Knowledge (XXG)

Unbiquadium

Source 📝

1923: 2931:, a leading scientist at JINR, and thus it was a "hobbyhorse" for the facility. In contrast, the LBL scientists believed fission information was not sufficient for a claim of synthesis of an element. They believed spontaneous fission had not been studied enough to use it for identification of a new element, since there was a difficulty of establishing that a compound nucleus had only ejected neutrons and not charged particles like protons or alpha particles. They thus preferred to link new isotopes to the already known ones by successive alpha decays. 1750: 2918:, the daughter nucleus would also receive a small velocity. The ratio of the two velocities, and accordingly the ratio of the kinetic energies, would thus be inverse to the ratio of the two masses. The decay energy equals the sum of the known kinetic energy of the alpha particle and that of the daughter nucleus (an exact fraction of the former). The calculations hold for an experiment as well, but the difference is that the nucleus does not move after the decay because it is tied to the detector. 2444: 1823: 7471: 7244: 2414: = 184 shell closure. For this reason, the compound nucleus is predicted to have relatively high survival probability and low neutron separation energy, leading to the 1n–3n channels and isotopes Ubq with a relatively high cross section. These dynamics are highly speculative, as the cross section may be far lower should trends in the production of elements 112–118 continue or the 2329:) until it is discovered, the discovery is confirmed, and a permanent name chosen. Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations are mostly ignored among scientists who work theoretically or experimentally on superheavy elements, who call it "element 124", with the symbol 2225:= 82), revealing a tendency for superheavy nuclei to expel such doubly magic nuclei in fission. The average number of neutrons per fission from the 124 compound nucleus (relative to lighter systems) was also found to increase, confirming that the trend of heavier nuclei emitting more neutrons during fission continues into the superheavy mass region. 1887:, which stops the nucleus. The exact location of the upcoming impact on the detector is marked; also marked are its energy and the time of the arrival. The transfer takes about 10 seconds; in order to be detected, the nucleus must survive this long. The nucleus is recorded again once its decay is registered, and the location, the 2956:. It was later shown that the identification was incorrect. The following year, RL was unable to reproduce the Swedish results and announced instead their synthesis of the element; that claim was also disproved later. JINR insisted that they were the first to create the element and suggested a name of their own for the new element, 2960:; the Soviet name was also not accepted (JINR later referred to the naming of the element 102 as "hasty"). This name was proposed to IUPAC in a written response to their ruling on priority of discovery claims of elements, signed 29 September 1992. The name "nobelium" remained unchanged on account of its widespread usage. 1976:
actinides and the predicted island are deformed, and gain additional stability from shell effects. Experiments on lighter superheavy nuclei, as well as those closer to the expected island, have shown greater than previously anticipated stability against spontaneous fission, showing the importance of shell effects on nuclei.
2693:(X = a halogen), analogous to the known +6 oxidation state in uranium. Like the other early superactinides, the binding energies of unbiquadium's valence electrons are predicted to be small enough that all six should easily participate in chemical reactions. The predicted electron configuration of the Ubq ion is 6f. 2297:
The possible extent of primordial superheavy elements on Earth today is uncertain. Even if they are confirmed to have caused the radiation damage long ago, they might now have decayed to mere traces, or even be completely gone. It is also uncertain if such superheavy nuclei may be produced naturally
1906:
provided by the strong interaction increases linearly with the number of nucleons, whereas electrostatic repulsion increases with the square of the atomic number, i.e. the latter grows faster and becomes increasingly important for heavy and superheavy nuclei. Superheavy nuclei are thus theoretically
2982:
of decay signals may be registered, decays faster than one microsecond may pile up with subsequent signals and thus be indistinguishable, especially when multiple uncharacterized nuclei may be formed and emit a series of similar alpha particles. The main difficulty is thus attributing the decays to
2894:
It was already known by the 1960s that ground states of nuclei differed in energy and shape as well as that certain magic numbers of nucleons corresponded to greater stability of a nucleus. However, it was assumed that there was no nuclear structure in superheavy nuclei as they were too deformed to
2373:
in 2010. These reactions approached the limit of current technology; for example, the synthesis of tennessine required 22 milligrams of Bk and an intense Ca beam for six months. The intensity of beams in superheavy element research cannot exceed 10 projectiles per second without damaging the target
1986:
The information available to physicists aiming to synthesize a superheavy element is thus the information collected at the detectors: location, energy, and time of arrival of a particle to the detector, and those of its decay. The physicists analyze this data and seek to conclude that it was indeed
1942:
Alpha particles are commonly produced in radioactive decays because mass of an alpha particle per nucleon is small enough to leave some energy for the alpha particle to be used as kinetic energy to leave the nucleus. Spontaneous fission is caused by electrostatic repulsion tearing the nucleus apart
2119:
that have not arranged themselves into nuclear shells yet. It has no internal structure and is held together only by the collision forces between the target and projectile nuclei. It is estimated that it requires around 10 s for the nucleons to arrange themselves into nuclear shells, at which
1987:
caused by a new element and could not have been caused by a different nuclide than the one claimed. Often, provided data is insufficient for a conclusion that a new element was definitely created and there is no other explanation for the observed effects; errors in interpreting data have been made.
1979:
Alpha decays are registered by the emitted alpha particles, and the decay products are easy to determine before the actual decay; if such a decay or a series of consecutive decays produces a known nucleus, the original product of a reaction can be easily determined. (That all decays within a decay
1882:
The beam passes through the target and reaches the next chamber, the separator; if a new nucleus is produced, it is carried with this beam. In the separator, the newly produced nucleus is separated from other nuclides (that of the original beam and any other reaction products) and transferred to a
2904:
Since mass of a nucleus is not measured directly but is rather calculated from that of another nucleus, such measurement is called indirect. Direct measurements are also possible, but for the most part they have remained unavailable for superheavy nuclei. The first direct measurement of mass of a
2746:
In 2009, a team at the JINR led by Oganessian published results of their attempt to create hassium in a symmetric Xe + Xe reaction. They failed to observe a single atom in such a reaction, putting the upper limit on the cross section, the measure of probability of a nuclear reaction, as
1801:
Coming close enough alone is not enough for two nuclei to fuse: when two nuclei approach each other, they usually remain together for about 10 seconds and then part ways (not necessarily in the same composition as before the reaction) rather than form a single nucleus. This happens because
2863:
This separation is based on that the resulting nuclei move past the target more slowly then the unreacted beam nuclei. The separator contains electric and magnetic fields whose effects on a moving particle cancel out for a specific velocity of a particle. Such separation can also be aided by a
1975:
in which nuclei will be more resistant to spontaneous fission and will primarily undergo alpha decay with longer half-lives. Subsequent discoveries suggested that the predicted island might be further than originally anticipated; they also showed that nuclei intermediate between the long-lived
2601:
half-lives of superheavy nuclei and the possible domination of fission over alpha decay will also probably determine the stability of unbiquadium isotopes. While some fission half-lives constituting a "sea of instability" may be on the order of 10 s as a consequence of very low
2397:
The production of new superheavy elements will require projectiles heavier than Ca, which was successfully used in the discovery of elements 114–118, though this necessitates more symmetric reactions which are less favorable. Hence, it is likely that the reactions between Fe and a
2905:
superheavy nucleus was reported in 2018 at LBNL. Mass was determined from the location of a nucleus after the transfer (the location helps determine its trajectory, which is linked to the mass-to-charge ratio of the nucleus, since the transfer was done in presence of a magnet).
2590:. These results, as well as those from a quantum-tunneling model, predict no half-lives over a millisecond for isotopes lighter than Ubq, as well as especially short half-lives for Ubq in the sub-microsecond range due to destabilizing effects immediately above the shell at 2281:
with the right energies to cause the damage observed, supporting the presence of these elements. Others claimed that none had been detected, and questioned the proposed characteristics of primordial superheavy nuclei. In particular, they cited that the magic number
1806:—the probability that fusion will occur if two nuclei approach one another expressed in terms of the transverse area that the incident particle must hit in order for the fusion to occur. This fusion may occur as a result of the quantum effect in which nuclei can 2558: = 124. The island of stability is characterized by longer half-lives of nuclei located near these magic numbers, though the extent of stabilizing effects is uncertain due to predictions of weakening of the proton shell closures and possible loss of 1980:
chain were indeed related to each other is established by the location of these decays, which must be in the same place.) The known nucleus can be recognized by the specific characteristics of decay it undergoes such as decay energy (or more specifically, the
1943:
and produces various nuclei in different instances of identical nuclei fissioning. As the atomic number increases, spontaneous fission rapidly becomes more important: spontaneous fission partial half-lives decrease by 23 orders of magnitude from
2594: = 184. This renders the identification of many unbiquadium isotopes nearly impossible with current technology, as detectors cannot distinguish rapid successive signals from alpha decays in a time period shorter than microseconds. 2622: = 184, fission half-lives may increase, though alpha half-lives are still expected to be on the order of microseconds or less, despite the shell closure at Ubq. It is also possible that the island of stability may shift to the 2569:
isotopes Cn and Cn, which would place unbiquadium well above the island and result in short half-lives regardless of shell effects. A 2016 study on the decay properties of unbiquadium isotopes Ubq predicts that Ubq lie outside the
2678:] 5g 8s derived from Aufbau. This predicted overlap of orbitals and uncertainty in order of filling, especially for f and g orbitals, renders predictions of chemical and atomic properties of these elements very difficult. 2530:
mass region, with stabilizing effects that may lead to half-lives on the order of years or longer for some as-yet undiscovered isotopes of these elements. While still unproven, the existence of superheavy elements as heavy as
2386:, which will allow experiments to run for longer stretches of time with increased detection capabilities and enable otherwise inaccessible reactions. Even so, it is expected to be a great challenge to continue past elements 2737:
series). Terms "heavy isotopes" (of a given element) and "heavy nuclei" mean what could be understood in the common language—isotopes of high mass (for the given element) and nuclei of high mass, respectively.
