Knowledge (XXG)

Einstein manifold

Source 📝

932:
Compact Einstein manifolds have been much studied in differential geometry, and many examples are known, although constructing them is often challenging. Compact Ricci-flat manifolds are particularly difficult to find: in the monograph on the subject by the pseudonymous author
813:. Such metrics are not unique, but rather come in families; there is a Calabi–Yau metric in every KĂ€hler class, and the metric also depends on the choice of complex structure. For example, there is a 60-parameter family of such metrics on 428: 552: 740: 149: 250: 700: 776: 653: 621: 299: 811: 921:. HyperkĂ€hler and quaternion KĂ€hler manifolds (which are special kinds of Einstein manifolds) also have applications in physics as target spaces for 333: 950: 890:
is self-dual, and it is usually assumed that the metric is asymptotic to the standard metric of Euclidean 4-space (and are therefore
1011: 440: 484: 867: 573:
All 2D manifolds are trivially Einstein manifolds. This is a result of the Riemann tensor having a single degree of freedom.
820: 1040: 1030: 903: 836: 577: 843: 47: 444: 1035: 879: 707: 69: 780: 743: 76:), although both the dimension and the signature of the metric can be arbitrary, thus not being restricted to 899: 85: 50: 320: 817:, 57 parameters of which give rise to Einstein metrics which are not related by isometries or rescalings. 324: 73: 31: 713: 117: 922: 203: 35: 174: 77: 43: 909:
Higher-dimensional Lorentzian Einstein manifolds are used in modern theories of gravity, such as
316: 81: 1007: 898:). In differential geometry, self-dual Einstein 4-manifolds are also known as (4-dimensional) 886:. The term "gravitational instanton" is usually used restricted to Einstein 4-manifolds whose 664: 878:
Four dimensional Riemannian Einstein manifolds are also important in mathematical physics as
824: 784: 749: 658: 557:
Therefore, vacuum solutions of Einstein's equation are (Lorentzian) Einstein manifolds with
260: 626: 599: 272: 891: 883: 855: 847: 583: 62: 790: 828: 1024: 938: 926: 910: 895: 108: 58: 65:
because this condition is equivalent to saying that the metric is a solution of the
999: 934: 918: 159: 54: 887: 832: 17: 863: 814: 255:
Taking the trace of both sides reveals that the constant of proportionality
586:, which is flat, is a simple example of Ricci-flat, hence Einstein metric. 423:{\displaystyle R_{ab}-{\frac {1}{2}}g_{ab}R+g_{ab}\Lambda =\kappa T_{ab},} 914: 859: 850:
of a conformal class, rather than the Levi-Civita connection of a metric.
590: 100: 80:(including the four-dimensional Lorentzian manifolds usually studied in 471:, and Einstein's equation can be rewritten in the form (assuming that 456: 66: 455:
gives the matter and energy content of the underlying spacetime. In
84:). Einstein manifolds in four Euclidean dimensions are studied as 27:
Riemannian manifold which satisfies vacuum Einstein equations
547:{\displaystyle R_{ab}={\frac {2\Lambda }{n-2}}\,g_{ab}.} 793: 752: 716: 667: 629: 602: 487: 336: 275: 206: 120: 846:is a generalization of an Einstein manifold for a 805: 770: 734: 694: 647: 615: 546: 422: 293: 244: 143: 569:Simple examples of Einstein manifolds include: 181:The Einstein condition and Einstein's equation 1006:. Classics in Mathematics. Berlin: Springer. 580:is an Einstein manifold—in particular: 8: 661:with the canonical metric is Einstein with 561:proportional to the cosmological constant. 