1065:: 1057:: 1030:. 1008:: 981:. 959:: 932:. 908:: 900:: 873:. 849:: 843:6 822:. 798:: 792:2 771:. 749:: 722:. 700:: 660:. 646:: 619:. 594:. 570:: 564:4 540:. 516:: 330:- 322:- 271:. 251:. 99:( 41:. 29:.

Index



active transporter
bacteria
neurotransmitters
xenobiotic metabolism
active transport
proteinaceous
cytoplasmic membrane
primary active transporters
adenosine triphosphate
secondary active transporters
uniporters
symporters
antiporters
electrochemical potential difference
hydrogen
sodium
ions
amino acid
sequence
major facilitator superfamily
ABC transporters
resistance-nodulation-cell division superfamily (RND)
multi antimicrobial extrusion protein
secondary transporters
proton
gradient
Gram positive bacteria
kingdoms

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.