1793:
in order to make such repulsion insignificant compared to the velocity of the beam nucleus. The energy applied to the beam nuclei to accelerate them can cause them to reach speeds as high as one-tenth of the
2495:) and encompassing nearby elements, including unbiquadium, with half-lives possibly as long as 10 years. In known elements, the stability of nuclei decreases greatly with the increase in atomic number after 2626: = 198 region, where total half-lives may be on the order of seconds, in contrast to neighboring isotopes that would undergo fission in less than a microsecond. In the neutron-rich region around 1915:. Almost all alpha emitters have over 210 nucleons, and the lightest nuclide primarily undergoing spontaneous fission has 238. In both decay modes, nuclei are inhibited from decaying by corresponding 5513:
Santhosh, K.P.; Priyanka, B.; Nithya, C. (2016). "Feasibility of observing the α decay chains from isotopes of SHN with Z = 128, Z = 126, Z = 124 and Z = 122".
2029:
effects in this region and to pinpoint the next spherical proton shell. In 2006, with full results published in 2008, the team provided results from a reaction involving the bombardment of a natural
3086: 5960: 2418:
be lower than expected, regardless of shell effects, leading to decreased stability against spontaneous fission (which is of growing importance). Nonetheless, the prospect of reaching the
1709:, and nuclear instability may pose further difficulties in identifying unbiquadium, unless the island of stability has a stronger stabilizing effect than predicted in this region. 1802:
during the attempted formation of a single nucleus, electrostatic repulsion tears apart the nucleus that is being formed. Each pair of a target and a beam is characterized by its
1810:
through electrostatic repulsion. If the two nuclei can stay close past that phase, multiple nuclear interactions result in redistribution of energy and an energy equilibrium.
5115: 1761:. Reactions that created new elements to this moment were similar, with the only possible difference that several singular neutrons sometimes were released, or none at all. 2845:
reaction, cross section changes smoothly from 370 mb at 12.3 MeV to 160 mb at 18.3 MeV, with a broad peak at 13.5 MeV with the maximum value of 380 mb.
2422: = 184 shell on the proton-rich side of the chart of nuclides by increasing proton number has long been considered; already in 1970, Soviet nuclear physicist 4298: 1723:
may significantly influence some of its properties; for example, the electron configuration has been calculated to differ considerably from the one predicted by the
5953: 3208: 1636: 1627: 2257:
uranium in detectable quantities, at a relative abundance of 10. Such unbiquadium nuclei were thought to undergo alpha decay with very long half-lives down to
4328: 2952:. There were no earlier definitive claims of creation of this element, and the element was assigned a name by its Swedish, American, and British discoverers, 2410: = 124 or possibly 125. It is also possible that a reaction with Cf will produce the compound nucleus Ubq* with 185 neutrons, immediately above the 1984:
of the emitted particle). Spontaneous fission, however, produces various nuclei as products, so the original nuclide cannot be determined from its daughters.
5655:
Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.).
2406:
have found that the dynamics of Ca- and Fe-induced reactions are similar, suggesting that Fe projectiles may be viable in producing superheavy nuclei up to
1675:, respectively, until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table, unbiquadium is expected to be a 1894:
Stability of a nucleus is provided by the strong interaction. However, its range is very short; as nuclei become larger, its influence on the outermost
5946: 3276: 2721:(element 82) is one example of such a heavy element. The term "superheavy elements" typically refers to elements with atomic number greater than 2132:
a claimed isotope must have to potentially be recognised as being discovered. Thus, the GANIL experiments do not count as a discovery of element 124.
2670:, and an overlap of the 5g, 6f, 7d, and 8p orbitals is expected. The ground state electron configuration of unbiquadium is thus predicted to be [ 3094: 1858:. This happens in about 10 seconds after the initial nuclear collision and results in creation of a more stable nucleus. The definition by the 1902:
and neutrons) weakens. At the same time, the nucleus is torn apart by electrostatic repulsion between protons, and its range is not limited. Total
7702: 3670: 2733:; sometimes, the term is presented an equivalent to the term "transactinide", which puts an upper limit before the beginning of the hypothetical 2378:
targets is impractical. Consequently, future experiments must be done at facilities such as the superheavy element factory (SHE-factory) at the
1773:, the greater the possibility that the two react. The material made of the heavier nuclei is made into a target, which is then bombarded by the 3090: 2554: = 228 have been proposed as closed neutron shells, and various atomic numbers have been proposed as closed proton shells, including 1927: 1769:
is created in a nuclear reaction that combines two other nuclei of unequal size into one; roughly, the more unequal the two nuclei in terms of
5884: 5865: 5839: 5801: 5337: 4722: 4554: 3504: 3136: 4860:
Fricke, B.; Greiner, W.; Waber, J. T. (1971). "The continuation of the periodic table up to Z = 172. The chemistry of superheavy elements".
3528: 2379: 2206: 5003: 4483: 2017:, it was thought that the synthesis of element 124 or nearby elements would populate longer-lived nuclei within the island. Scientists at 5568: 3163:; Dmitriev, S. N.; Yeremin, A. V.; et al. (2009). "Attempt to produce the isotopes of element 108 in the fusion reaction Xe + Xe". 2471: = 228, though many intermediate isotopes are theoretically susceptible to spontaneous fission with half-lives shorter than 1 2769:
The amount of energy applied to the beam particle to accelerate it can also influence the value of cross section. For example, in the
2484: 5668: 4841: 4652: 2751:. In comparison, the reaction that resulted in hassium discovery, Pb + Fe, had a cross section of ~20 pb (more specifically, 19 2270: 2021:(Grand Accélérateur National d'Ions Lourds) attempted to measure the direct and delayed fission of compound nuclei of elements with 1854:, which would carry away the excitation energy; if the latter is not sufficient for a neutron expulsion, the merger would produce a 1620: 1541: 120: 4573:
Thomas, R.G.; Saxena, A.; Sahu, P.K.; et al. (2007). "Fission and binary fragmentation reactions in Se+Pb and Se+Th systems".
4453:"Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group" 2346: 5857: 5660: 4833: 5127: 3800: 3759: 2865: 2269:. This prompted many researchers to search for them in nature from 1976 to 1983. A group led by Tom Cahill, a professor at the 2136: 1859: 2667: 2639: 1830: 1720: 4303: 5566:
Chowdhury, R.P.; Samanta, C.; Basu, D.N. (2008). "Nuclear half-lives for α -radioactivity of elements with 100 ≤ Z ≤ 130".
3401:
Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. (2015). Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al. (eds.).
3407: 2349:
to predict unknown elements, though such an extrapolation might not work for g-block elements with no known congeners and
1922: 1916: 3115:
Eliav, E.; Kaldor, U.; Borschevsky, A. (2018). "Electronic Structure of the Transactinide Atoms". In Scott, R. A. (ed.).
1926:
Scheme of an apparatus for creation of superheavy elements, based on the Dubna Gas-Filled Recoil Separator set up in the
5085: 4828:
Haire, Richard G. (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.).
3462: 1613: 5757: 5162: 3340: 1781:
into one if they approach each other closely enough; normally, nuclei (all positively charged) repel each other due to
3247: 2540: 4949: 3930:
Aksenov, N. V.; Steinegger, P.; Abdullin, F. Sh.; et al. (2017). "On the volatility of nihonium (Nh, Z = 113)".
4048: 3060: 2483:, a theoretical region comprising longer-lived superheavy nuclei. Such an island of stability was first proposed by 4400: 3562: 3488: 3345: 2607: 2448: 1907:
predicted and have so far been observed to predominantly decay via decay modes that are caused by such repulsion:
1712:
As a member of the superactinide series, unbiquadium is expected to bear some resemblance to its possible lighter
4057: 2563: 2287: 2286:= 228 necessary for enhanced stability would create a neutron-excessive nucleus in unbiquadium that would not be 2135:
The fission of the compound nucleus 124 was also studied in 2006 at the tandem ALPI heavy-ion accelerator at the
2365:
onward was produced in fusion-evaporation reactions, culminating in the discovery of the heaviest known element
1705:
been found to exist. It is believed that the synthesis of unbiquadium will be far more challenging than that of
4333: 2353:
would instead refer to element 144 or 146 when the term is meant to denote the element directly below uranium.
1789:
can overcome this repulsion but only within a very short distance from a nucleus; beam nuclei are thus greatly
1719:. The valence electrons of unbiquadium are expected to participate in chemical reactions fairly easily, though 2914:
If the decay occurred in a vacuum, then since total momentum of an isolated system before and after the decay
3366:
Kern, B. D.; Thompson, W. E.; Ferguson, J. M. (1959). "Cross sections for some (n, p) and (n, α) reactions".
2514:
under a day. Nevertheless, there is a slight increase in nuclear stability in nuclides around atomic numbers
5969: 3200: 2535:
provides evidence of such stabilizing effects, as elements with an atomic number greater than approximately
2315: 1803: 1706: 1683: 1672: 1603: 1492: 2013:) may confer additional stability on the nuclei of superheavy elements, moving closer to the center of the 3281: 2969:
Atomic numbers 114, 120, 122, and 126 have also been proposed as closed proton shells in different models.
2002: 1903: 1884: 1691: 1520: 1513: 1505: 1479: 3822:"Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory" 5731: 3016:(2011). "A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions". 2426:
suggested bombarding a plutonium target with zinc projectiles to produce isotopes of element 124 at the
2522:, which suggests the presence of an island of stability. This is attributed to the possible closure of 5269: 2868:
and a recoil energy measurement; a combination of the two may allow to estimate the mass of a nucleus.
7697: 5989: 5903: 5877:"Future of superheavy element research: Which nuclei could be synthesized within the next few years?" 5772: 5697: 5587: 5532: 5468: 5421: 5377: 5362: 5045: 4761: 4214: 4181: 4132: 4011: 3939: 3843: 3416: 3375: 3223: 3120: 3025: 2987:
nucleus, as a superheavy atom that decays before reaching the detector will not be registered at all.