792: 751: 726: 718: 715: 666: 628: 623:, with the round metric is Einstein with 607: 601: 532: 527: 504: 492: 486: 459:(a region of spacetime devoid of matter) 408: 386: 367: 353: 341: 335: 274: 259:for Einstein manifolds is related to the 230: 211: 205: 121: 119: 185:In local coordinates the condition that 962: 783:admit an Einstein metric that is also 987: 7: 111:, the Einstein condition means that 937:, readers are offered a meal in a 510: 395: 197:be an Einstein manifold is simply 128: 125: 122: 25: 866:to be Einstein is satisfying the 735:{\displaystyle \mathbf {CP} ^{n}} 144:{\displaystyle \mathrm {Ric} =kg} 951:Einstein–Hermitian vector bundle 827:due to the existence results of 722: 719: 941:in exchange for a new example. 441:Einstein gravitational constant 245:{\displaystyle R_{ab}=kg_{ab}.} 823:exist on a variety of compact 689: 677: 1: 974:should not be confused with 902:in the Ricci-flat case, and 578:constant sectional curvature 904:quaternion KĂ€hler manifolds 884:quantum theories of gravity 1057: 854:A necessary condition for 835:especially in the case of 166:. Einstein manifolds with 868:Hitchin–Thorpe inequality 831:, and the later study of 787:, with Einstein constant 880:gravitational instantons 708:Complex projective space 695:{\displaystyle k=-(n-1)} 180: 158:, where Ric denotes the 86:gravitational instantons 70:Einstein field equations 821:KĂ€hler–Einstein metrics 61:. They are named after 57:is proportional to the 51:differentiable manifold 844:Einstein–Weyl geometry 807: 772: 771:{\displaystyle k=n+1.} 736: 696: 649: 617: 548: 424: 295: 246: 145: 900:hyperkĂ€hler manifolds 808: 773: 737: 697: 650: 648:{\displaystyle k=n-1} 618: 616:{\displaystyle S^{n}} 549: 425: 325:cosmological constant 296: 294:{\displaystyle R=nk,} 247: 146: 74:cosmological constant 32:differential geometry 1041:Mathematical physics 1031:Riemannian manifolds 957:Notes and references 791: 781:Calabi–Yau manifolds 750: 714: 665: 627: 600: 485: 445:stress–energy tensor 334: 308:is the dimension of 273: 204: 175:Ricci-flat manifolds 118: 78:Lorentzian manifolds 36:mathematical physics 806:{\displaystyle k=0} 744:Fubini–Study metric 321:Einstein's equation 1004:Einstein Manifolds 939:starred restaurant 923:nonlinear σ-models 803: 768: 732: 692: 645: 613: 576:Any manifold with 544: 420: 317:general relativity 291: 242: 154:for some constant 141: 95:is the underlying 82:general relativity 825:complex manifolds 525: 361: 48:pseudo-Riemannian 40:Einstein manifold 16:(Redirected from 1048: 1017: 1000:Besse, Arthur L. 991: 985: 979: 973: 967: 812: 810: 809: 804: 777: 775: 774: 769: 741: 739: 738: 733: 731: 730: 725: 701: 699: 698: 693: 659:Hyperbolic space 654: 652: 651: 646: 622: 620: 619: 614: 612: 611: 553: 551: 550: 545: 540: 539: 526: 524: 513: 505: 500: 499: 477: 470: 438: 429: 427: 426: 421: 416: 415: 394: 393: 375: 374: 362: 354: 349: 348: 300: 298: 297: 292: 261:scalar curvature 251: 249: 248: 243: 238: 237: 219: 218: 196: 172: 150: 148: 147: 142: 131: 21: 1056: 1055: 1051: 1050: 1049: 1047: 1046: 1045: 1036:Albert Einstein 1021: 1020: 1014: 998: 995: 994: 986: 982: 969: 968: 964: 959: 947: 876: 848:Weyl connection 789: 788: 748: 747: 717: 712: 711: 663: 662: 625: 624: 603: 598: 597: 584:Euclidean space 567: 528: 514: 506: 488: 483: 482: 472: 468: 460: 454: 434: 404: 382: 363: 337: 332: 331: 271: 270: 226: 207: 202: 201: 186: 183: 167: 116: 115: 63:Albert Einstein 28: 23: 22: 18:Einstein metric 15: 12: 11: 5: 1054: 1052: 1044: 1043: 1038: 1033: 1023: 1022: 1019: 1018: 1012: 993: 992: 980: 961: 960: 958: 955: 954: 953: 946: 943: 875: 872: 852: 851: 840: 837:Fano manifolds 829:Shing-Tung Yau 818: 802: 799: 796: 778: 767: 764: 761: 758: 755: 729: 724: 721: 705: 704: 703: 691: 688: 685: 682: 679: 676: 673: 670: 656: 644: 641: 638: 635: 632: 610: 606: 587: 574: 566: 563: 555: 554: 543: 538: 535: 531: 523: 520: 517: 512: 509: 503: 498: 495: 491: 464: 450: 431: 430: 