2254: 1790: 1713: 30: 4672: 5819: 5410:"Single-Particle Levels of Spherical Nuclei in the Superheavy and Extremely Superheavy Mass Region" 3675: 3609: 3272: 2662:: both elements have six valence electrons over a noble gas core. In the superactinide series, the 2635: 2598: 2587: 2523: 2480: 2266: 2014: 1972: 1968: 1912: 1687: 1584: 4125:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
1870:
within 10 seconds. This value was chosen as an estimate of how long it takes a nucleus to acquire
5927: 5893: 5603: 5577: 5548: 5522: 5492: 4927: 4877: 4777: 4751: 4475: 4279: 4248: 3963: 3833: 3641: 3587: 3532: 3239: 3142: 2940:
For instance, element 102 was mistakenly identified in 1957 at the Nobel Institute of Physics in
2527: 2500: 2479:
Unbiquadium is of interest to researchers because of its possible location near the center of an
2234: 1963:
thus suggested that spontaneous fission would occur nearly instantly due to disappearance of the
1930:
in JINR. The trajectory within the detector and the beam focusing apparatus changes because of a
1807: 1786: 1737: 1701:
Despite several searches, unbiquadium has not been synthesized, nor have any naturally occurring
5212: 4452: 2443: 1850:
without formation of a more stable nucleus. Alternatively, the compound nucleus may eject a few
5453: 5007: 4509: 3554: 6854: 5919: 5861: 5835: 5807: 5797: 5664: 5637: 5484: 5343: 5333: 5063: 4919: 4837: 4718: 4648: 4550: 4381: 4240: 4232: 4158: 4150: 4029: 3955: 3861: 3633: 3579: 3555:"Criteria that must be satisfied for the discovery of a new chemical element to be recognized" 3500: 3444: 3182: 3165: 3132: 3041: 2507: 1960: 1935: 1867: 1540: 744: 3789: 3748: 2854:
This figure also marks the generally accepted upper limit for lifetime of a compound nucleus.
7218: 6919: 6620: 6447: 6274: 6191: 6108: 6079: 6041: 6036: 6031: 5911: 5831: 5780: 5705: 5595: 5540: 5476: 5429: 5385: 5053: 4911: 4869: 4808: 4769: 4590: 4582: 4524: 4467: 4271: 4222: 4140: 4095: 4019: 3947: 3851: 3625: 3571: 3492: 3480: 3434: 3424: 3383: 3231: 3204: 3174: 3124: 3033: 2945: 2882: 2663: 2571: 2403: 2319: 2100: 1863: 1843: 1782: 1724: 1497: 68: 5622: 2233:
A study in 1976 by a group of American researchers from several universities proposed that
6026: 6021: 6016: 6011: 6006: 6001: 5996: 4945: 4395: 3666: 3550: 3160: 3065: 2710: 2682: 2634:, meaning that the stability of such nuclei would primarily depend on the location of the 2603: 2575: 2415: 2210: 2103:
fissioning with half-lives > 10 s. This result suggests a strong stabilizing effect at
1964: 1931: 1847: 1749: 1560: 1548: 5915: 5309:. 4th International Conference on the Chemistry and Physics of the Transactinide Elements 4024: 3999: 3013: 5907: 5784: 5776: 5701: 5591: 5536: 5472: 5425: 5381: 5049: 4765: 4218: 4185: 4136: 4015: 3943: 3847: 3420: 3379: 3227: 3029: 5823: 5685: 5163:"Superheavy Nuclei: which regions of nuclear map are accessible in the nearest studies" 2984: 2631: 2423: 2274: 1981: 1795: 1778: 1766: 1754: 1535: 1484: 147: 5114:
Hagino, Kouichi; Hofmann, Sigurd; Miyatake, Hiroari; Nakahara, Hiromichi (July 2012).
4645:
Superheavy Elements: Proceedings of the International Symposium on Superheavy Elements
2658:
Unbiquadium is the fourth member of the superactinide series and should be similar to
1846:—and thus it is very unstable. To reach a more stable state, the temporary merger may 7691: 7081: 5552: 5496: 5409: 4881: 4781: 4739: 4283: 4252: 4205: 4086: 3967: 3387: 3243: 3146: 2928: 2734: 2714: 2536: 2488: 2026: 1839: 1774: 1679: 1660: 1461: 1141: 1127: 1120: 1071: 1057: 1050: 916: 5931: 5607: 5544: 5030: 4931: 4479: 4099: 3645: 3591: 3536: 3314: 2290:. This activity was also proposed to be caused by nuclear transmutations in natural 7135: 6964: 6665: 6051: 5984: 5390: 5301: 5242: 5058: 4610: 3128: 2559: 2515: 2253:) in minerals. Unbiquadium was then suggested to exist in nature with its possible 2214: 1888: 1396: 1375: 1361: 1354: 1232: 1211: 1197: 1190: 1155: 1148: 1134: 1092: 1085: 1078: 1064: 958: 825: 597: 5118:[Implementation of the 2011 Research Achievement Review (Interim Review)] 4081: 4056:. Dai 2 Kai Hadoron Tataikei no Simulation Symposium, Tokai-mura, Ibaraki, Japan. 3429: 3402: 2630: = 228, alpha half-lives are also predicted to increase with increasing 2562:. More recent research predicts the island of stability to instead be centered at 2294:, raising further ambiguity upon this claimed observation of superheavy elements. 4773: 4329:"The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War" 3951: 7189: 7153: 7144: 7054: 7036: 7027: 6046: 5849: 4896: 2979: 2730: 2618: = 228 may allow the existence of relatively long-lived isotopes. For 2579: 2566: 2504: 2399: 2374:
and detector, and producing larger quantities of increasingly rare and unstable
2362: 2303: 2246: 2238: 1908: 1690:, leading to longer half-lives, especially for Ubq which is predicted to have a 1445: 1403: 1389: 1382: 1368: 1326: 1305: 1291: 1239: 1225: 1218: 1204: 1162: 1113: 1099: 1043: 1000: 972: 965: 895: 881: 874: 4797:"Recommendations for the naming of elements of atomic numbers greater than 100" 4586: 3856: 3821: 3671:"How to Make Superheavy Elements and Finish the Periodic Table [Video]" 3613: 3178: 2402:
or Cf target are most promising. Studies on the fission of various superheavy
7518: 7234: 7225: 7198: 7126: 7099: 7072: 6728: 6710: 6683: 6510: 6501: 6236: 5876: 5599: 5480: 4915: 3629: 3403:"Comparing Experimental and Theoretical Quasifission Mass Angle Distributions" 2878: 2722: 2638:
and resistance to fission. One early calculation by P. Moller, a physicist at
2492: 2472: 2387: 2370: 2250: 2242: 1826: 1410: 1347: 1333: 1319: 1312: 1298: 1246: 1183: 1169: 1106: 1034: 1027: 1007: 951: 930: 909: 646: 632: 611: 481: 474: 275: 5923: 5641: 5488: 5347: 4923: 4275: 4236: 4154: 4033: 3959: 3865: 3637: 3583: 3448: 3186: 2463: = 124), there are predicted regions of increased stability around 7477: 7207: 7180: 7171: 7018: 7000: 6991: 6982: 6764: 6674: 6647: 6591: 6537: 6519: 6483: 6463: 6400: 6337: 6281: 6218: 6207: 6124: 6071: 6061: 6056: 5811: 5303:
Decay modes and a limit of existence of nuclei in the superheavy mass region
4813: 4796: 4528: 4471: 4378:
Popular library of chemical elements. Silver through nielsbohrium and beyond
3575: 3496: 2941: 2675: 2671: 2583: 2532: 2519: 2511: 2391: 2366: 2299: 2258: 2129: 2030: 1855: 1437: 1340: 1277: 1263: 1176: 1014: 993: 986: 867: 853: 846: 839: 674: 604: 583: 544: 502: 488: 460: 442: 398: 349: 305: 261: 252: 192: 5433: 5067: 4988:. Communication of the Joint Institute for Nuclear Research. Archived from 4357:[Popular library of chemical elements. Seaborgium (eka-tungsten)]. 4162: 4145: 4120: 3045: 1798:. However, if too much energy is applied, the beam nucleus can fall apart. 17: 5938: 4989: 4897:"Electronic Configurations and the Periodic Table for Superheavy Elements" 2725:(although there are other definitions, such as atomic number greater than 2115:= 114 as previously thought. A compound nucleus is a loose combination of 7486: 7162: 7063: 6946: 6926: 6899: 6890: 6863: 6836: 6800: 6791: 6773: 6701: 6692: 6582: 6454: 6418: 6328: 6319: 6310: 6301: 6254: 6171: 6153: 6086: 5978: 5709: 4510:"Names and symbols of transfermium elements (IUPAC Recommendations 1997)" 3797:
Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part)
3756:
Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part)
2915: 2748: 2491:, specifically predicting a region of stability centered at element 126 ( 2375: 1948: 1871: 1270: 979: 902: 811: 795: 779: 772: 751: 730: 702: 695: 681: 625: 618: 537: 435: 412: 342: 335: 328: 321: 289: 229: 215: 167: 5854:
From Transuranic to Superheavy Elements: A Story of Dispute and Creation
4374:Популярная библиотека химических элементов. Серебро – Нильсборий и далее 2877:
Not all decay modes are caused by electrostatic repulsion. For example,
7672: 7667: 7662: 7657: 7652: 7117: 7108: 7090: 7045: 6973: 6955: 6881: 6827: 6809: 6782: 6755: 6737: 6719: 6627: 6555: 6528: 6492: 6474: 6436: 6427: 6409: 6391: 6290: 6227: 6115: 6066: 4873: 4595: 3439: 3235: 3037: 2726: 2659: 2496: 2121: 2116: 2010: 1956: 1952: 1944: 1895: 1851: 1758: 1716: 1702: 1695: 1676: 944: 937: 923: 888: 832: 818: 765: 723: 709: 688: 667: 653: 639: 567: 516: 495: 467: 453: 426: 419: 405: 391: 312: 268: 185: 4673:"Search for superheavy elements among fossil fission tracks in zircon" 4451:
Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. (1993).
4396:"Nobelium - Element information, properties and uses | Periodic Table" 4244: 4227: 4200: 7009: 6935: 6818: 6746: 6656: 6636: 6600: 6564: 6546: 6373: 6364: 6355: 6245: 6198: 6162: 6144: 6097: 5191: 5189: 5187: 4738:
Petermann, I; Langanke, K.; Martínez-Pinedo, G.; et al. (2012).
2949: 2686: 2306:
270 and 290, well before elements such as unbiquadium may be formed.
2291: 2278: 2006: 1899: 860: 802: 716: 660: 590: 574: 551: 523: 509: 377: 370: 363: 282: 245: 222: 208: 176: 4549:(New ed.). New York, NY: Oxford University Press. p. 588. 4446: 4444: 4355:"Популярная библиотека химических элементов. Сиборгий (экавольфрам)" 4299:"Exploring the superheavy elements at the end of the periodic table" 5527: 5029:
Oganessian, YT; Abdullin, F; Bailey, PD; et al. (April 2010).
4322: 4320: 3742: 3740: 3277:"Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist" 2394:
given short predicted half-lives and low predicted cross sections.
6908: 6609: 6263: 6135: 5898: 5582: 4756: 4075: 4073: 3993: 3991: 3989: 3838: 3603: 3601: 3518: 3516: 2442: 2383: 2125: 2018: 1921: 1748: 786: 558: 296: 201: 3661: 3659: 3657: 3655: 3614:"A History and Analysis of the Discovery of Elements 104 and 105" 2249:, could be a cause of unexplained radiation damage (particularly 1971:
suggested that nuclei with about 300 nucleons would form an
6872: 6845: 6382: 6346: 6180: 5452:
Palenzuela, Y. M.; Ruiz, L. F.; Karpov, A.; Greiner, W. (2012).
5363:"The limits of the nuclear chart set by fission and alpha decay" 4717:(New ed.). New York: Oxford University Press. p. 592. 4354: 3783: 3781: 3779: 3777: 3775: 2718: 2646:= 228) to be around 67 seconds, and possibly the longest in the 2262: 1866:
can only be recognized as discovered if a nucleus of it has not
1770: 1686:. Unbiquadium has attracted attention, as it may lie within the 1655:, is a hypothetical chemical element; it has placeholder symbol 758: 737: 384: 356: 236: 5942: 5004:"Livermore scientists team with Russia to discover element 118" 4895:
Nefedov, V.I.; Trzhaskovskaya, M.B.; Yarzhemskii, V.G. (2006).
1829:
of unsuccessful nuclear fusion, based on calculations from the
6573: 530: 74: 4000:"Nuclei in the "Island of Stability" of Superheavy Elements" 2503:, so that all observed isotopes with an atomic number above 2298:
at all, as spontaneous fission is expected to terminate the
1951:(element 102), and by 30 orders of magnitude from 5454:"Systematic Study of Decay Properties of Heaviest Elements" 5006:(Press release). Livermore. 3 December 2006. Archived from 104: 101: 83: 4508:
Commission on Nomenclature of Inorganic Chemistry (1997).
95: 4419: 4417: 3308: 3306: 3304: 3302: 3300: 3298: 2205:
Similarly to previous experiments conducted at the JINR (
5657:
The Chemistry of the Actinide and Transactinide Elements
4830:
The Chemistry of the Actinide and Transactinide Elements
4180:. 50th Anniversary of Nuclear Fission, Leningrad, USSR. 3901: 3899: 2341:. Some researchers have also referred to unbiquadium as 5756:
Audi, G.; Kondev, F. G.; Wang, M.; et al. (2017).
2927:
Spontaneous fission was discovered by Soviet physicist
5270:"Synthesis and Search for Heavy Transuranium Elements" 5243:"JINR Publishing Department: Annual Reports (Archive)" 5195: 4715:
Nature's Building Blocks: An A–Z Guide to the Elements
4547:
Nature's Building Blocks: An A-Z Guide to the Elements
3719: 2099:
The team reported that they had been able to identify
4700: 4688: 4621: 3707: 3695: 2001:
Because complete nuclear shells (or, equivalently, a
121: 92: 89: 77: 71: 5461:
Bulletin of the Russian Academy of Sciences: Physics
4266:
Grant, A. (2018). "Weighing the heaviest elements".
3525:
Faculty of Nuclear Sciences and Physical Engineering
3341:"Something new and superheavy at the periodic table" 3117:
Encyclopedia of Inorganic and Bioinorganic Chemistry
98: 80: 5086:"Actinide Targets for Super-Heavy Element Research" 5031:"Synthesis of a New Element with Atomic Number 117" 4740:"Have superheavy elements been produced in nature?" 1967:for nuclei with about 280 nucleons. The later 1815: 1598: 1593: 1583: 1578: 1559: 1554: 1534: 1529: 1519: 1504: 1491: 1478: 1459: 145: 137: 107: 86: 62: 57: 50: 5686:"Electronic Configurations of Superheavy Elements" 4609:see Flerov lab annual reports 2000–2004 inclusive 5758:"The NUBASE2016 evaluation of nuclear properties" 3820:Staszczak, A.; Baran, A.; Nazarewicz, W. (2013). 1919:for each mode, but they can be tunneled through. 5623:"Superheavy elements - the quest in perspective" 4666: 4664: 4611:http://www1.jinr.ru/Reports/Reports_eng_arh.html 4199:Oganessian, Yu. Ts.; Rykaczewski, K. P. (2015). 2674:] 6f 8s 8p or 6f 8s 8p, in contrast to [ 2302:responsible for heavy element formation between 5875:Zagrebaev, V.; Karpov, A.; Greiner, W. (2013). 2685:of unbiquadium is +6, which would exist in the 2610:due to pairing effects, stabilizing effects at 1757:reaction. Two nuclei fuse into one, emitting a 5954: 5447: 5445: 5443: 5403: 5401: 5328:Considine, Glenn D.; Kulik, Peter H. (2002). 5206: 5204: 3523:Krása, A. (2010). "Neutron Sources for ADS". 3317:[Superheavy steps into the unknown]. 2642:, estimates the total half-life of Ubq (with 2107:= 124 and points to the next proton shell at 1621: 1510: 36:Chemical element with atomic number 124 (Ubq) 8: 5659:(3rd ed.). Dordrecht, The Netherlands: 5161:Karpov, A; Zagrebaev, V; Greiner, W (2015). 4832:(3rd ed.). Dordrecht, The Netherlands: 4638: 4636: 4634: 4632: 4630: 3408:European Physical Journal Web of Conferences 3008: 3006: 3004: 2265:at a similar concentration (10) and undergo 39: 5508: 5506: 4050:Fission properties of the heaviest elements 3917: 3878: 2978:While such nuclei may be synthesized and a 2760: pb), as estimated by the discoverers. 5961: 5947: 5939: 5295: 5293: 5079: 5077: 2139:(Legnaro National Laboratories) in Italy: 1891:, and the time of the decay are measured. 1874:and thus display its chemical properties. 1628: 1614: 158: 29:"Ubq" redirects here. For other uses, see 5897: 5828:The Transuranium People: The Inside Story 5732:"transuranium element (chemical element)" 5684:Umemoto, Koichiro; Saito, Susumu (1996). 5581: 5526: 5389: 5156: 5154: 5152: 5150: 5148: 5057: 4855: 4853: 4812: 4755: 4594: 4568: 4566: 4540: 4538: 4226: 4144: 4023: 3855: 3837: 3438: 3428: 2582:, with some chains terminating as far as 2451:predicts the decay modes of nuclei up to 2273:, claimed in 1976 that they had detected 5690:Journal of the Physical Society of Japan 5630:Comments on Nuclear and Particle Physics 5414:Journal of the Physical Society of Japan 4201:"A beachhead on the island of stability" 154: 7079: 5211:Rykaczewski, Krzysztof P. (July 2016). 3000: 2702: 1777:of lighter nuclei. Two nuclei can only 7500: 7133: 6962: 6663: 5330:Van Nostrand's scientific encyclopedia 4372:"Экавольфрам" [Eka-tungsten]. 