419: 414: 411: 407: 403: 400: 397: 392: 389: 385: 381: 378: 373: 370: 366: 360: 357: 352: 347: 344: 340: 302: 301: 290: 287: 284: 281: 278: 253: 252: 241: 236: 233: 229: 225: 222: 217: 214: 210: 182: 179: 152: 151: 140: 137: 134: 130: 127: 124: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1053: 1042: 1039: 1037: 1034: 1032: 1029: 1028: 1026: 1015: 1013:3-540-74120-8 1009: 1005: 1001: 997: 996: 990:, p. 18) 989: 984: 981: 977: 972: 966: 963: 956: 952: 949: 948: 944: 942: 940: 936: 930: 928: 927:supersymmetry 924: 920: 916: 912: 911:string theory 907: 905: 901: 897: 893: 889: 885: 881: 873: 871: 869: 865: 861: 857: 849: 845: 841: 838: 834: 830: 826: 822: 819: 816: 800: 797: 794: 786: 782: 779: 765: 762: 759: 756: 753: 745: 727: 709: 706: 686: 683: 680: 674: 671: 668: 660: 657: 642: 639: 636: 633: 630: 608: 604: 595: 593: 588: 585: 582: 581: 579: 575: 572: 571: 570: 564: 562: 560: 541: 536: 533: 529: 521: 518: 515: 507: 501: 496: 493: 489: 481: 480: 479: 475: 467: 463: 458: 453: 449: 446: 442: 437: 417: 412: 409: 405: 401: 398: 390: 387: 383: 379: 376: 371: 368: 364: 358: 355: 350: 345: 342: 338: 330: 329: 328: 326: 322: 318: 313: 311: 307: 288: 285: 282: 279: 276: 269: 268: 267: 265: 262: 258: 239: 234: 231: 227: 223: 220: 215: 212: 208: 200: 199: 198: 194: 190: 178: 176: 170: 165: 161: 157: 138: 135: 132: 114: 113: 112: 110: 109:metric tensor 106: 102: 99:-dimensional 98: 94: 89: 87: 83: 79: 75: 71: 68: 64: 60: 56: 52: 49: 45: 41: 37: 33: 19: 1003: 983: 975: 970: 965: 935:Arthur Besse 931: 919:supergravity 908: 877: 874:Applications 853: 591: 568: 558: 556: 473: 465: 461: 451: 447: 435: 432: 314: 309: 305: 303: 263: 256: 254: 192: 188: 184: 168: 163: 160:Ricci tensor 155: 153: 104: 96: 92: 90: 55:Ricci tensor 39: 29: 988:Besse (1987 906:otherwise. 896:non-compact 888:Weyl tensor 864:4-manifolds 833:K-stability 742:, with the 173:are called 1025:Categories 327:Λ is 44:Riemannian 684:− 675:− 640:− 519:− 511:Λ 402:κ 396:Λ 351:− 1002:(1987). 945:See also 915:M-theory 892:complete 860:oriented 565:Examples 101:manifold 746:, have 594:-sphere 439:is the 323:with a 107:is its 1010:  856:closed 785:KĂ€hler 476:> 2 457:vacuum 443:. The 433:where 304:where 103:, and 72:(with 67:vacuum 59:metric 53:whose 925:with 42:is a 38:, an 1008:ISBN 917:and 894:but 589:The 34:and 882:in 842:An 478:): 469:= 0 315:In 266:by 171:= 0 162:of 91:If 46:or 30:In 1027:: 929:. 913:, 870:. 862:, 858:, 815:K3 766:1. 710:, 596:, 466:ab 452:ab 319:, 312:. 191:, 177:. 88:. 1016:. 978:. 976:k 971:Îș 839:. 801:0 798:= 795:k 763:+ 760:n 757:= 754:k 728:n 723:P 720:C 702:. 690:) 687:1 681:n 678:( 672:= 669:k 655:. 643:1 637:n 634:= 631:k 609:n 605:S 592:n 559:k 542:. 537:b 534:a 530:g 522:2 516:n 508:2 502:= 497:b 494:a 490:R 474:n 462:T 448:T 436:Îș 418:, 413:b 410:a 406:T 399:= 391:b 388:a 384:g 380:+ 377:R 372:b 369:a 365:g 359:2 356:1 346:b 343:a 339:R 310:M 306:n 289:, 286:k 283:n 280:= 277:R 264:R 257:k 240:. 235:b 232:a 228:g 224:k 221:= 216:b 213:a 209:R 195:) 193:g 189:M 187:( 169:k 164:g 156:k 139:g 136:k 133:= 129:c 126:i 123:R 105:g 97:n 93:M 20:)

Index

Einstein metric
differential geometry
mathematical physics
Riemannian
pseudo-Riemannian
differentiable manifold
Ricci tensor
metric
Albert Einstein
vacuum
Einstein field equations
cosmological constant
Lorentzian manifolds
general relativity
gravitational instantons
manifold
metric tensor
Ricci tensor
Ricci-flat manifolds
scalar curvature
general relativity
Einstein's equation
cosmological constant
Einstein gravitational constant
stress–energy tensor
vacuum
constant sectional curvature
Euclidean space
n-sphere
Hyperbolic space

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