4121:"Chemistry of the superheavy elements" 3980: 3905: 3890: 3731: 3091:Lawrence Livermore National Laboratory 2546:In this region of the periodic table, 2025:= 114, 120, and 124 in order to probe 1928:Flerov Laboratory of Nuclear Reactions 1812: 38: 7516: 7232: 7223: 7187: 7151: 7142: 7052: 7034: 7025: 5885:Journal of Physics: Conference Series 4950:"Element 118: results from the first 4489:from the original on 25 November 2013 4435: 4423: 4004:Journal of Physics: Conference Series 2586:, and heavier isotopes will decay by 2120:point the compound nucleus becomes a 7: 7475: 7196: 7124: 7097: 7070: 6726: 6708: 6681: 6508: 6499: 5196:Zagrebaev, Karpov & Greiner 2013 5126:(in Japanese). RIKEN. Archived from 3720:Zagrebaev, Karpov & Greiner 2013 3529:Czech Technical University in Prague 2380:Joint Institute for Nuclear Research 2261:, which would then exist in natural 2207:Joint Institute for Nuclear Research 7484: 7205: 7178: 7169: 7016: 6998: 6989: 6980: 6762: 6672: 6645: 6589: 6535: 6517: 6481: 6461: 6398: 6335: 6234: 6216: 6205: 6122: 5569:Atomic Data and Nuclear Data Tables 4701:Hoffman, Ghiorso & Seaborg 2000 4689:Hoffman, Ghiorso & Seaborg 2000 4622:Hoffman, Ghiorso & Seaborg 2000 3708:Hoffman, Ghiorso & Seaborg 2000 3696:Hoffman, Ghiorso & Seaborg 2000 3479:Loveland, W. D.; Morrissey, D. J.; 3209:"The identification of element 108" 3087:"Discovery of Elements 113 and 115" 3018:Physical Chemistry Chemical Physics 2459: = 256. For unbiquadium ( 7646: 7160: 7061: 6944: 6924: 6897: 6888: 6861: 6834: 6789: 6771: 6699: 6690: 6580: 6452: 6416: 6326: 6308: 6299: 6279: 6252: 5332:(9 ed.). Wiley-Interscience. 4647:. Lubbock, Texas: Pergamon Press. 3207:; Folger, H.; et al. (1984). 25: 7115: 7106: 7088: 7043: 6953: 6879: 6852: 6825: 6807: 6798: 6780: 6753: 6735: 6717: 6625: 6553: 6526: 6490: 6434: 6425: 6407: 6389: 6317: 6288: 6225: 6169: 6151: 6113: 6084: 5213:"Super Heavy Elements and Nuclei" 4643:Lodhi, M.A.K., ed. (March 1978). 3881:, pp. 030001-129–030001-138. 3315:"Сверхтяжелые шаги в неизвестное" 2666:is expected to break down due to 2271:University of California at Davis 1738:Superheavy element § Introduction 1682:and the sixth element in the 8th 7469: 7242: 7217: 7007: 6971: 6933: 6918: 6816: 6744: 6654: 6634: 6619: 6562: 6544: 6472: 6446: 6371: 6362: 6353: 6273: 6196: 6190: 6107: 6095: 6078: 5116:"平成23年度 研究業績レビュー(中間レビュー)の実施について" 3061:"Explainer: superheavy elements" 2347:the system Dmitri Mendeleev used 1959:(element 100). The earlier 1821: 1736:This section is an excerpt from 67: 6906: 6607: 6598: 6261: 6243: 6160: 6142: 5661:Springer Science+Business Media 5621:Bemis, C.E.; Nix, J.R. (1977). 5545:10.1016/j.nuclphysa.2016.06.010 4834:Springer Science+Business Media 4304:Chemical & Engineering News 4047:Moller, P.; Nix, J. R. (1994). 3932:The European Physical Journal A 2447:This nuclear chart used by the 2137:Laboratori Nazionali di Legnaro 1860:IUPAC/IUPAP Joint Working Party 7703:Hypothetical chemical elements 6870: 6843: 6380: 6344: 6178: 6133: 5916:10.1088/1742-6596/420/1/012001 5059:10.1103/PhysRevLett.104.142502 4025:10.1088/1742-6596/337/1/012005 3129:10.1002/9781119951438.eibc2632 2717:if its atomic number is high; 2640:Los Alamos National Laboratory 2439:Nuclear stability and isotopes 2357:Prospects for future synthesis 1831:Australian National University 1745:Synthesis of superheavy nuclei 1: 6571: 5796:(6th ed.). McGraw-Hill. 5785:10.1088/1674-1137/41/3/030001 5408:Koura, H.; Chiba, S. (2013). 4671:Maly, J.; Walz, D.R. (1980). 3801:Université libre de Bruxelles 3760:Université libre de Bruxelles 3483:(2005). "Nuclear Reactions". 2124:, and this number is used by 1707:lighter undiscovered elements 1500:(theoretical, extended table) 141:element 124, eka-uranium 5391:10.1051/epjconf/201613103002 5172:. Texas A & M University 5095:. Texas A & M University 4178:Biomodal spontaneous fission 4080:Oganessian, Yu. Ts. (2004). 3388:10.1016/0029-5582(59)90211-1 2237:superheavy elements, mainly 4744:European Physical Journal A 3489:John Wiley & Sons, Inc. 3430:10.1051/epjconf/20158600061 2229:Possible natural occurrence 1838:The resulting merger is an 7719: 7630: 7623: 7616: 7609: 7602: 7595: 7588: 7581: 7574: 7567: 7560: 7553: 7546: 7539: 7532: 7525: 7509: 7493: 7451: 7444: 7437: 7430: 7423: 7416: 7409: 7402: 7395: 7388: 7381: 7374: 7367: 7360: 7353: 7346: 7339: 7332: 7325: 7318: 7311: 7304: 7297: 7290: 7283: 7276: 7269: 7262: 7255: 7248: 6470: 6297: 6214: 6131: 6093: 5993: 5794:Concepts of modern physics 5521:(November 2016): 156–180. 4904:Doklady Physical Chemistry 4801:Pure and Applied Chemistry 4774:10.1140/epja/i2012-12122-6 4587:10.1103/PhysRevC.75.024604 4517:Pure and Applied Chemistry 4460:Pure and Applied Chemistry 4401:Royal Society of Chemistry 3952:10.1140/epja/i2017-12348-8 3857:10.1103/physrevc.87.024320 3563:Pure and Applied Chemistry 3179:10.1103/PhysRevC.79.024608 2866:time-of-flight measurement 2543:neglecting magic numbers. 2539:are extremely unstable in 2449:Japan Atomic Energy Agency 2369:in 2002 and more recently 2033:target with uranium ions: 1735: 1525:predictions vary, see text 450: 318: 258: 198: 173: 28: 7656: 7644: 7465: 7216: 6917: 6618: 6445: 6272: 6189: 6106: 6077: 6070: 6065: 6060: 6055: 6050: 6045: 6040: 6035: 6030: 6025: 6020: 6015: 6010: 6005: 6000: 5995: 5988: 5983: 5976: 5826:; Seaborg, G. T. (2000). 5734:. Encyclopædia Britannica 5600:10.1016/j.adt.2008.01.003 5481:10.3103/s1062873812110172 4916:10.1134/S0012501606060029 4100:10.1088/2058-7058/17/7/31 4058:University of North Texas 3630:10.1524/ract.1987.42.2.57 2650: = 228 region. 1820: 1753:A graphic depiction of a 1609: 1436: 1258: 153: 4327:Robinson, A. E. (2019). 4276:10.1063/PT.6.1.20181113a 4010:(1): 012005-1–012005-6. 3998:Oganessian, Yu. (2012). 3612:; Keller, O. L. (1987). 3485:Modern Nuclear Chemistry 3216:Zeitschrift für Physik A 2485:University of California 2430: = 184 shell. 2318:, the element should be 1885:surface-barrier detector 5970:Extended periodic table 5038:Physical Review Letters 4862:Theoretica Chimica Acta 4814:10.1351/pac197951020381 4529:10.1351/pac199769122471 4472:10.1351/pac199365081815 3576:10.1351/pac199163060879 3497:10.1002/0471768626.ch10 2713:, an element is called 1783:electrostatic repulsion 1604:systematic element name 5434:10.7566/JPSJ.82.014201 5370:EPJ Web of Conferences 5268:Flerov, G. N. (1970). 4948:; et al. (2002). 4146:10.1098/rsta.2014.0191 3282:Bloomberg Businessweek 2476: 2345:, a name derived from 1939: 1762: 1521:Electron configuration 4713:Emsley, John (2011). 4581:: 024604–1–024604–9. 4545:Emsley, John (2011). 4176:Hulet, E. K. (1989). 4082:"Superheavy elements" 3920:, p. 030001-125. 3121:John Wiley & Sons 2614: = 184 and 2550: = 184 and 2467: = 184 and 2455: = 149 and 2446: 2314:Using the 1979 IUPAC 1955:(element 90) to 1947:(element 92) to 1925: 1752: 1673:IUPAC name and symbol 5710:10.1143/JPSJ.65.3175 5084:Roberto, JB (2015). 4380:] (in Russian). 4119:Schädel, M. (2015). 2668:relativistic effects 2434:Predicted properties 1862:(JWP) states that a 1721:relativistic effects 31:Ubq (disambiguation) 5908:2013JPhCS.420a2001Z 5792:Beiser, A. (2003). 5777:2017ChPhC..41c0001A 5730:Seaborg (c. 2006). 5702:1996JPSJ...65.3175U 5592:2008ADNDT..94..781C 5537:2016NuPhA.955..156S 5473:2012BRASP..76.1165P 5426:2013JPSJ...82a4201K 5382:2016EPJWC.13103002M 5361:Möller, P. (2016). 5220:people.nscl.msu.edu 5050:2010PhRvL.104n2502O 4766:2012EPJA...48..122P 4219:2015PhT....68h..32O 4186:1989nufi.rept...16H 4137:2015RSPTA.37340191S 4016:2012JPhCS.337a2005O 3944:2017EPJA...53..158A 3848:2013PhRvC..87b4320S 3676:Scientific American 3463:"Nuclear Reactions" 3421:2015EPJWC..8600061W 3380:1959NucPh..10..226K 3313:Ivanov, D. (2019). 3228:1984ZPhyA.317..235M 3161:Oganessian, Yu. Ts. 3059:Krämer, K. (2016). 3030:2011PCCP...13..161P 2636:beta-stability line 2599:spontaneous fission 2597:Increasingly short 2588:spontaneous fission 2508:decay radioactively 2481:island of stability 2361:Every element from 2267:spontaneous fission 2217:nuclei such as Sn ( 2015:island of stability 1973:island of stability 1969:nuclear shell model 1913:spontaneous fission 1878:Decay and detection 1688:island of stability 1530:Physical properties 146:Unbiquadium in the 52:Theoretical element 47: 5300:Koura, H. (2011). 5241:JINR (1998–2014). 5170:cyclotron.tamu.edu 5093:cyclotron.tamu.edu 5044:(142502): 142502. 5010:on 17 October 2011 4874:10.1007/BF01172015 4795:Chatt, J. (1979). 4691:, p. 416–417. 4297:Howes, L. (2019). 4131:(2037): 20140191. 3983:, p. 432–433. 3788:Pauli, N. (2019). 3747:Pauli, N. (2019). 3491:pp. 249–297. 3339:Hinde, D. (2017). 3275:(28 August 2019). 3236:10.1007/BF01421260 3038:10.1039/c0cp01575j 2578:, Ubq may undergo 2501:primordial element 2477: 2320:temporarily called 1997:Synthesis attempts 1940: 1936:quadrupole magnets 1934:in the former and 1787:strong interaction 1763: 1671:are the temporary 1443: 1428: 41:Unbiquadium,  7685: 7684: 7678: 7677: 7639: 7638: 5867:978-3-319-75813-8 5841:978-1-78-326244-1 5803:978-0-07-244848-1 5765:Chinese Physics C 5515:Nuclear Physics A 5467:(11): 1165–1171. 5339:978-0-471-33230-5 4724:978-0-19-960563-7 4575:Physical Review C 4556:978-0-19-960563-7 4523:(12): 2471–2474. 4426:, pp. 38–39. 4228:10.1063/PT.3.2880 3826:Physical Review C 3790:"Nuclear fission" 3618:Radiochimica Acta 3506:978-0-471-76862-3 3166:Physical Review C 3138:978-1-119-95143-8 3123:. pp. 1–16. 2916:must be preserved 2881:is caused by the 2213:clustered around 2211:fission fragments 2111:> 120, not at 1961:liquid drop model 1836: 1835: 1642: 1641: 1555:Atomic properties 1455: 1454: 1451: 1450: 1441: 1426: 1418: 1417: 1022: 1021: 746:Mercury (element) 138:Alternative names 16:(Redirected from 7710: 7649: 7648: 7635: 7634: 7628: 7627: 7621: 7620: 7614: 7613: 7607: 7606: 7600: 7599: 7593: 7592: 7586: 7585: 7579: 7578: 7572: 7571: 7565: 7564: 7558: 7557: 7551: 7550: 7544: 7543: 7537: 7536: 7530: 7529: 7523: 7521: 7514: 7513: 7507: 7505: 7498: 7497: 7491: 7489: 7482: 7480: 7473: 7472: 7456: 7455: 7449: 7448: 7442: 7441: 7435: 7434: 7428: 7427: 7421: 7420: 7414: 7413: 7407: 7406: 7400: 7399: 7393: 7392: 7386: 7385: 7379: 7378: 7372: 7371: 7365: 7364: 7358: 7357: 7351: 7350: 7344: 7343: 7337: 7336: 7330: 7329: 7323: 7322: 7316: 7315: 7309: 7308: 7302: 7301: 7295: 7294: 7288: 7287: 7281: 7280: 7274: 7273: 7267: 7266: 7260: 7259: 7253: 7252: 7246: 7245: 7239: 7237: 7230: 7228: 7221: 7212: 7210: 7203: 7201: 7194: 7192: 7185: 7183: 7176: 7174: 7167: 7165: 7158: 7156: 7149: 7147: 7140: 7138: 7131: 7129: 7122: 7120: 7113: 7111: 7104: 7102: 7095: 7093: 7086: 7084: 7077: 7075: 7068: 7066: 7059: 7057: 7050: 7048: 7041: 7039: 7032: 7030: 7023: 7021: 7014: 7012: 7005: 7003: 6996: 6994: 6987: 6985: 6978: 6976: 6969: 6967: 6960: 6958: 6951: 6949: 6940: 6938: 6931: 6929: 6922: 6913: 6911: 6904: 6902: 6895: 6893: 6886: 6884: 6877: 6875: 6868: 6866: 6859: 6857: 6850: 6848: 6841: 6839: 6832: 6830: 6823: 6821: 6814: 6812: 6805: 6803: 6796: 6794: 6787: 6785: 6778: 6776: 6769: 6767: 6760: 6758: 6751: 6749: 6742: 6740: 6733: 6731: 6724: 6722: 6715: 6713: 6706: 6704: 6697: 6695: 6688: 6686: 6679: 6677: 6670: 6668: 6661: 6659: 6652: 6650: 6641: 6639: 6632: 6630: 6623: 6614: 6612: 6605: 6603: 6596: 6594: 6587: 6585: 6578: 6576: 6569: 6567: 6560: 6558: 6551: 6549: 6542: 6540: 6533: 6531: 6524: 6522: 6515: 6513: 6506: 6504: 6497: 6495: 6488: 6486: 6479: 6477: 6468: 6466: 6459: 6457: 6450: 6441: 6439: 6432: 6430: 6423: 6421: 6414: 6412: 6405: 6403: 6396: 6394: 6387: 6385: 6378: 6376: 6369: 6367: 6360: 6358: 6351: 6349: 6342: 6340: 6333: 6331: 6324: 6322: 6315: 6313: 6306: 6304: 6295: 6293: 6286: 6284: 6277: 6268: 6266: 6259: 6257: 6250: 6248: 6241: 6239: 6232: 6230: 6223: 6221: 6212: 6210: 6203: 6201: 6194: 6185: 6183: 6176: 6174: 6167: 6165: 6158: 6156: 6149: 6147: 6140: 6138: 6129: 6127: 6120: 6118: 6111: 6102: 6100: 6091: 6089: 6082: 5979: 5963: 5956: 5949: 5940: 5935: 5901: 5881: 5871: 5845: 5832:World Scientific 5815: 5788: 5762: 5743: 5742: 5740: 5739: 5727: 5721: 5720: 5718: 5716: 5681: 5675: 5674: 5652: 5646: 5645: 5627: 5618: 5612: 5611: 5585: 5563: 5557: 5556: 5530: 5510: 5501: 5500: 5458: 5449: 5438: 5437: 5405: 5396: 5395: 5393: 5367: 5358: 5352: 5351: 5325: 5319: 5318: 5316: 5314: 5308: 5297: 5288: 5287: 5285: 5283: 5274: 5265: 5259: 5258: 5256: 5254: 5238: 5232: 5231: 5229: 5227: 5217: 5208: 5199: 5193: 5182: 5181: 5179: 5177: 5167: 5158: 5143: 5142: 5140: 5138: 5132: 5121: 5111: 5105: 5104: 5102: 5100: 5090: 5081: 5072: 5071: 5061: 5035: 5026: 5020: 5019: 5017: 5015: 5000: 4994: 4993: 4992:on 22 July 2011. 4985: 4984: 4983: 4976: 4975: 4967: 4966: 4965: 4958: 4957: 4942: 4936: 4935: 4901: 4892: 4886: 4885: 4857: 4848: 4847: 4836:. p. 1724. 4825: 4819: 4818: 4816: 4792: 4786: 4785: 4759: 4735: 4729: 4728: 4710: 4704: 4698: 4692: 4686: 4680: 4679: 4677: 4668: 4659: 4658: 4640: 4625: 4619: 4613: 4607: 4601: 4600: 4598: 4570: 4561: 4560: 4542: 4533: 4532: 4514: 4505: 4499: 4498: 4496: 4494: 4488: 4466:(8): 1815–1824. 4457: 4448: 4439: 4433: 4427: 4421: 4412: 4411: 4409: 4408: 4392: 4386: 4385: 4369: 4367: 4366: 4351: 4345: 4344: 4342: 4341: 4324: 4315: 4314: 4312: 4311: 4294: 4288: 4287: 4263: 4257: 4256: 4230: 4196: 4190: 4189: 4173: 4167: 4166: 4148: 4116: 4110: 4109: 4107: 4106: 4077: 4068: 4067: 4065: 4064: 4055: 4044: 4038: 4037: 4027: 3995: 3984: 3978: 3972: 3971: 3927: 3921: 3918:Audi et al. 2017 3915: 3909: 3903: 3894: 3888: 3882: 3879:Audi et al. 2017 3876: 3870: 3869: 3859: 3841: 3817: 3811: 3810: 3808: 3807: 3794: 3785: 3770: 3769: 3767: 3766: 3753: 3744: 3735: 3729: 3723: 3717: 3711: 3705: 3699: 3693: 3687: 3686: 3684: 3683: 3663: 3650: 3649: 3605: 3596: 3595: 3559: 3547: 3541: 3540: 3520: 3511: 3510: 3476: 3474: 3473: 3467: 3459: 3453: 3452: 3442: 3432: 3398: 3392: 3391: 3363: 3357: 3356: 3354: 3353: 3346:The Conversation 3336: 3330: 3329: 3327: 3326: 3310: 3293: 3292: 3290: 3289: 3269: 3263: 3262: 3260: 3258: 3252: 3246:. Archived from 3213: 3197: 3191: 3190: 3157: 3151: 3150: 3112: 3106: 3105: 3103: 3102: 3093:. Archived from 3083: 3077: 3076: 3074: 3073: 3056: 3050: 3049: 3010: 2988: 2976: 2970: 2967: 2961: 2946:Stockholm County 2938: 2932: 2925: 2919: 2912: 2906: 2902: 2896: 2892: 2886: 2883:weak interaction 2875: 2869: 2861: 2855: 2852: 2846: 2844: 2843: 2842: 2835: 2834: 2825: 2824: 2823: 2816: 2815: 2806: 2805: 2804: 2797: 2796: 2787: 2786: 2785: 2778: 2777: 2767: 2761: 2759: 2758: 2744: 2738: 2707: 2664:Aufbau principle 2608:even–even nuclei 2606:, especially in 2604:fission barriers 2574:and thus may be 2572:proton drip line 2416:fission barriers 2197: 2196: 2195: 2188: 2187: 2179: 2178: 2177: 2170: 2169: 2160: 2159: 2158: 2151: 2150: 2091: 2090: 2089: 2082: 2081: 2073: 2072: 2071: 2064: 2063: 2054: 2053: 2052: 2045: 2044: 1864:chemical element 1844:compound nucleus 1825: 1824: 1813: 1725:Aufbau principle 1647:, also known as 1630: 1623: 1616: 1589:54500-72-0 1579:Other properties 1570: 1561:Oxidation states 1545: 1544: 1512: 1487:(no number) 1471: 1470: 1413: 1406: 1399: 1392: 1385: 1378: 1371: 1364: 1357: 1350: 1343: 1336: 1329: 1322: 1315: 1308: 1301: 1294: 1287: 1280: 1273: 1266: 1249: 1242: 1235: 1228: 1221: 1214: 1207: 1200: 1193: 1186: 1179: 1172: 1165: 1158: 1151: 1144: 1137: 1130: 1123: 1116: 1109: 1102: 1095: 1088: 1081: 1074: 1067: 1060: 1053: 1046: 1037: 1030: 1024: 1023: 1017: 1010: 1003: 996: 989: 982: 975: 968: 961: 954: 947: 940: 933: 926: 919: 912: 905: 898: 891: 884: 877: 870: 863: 856: 849: 842: 835: 828: 821: 814: 805: 798: 789: 782: 775: 768: 761: 754: 747: 740: 733: 726: 719: 712: 705: 698: 691: 684: 677: 670: 663: 656: 649: 642: 635: 628: 621: 614: 607: 600: 593: 586: 577: 570: 561: 554: 547: 540: 533: 526: 519: 512: 505: 498: 491: 484: 477: 470: 463: 456: 445: 438: 429: 422: 415: 408: 401: 394: 387: 380: 373: 366: 359: 352: 345: 338: 331: 324: 315: 308: 299: 292: 285: 278: 271: 264: 255: 248: 239: 232: 225: 218: 211: 204: 195: 188: 179: 170: 164: 163: 159: 155: 133: 128: 124: 116: 114: 113: 110: 109: 106: 103: 100: 97: 94: 91: 88: 85: 82: 79: 76: 73: 48: 46: 21: 7718: 7717: 7713: 7712: 7711: 7709: 7708: 7707: 7688: 7687: 7686: 7681: 7680: 7679: 7640: 7632: 7631: 7625: 7624: 7618: 7617: 7611: 7610: 7604: 7603: 7597: 7596: 7590: 7589: 7583: 7582: 7576: 7575: 7569: 7568: 7562: 7561: 7555: 7554: 7548: 7547: 7541: 7540: 7534: 7533: 7527: 7526: 7519: 7517: 7511: 7510: 7503: 7501: 7495: 7494: 7487: 7485: 7478: 7476: 7470: 7453: 7452: 7446: 7445: 7439: 7438: 7432: 7431: 7425: 7424: 7418: 7417: 7411: 7410: 7404: 7403: 7397: 7396: 7390: 7389: 7383: 7382: 7376: 7375: 7369: 7368: 7362: 7361: 7355: 7354: 7348: 7347: 7341: 7340: 7334: 7333: 7327: 7326: 7320: 7319: 7313: 7312: 7306: 7305: 7299: 7298: 7292: 7291: 7285: 7284: 7278: 7277: 7271: 7270: 7264: 7263: 7257: 7256: 7250: 7249: 7243: 7235: 7233: 7226: 7224: 7208: 7206: 7199: 7197: 7190: 7188: 7181: 7179: 7172: 7170: 7163: 7161: 7154: 7152: 7145: 7143: 7136: 7134: 7127: 7125: 7118: 7116: 7109: 7107: 7100: 7098: 7091: 7089: 7082: 7080: 7073: 7071: 7064: 7062: 7055: 7053: 7046: 7044: 7037: 7035: 7028: 7026: 7019: 7017: 7010: 7008: 7001: 6999: 6992: 6990: 6983: 6981: 6974: 6972: 6965: 6963: 6956: 6954: 6947: 6945: 6936: 6934: 6927: 6925: 6909: 6907: 6900: 6898: 6891: 6889: 6882: 6880: 6873: 6871: 6864: 6862: 6855: 6853: 6846: 6844: 6837: 6835: 6828: 6826: 6819: 6817: 6810: 6808: 6801: 6799: 6792: 6790: 6783: 6781: 6774: 6772: 6765: 6763: 6756: 6754: 6747: 6745: 6738: 6736: 6729: 6727: 6720: 6718: 6711: 6709: 6702: 6700: 6693: 6691: 6684: 6682: 6675: 6673: 6666: 6664: 6657: 6655: 6648: 6646: 6637: 6635: 6628: 6626: 6610: 6608: 6601: 6599: 6592: 6590: 6583: 6581: 6574: 6572: 6565: 6563: 6556: 6554: 6547: 6545: 6538: 6536: 6529: 6527: 6520: 6518: 6511: 6509: 6502: 6500: 6493: 6491: 6484: 6482: 6475: 6473: 6464: 6462: 6455: 6453: 6437: 6435: 6428: 6426: 6419: 6417: 6410: 6408: 6401: 6399: 6392: 6390: 6383: 6381: 6374: 6372: 6365: 6363: 6356: 6354: 6347: 6345: 6338: 6336: 6329: 6327: 6320: 6318: 6311: 6309: 6302: 6300: 6291: 6289: 6282: 6280: 6264: 6262: 6255: 6253: 6246: 6244: 6237: 6235: 6228: 6226: 6219: 6217: 6208: 6206: 6199: 6197: 6181: 6179: 6172: 6170: 6163: 6161: 6154: 6152: 6145: 6143: 6136: 6134: 6125: 6123: 6116: 6114: 6098: 6096: 6087: 6085: 5972: 5967: 5879: 5874: 5868: 5848: 5842: 5818: 5804: 5791: 5760: 5755: 5752: 5747: 5746: 5737: 5735: 5729: 5728: 5724: 5714: 5712: 5683: 5682: 5678: 5671: 5654: 5653: 5649: 5625: 5620: 5619: 5615: 5565: 5564: 5560: 5512: 5511: 5504: 5456: 5451: 5450: 5441: 5407: 5406: 5399: 5365: 5360: 5359: 5355: 5340: 5327: 5326: 5322: 5312: 5310: 5306: 5299: 5298: 5291: 5281: 5279: 5272: 5267: 5266: 5262: 5252: 5250: 5240: 5239: 5235: 5225: 5223: 5215: 5210: 5209: 5202: 5194: 5185: 5175: 5173: 5165: 5160: 5159: 5146: 5136: 5134: 5130: 5119: 5113: 5112: 5108: 5098: 5096: 5088: 5083: 5082: 5075: 5033: 5028: 5027: 5023: 5013: 5011: 5002: 5001: 4997: 4982: 4980: 4979: 4978: 4974: 4972: 4971: 4970: 4969: 4964: 4962: 4961: 4960: 4956: 4954: 4953: 4952: 4951: 4944: 4943: 4939: 4899: 4894: 4893: 4889: 4859: 4858: 4851: 4844: 4827: 4826: 4822: 4794: 4793: 4789: 4737: 4736: 4732: 4725: 4712: 4711: 4707: 4699: 4695: 4687: 4683: 4675: 4670: 4669: 4662: 4655: 4642: 4641: 4628: 4620: 4616: 4608: 4604: 4572: 4571: 4564: 4557: 4544: 4543: 4536: 4512: 4507: 4506: 4502: 4492: 4490: 4486: 4455: 4450: 4449: 4442: 4434: 4430: 4422: 4415: 4406: 4404: 4394: 4393: 4389: 4371: 4370:Reprinted from 4364: 4362: 4353: 4352: 4348: 4339: 4337: 4326: 4325: 4318: 4309: 4307: 4296: 4295: 4291: 4265: 4264: 4260: 4198: 4197: 4193: 4175: 4174: 4170: 4118: 4117: 4113: 4104: 4102: 4079: 4078: 4071: 4062: 4060: 4053: 4046: 4045: 4041: 3997: 3996: 3987: 3979: 3975: 3929: 3928: 3924: 3916: 3912: 3904: 3897: 3889: 3885: 3877: 3873: 3832:(2): 024320–1. 3819: 3818: 3814: 3805: 3803: 3792: 3787: 3786: 3773: 3764: 3762: 3751: 3746: 3745: 3738: 3730: 3726: 3718: 3714: 3706: 3702: 3694: 3690: 3681: 3679: 3667:Chemistry World 3665: 3664: 3653: 3607: 3606: 3599: 3557: 3549: 3548: 3544: 3522: 3521: 3514: 3507: 3478: 3471: 3469: 3465: 3461: 3460: 3456: 3400: 3399: 3395: 3368:Nuclear Physics 3365: 3364: 3360: 3351: 3349: 3338: 3337: 3333: 3324: 3322: 3312: 3311: 3296: 3287: 3285: 3273:Subramanian, S. 3271: 3270: 3266: 3256: 3254: 3250: 3211: 3199: 3198: 3194: 3159: 3158: 3154: 3139: 3114: 3113: 3109: 3100: 3098: 3085: 3084: 3080: 3071: 3069: 3066:Chemistry World 3058: 3057: 3053: 3012: 3011: 3002: 2997: 2992: 2991: 2977: 2973: 2968: 2964: 2939: 2935: 2926: 2922: 2913: 2909: 2903: 2899: 2893: 2889: 2876: 2872: 2862: 2858: 2853: 2849: 2841: 2839: 2838: 2837: 2833: 2830: 2829: 2828: 2827: 2822: 2820: 2819: 2818: 2814: 2811: 2810: 2809: 2808: 2803: 2801: 2800: 2799: 2795: 2792: 2791: 2790: 2789: 2784: 2782: 2781: 2780: 2776: 2773: 2772: 2771: 2770: 2768: 2764: 2757: 2754: 2753: 2752: 2745: 2741: 2711:nuclear physics 2708: 2704: 2699: 2692: 2683:oxidation state 2656: 2576:proton emitters 2560:double magicity 2499:, the heaviest 2441: 2436: 2404:compound nuclei 2359: 2316:recommendations 2312: 2275:alpha particles 2241:, unbiquadium, 2231: 2194: 2192: 2191: 2190: 2186: 2184: 2183: 2182: 2181: 2176: 2174: 2173: 2172: 2168: 2165: 2164: 2163: 2162: 2157: 2155: 2154: 2153: 2149: 2146: 2145: 2144: 2143: 2128:as the minimum 2101:compound nuclei 2088: 2086: 2085: 2084: 2080: 2078: 2077: 2076: 2075: 2070: 2068: 2067: 2066: 2062: 2059: 2058: 2057: 2056: 2051: 2049: 2048: 2047: 2043: 2040: 2039: 2038: 2037: 1999: 1994: 1989: 1988: 1965:fission barrier 1917:energy barriers 1880: 1822: 1816:External videos 1747: 1741: 1733: 1634: 1566: 1538: 1464: 1460: 1431: 1429: 1425: 1423: 1419: 1411: 1404: 1397: 1390: 1383: 1376: 1369: 1362: 1355: 1348: 1341: 1334: 1327: 1320: 1313: 1306: 1299: 1292: 1285: 1278: 1271: 1264: 1247: 1240: 1233: 1226: 1219: 1212: 1205: 1198: 1191: 1184: 1177: 1170: 1163: 1156: 1149: 1142: 1135: 1128: 1121: 1114: 1107: 1100: 1093: 1086: 1079: 1072: 1065: 1058: 1051: 1044: 1035: 1028: 1015: 1008: 1001: 994: 987: 980: 973: 966: 959: 952: 945: 938: 931: 924: 917: 910: 903: 896: 889: 882: 875: 868: 861: 854: 847: 840: 833: 826: 819: 812: 803: 796: 787: 780: 773: 766: 759: 752: 745: 738: 731: 724: 717: 710: 703: 696: 689: 682: 675: 668: 661: 654: 647: 640: 633: 626: 619: 612: 605: 598: 591: 584: 575: 568: 559: 552: 545: 538: 531: 524: 517: 510: 503: 496: 489: 482: 475: 468: 461: 454: 443: 436: 427: 420: 413: 406: 399: 392: 385: 378: 371: 364: 357: 350: 343: 336: 329: 322: 313: 306: 297: 290: 283: 276: 269: 262: 253: 246: 237: 230: 223: 216: 209: 202: 193: 186: 177: 168: 126: 122: 118: 70: 66: 44: 40: 37: 34: 23: 22: 15: 12: 11: 5: 7716: 7714: 7706: 7705: 7700: 7690: 7689: 7683: 7682: 7676: 7675: 7670: 7665: 7660: 7655: 7647: 7645: 7642: 7641: 7637: 7636: 7629: 7622: 7615: 7608: 7601: 7594: 7587: 7580: 7573: 7566: 7559: 7552: 7545: 7538: 7531: 7524: 7515: 7508: 7499: 7492: 7483: 7474: 7467: 7463: 7462: 7458: 7457: 7450: 7443: 7436: 7429: 7422: 7415: 7408: 7401: 7394: 7387: 7380: 7373: 7366: 7359: 7352: 7345: 7338: 7331: 7324: 7317: 7310: 7303: 7296: 7289: 7282: 7275: 7268: 7261: 7254: 7247: 7240: 7231: 7222: 7214: 7213: 7204: 7195: 7186: 7177: 7168: 7159: 7150: 7141: 7132: 7123: 7114: 7105: 7096: 7087: 7078: 7069: 7060: 7051: 7042: 7033: 7024: 7015: 7006: 6997: 6988: 6979: 6970: 6961: 6952: 6943: 6941: 6932: 6923: 6915: 6914: 6905: 6896: 6887: 6878: 6869: 6860: 6851: 6842: 6833: 6824: 6815: 6806: 6797: 6788: 6779: 6770: 6761: 6752: 6743: 6734: 6725: 6716: 6707: 6698: 6689: 6680: 6671: 6662: 6653: 6644: 6642: 6633: 6624: 6616: 6615: 6606: 6597: 6588: 6579: 6570: 6561: 6552: 6543: 6534: 6525: 6516: 6507: 6498: 6489: 6480: 6471: 6469: 6460: 6451: 6443: 6442: 6433: 6424: 6415: 6406: 6397: 6388: 6379: 6370: 6361: 6352: 6343: 6334: 6325: 6316: 6307: 6298: 6296: 6287: 6278: 6270: 6269: 6260: 6251: 6242: 6233: 6224: 6215: 6213: 6204: 6195: 6187: 6186: 6177: 6168: 6159: 6150: 6141: 6132: 6130: 6121: 6112: 6104: 6103: 6094: 6092: 6083: 6075: 6074: 6069: 6064: 6059: 6054: 6049: 6044: 6039: 6034: 6029: 6024: 6019: 6014: 6009: 6004: 5999: 5994: 5992: 5987: 5982: 5977: 5974: 5973: 5968: 5966: 5965: 5958: 5951: 5943: 5937: 5936: 5872: 5866: 5846: 5840: 5820:Hoffman, D. C. 5816: 5802: 5789: 5751: 5748: 5745: 5744: 5722: 5696:(10): 3175–9. 5676: 5669: 5647: 5613: 5576:(6): 781–806. 5558: 5502: 5439: 5397: 5353: 5338: 5320: 5289: 5260: 5233: 5200: 5183: 5144: 5106: 5073: 5021: 4995: 4981: 4973: 4963: 4955: 4946:Oganessian, YT 4937: 4910:(2): 149–151. 4887: 4868:(3): 235–260. 4849: 4842: 4820: 4807:(2): 381–384. 4787: 4730: 4723: 4705: 4703:, p. 417. 4693: 4681: 4660: 4653: 4626: 4624:, p. 413. 4614: 4602: 4562: 4555: 4534: 4500: 4440: 4428: 4413: 4387: 4346: 4316: 4289: 4258: 4191: 4168: 4111: 4069: 4039: 3985: 3973: 3922: 3910: 3908:, p. 433. 3895: 3893:, p. 439. 3883: 3871: 3812: 3771: 3736: 3734:, p. 432. 3724: 3712: 3710:, p. 335. 3700: 3698:, p. 334. 3688: 3651: 3610:Hoffman, D. C. 3597: 3551:Wapstra, A. H. 3542: 3512: 3505: 3481:Seaborg, G. T. 3468:. pp. 7–8 3454: 3393: 3358: 3331: 3294: 3264: 3253:on 7 June 2015 3222:(2): 235–236. 3205:Armbruster, P. 3201:Münzenberg, G. 3192: 3152: 3137: 3107: 3078: 3051: 2999: 2998: 2996: 2993: 2990: 2989: 2971: 2962: 2933: 2920: 2907: 2897: 2887: 2870: 2856: 2847: 2840: 2831: 2821: 2812: 2802: 2793: 2783: 2774: 2762: 2755: 2739: 2701: 2700: 2698: 2695: 2690: 2681:One predicted 2655: 2652: 2632:neutron number 2524:nuclear shells 2440: 2437: 2435: 2432: 2424:Georgy Flyorov 2358: 2355: 2311: 2308: 2230: 2227: 2203: 2202: 2193: 2185: 2175: 2166: 2156: 2147: 2097: 2096: 2087: 2079: 2069: 2060: 2050: 2041: 1998: 1995: 1993: 1990: 1982:kinetic energy 1938:in the latter. 1904:binding energy 1879: 1876: 1834: 1833: 1818: 1817: 1796:speed of light 1767:atomic nucleus 1755:nuclear fusion 1746: 1743: 1742: 1734: 1732: 1729: 1640: 1639: 1633: 1632: 1625: 1618: 1610: 1607: 1606: 1600: 1596: 1595: 1591: 1590: 1587: 1581: 1580: 1576: 1575: 1563: 1557: 1556: 1552: 1551: 1546: 1532: 1531: 1527: 1526: 1523: 1517: 1516: 1508: 1502: 1501: 1495: 1489: 1488: 1485:g-block groups 1482: 1476: 1475: 1472: 1457: 1456: 1453: 1452: 1449: 1448: 1434: 1433: 1420: 1416: 1415: 1408: 1401: 1394: 1387: 1380: 1373: 1366: 1359: 1352: 1345: 1338: 1331: 1324: 1317: 1310: 1303: 1296: 1289: 1282: 1275: 1268: 1261: 1259: 1256: 1255: 1252: 1251: 1244: 1237: 1230: 1223: 1216: 1209: 1202: 1195: 1188: 1181: 1174: 1167: 1160: 1153: 1146: 1139: 1132: 1125: 1118: 1111: 1104: 1097: 1090: 1083: 1076: 1069: 1062: 1055: 1048: 1041: 1039: 1032: 1020: 1019: 1012: 1005: 998: 991: 984: 977: 970: 963: 956: 949: 942: 935: 928: 921: 914: 907: 900: 893: 886: 879: 872: 865: 858: 851: 844: 837: 830: 823: 816: 809: 807: 800: 792: 791: 784: 777: 770: 763: 756: 749: 742: 735: 728: 721: 714: 707: 700: 693: 686: 679: 672: 665: 658: 651: 644: 637: 630: 623: 616: 609: 602: 595: 588: 581: 579: 572: 564: 563: 556: 549: 542: 535: 528: 521: 514: 507: 500: 493: 486: 479: 472: 465: 458: 451: 449: 447: 440: 432: 431: 424: 417: 410: 403: 396: 389: 382: 375: 368: 361: 354: 347: 340: 333: 326: 319: 317: 310: 302: 301: 294: 287: 280: 273: 266: 259: 257: 250: 242: 241: 234: 227: 220: 213: 206: 199: 197: 190: 182: 181: 174: 172: 162: 151: 150: 148:periodic table 143: 142: 139: 135: 134: 64: 60: 59: 55: 54: 42: 35: 24: 14: 13: 10: 9: 6: 4: 3: 2: 7715: 7704: 7701: 7699: 7696: 7695: 7693: 7674: 7671: 7669: 7666: 7664: 7661: 7659: 7654: 7651: 7650: 7643: 7522: 7506: 7490: 7481: 7468: 7464: 7460: 7459: 7241: 7238: 7229: 7220: 7215: 7211: 7202: 7193: 7184: 7175: 7166: 7157: 7148: 7139: 7130: 7121: 7112: 7103: 7094: 7085: 7076: 7067: 7058: 7049: 7040: 7031: 7022: 7013: 7004: 6995: 6986: 6977: 6968: 6959: 6950: 6942: 6939: 6930: 6921: 6916: 6912: 6903: 6894: 6885: 6876: 6867: 6858: 6849: 6840: 6831: 6822: 6813: 6804: 6795: 6786: 6777: 6768: 6759: 6750: 6741: 6732: 6723: 6714: 6705: 6696: 6687: 6678: 6669: 6660: 6651: 6643: 6640: 6631: 6622: 6617: 6613: 6604: 6595: 6586: 6577: 6568: 6559: 6550: 6541: 6532: 6523: 6514: 6505: 6496: 6487: 6478: 6467: 6458: 6449: 6444: 6440: 6431: 6422: 6413: 6404: 6395: 6386: 6377: 6368: 6359: 6350: 6341: 6332: 6323: 6314: 6305: 6294: 6285: 6276: 6271: 6267: 6258: 6249: 6240: 6231: 6222: 6211: 6202: 6193: 6188: 6184: 6175: 6166: 6157: 6148: 6139: 6128: 6119: 6110: 6105: 6101: 6090: 6081: 6076: 6073: 6068: 6063: 6058: 6053: 6048: 6043: 6038: 6033: 6028: 6023: 6018: 6013: 6008: 6003: 5998: 5991: 5986: 5981: 5980: 5975: 5971: 5964: 5959: 5957: 5952: 5950: 5945: 5944: 5941: 5933: 5929: 5925: 5921: 5917: 5913: 5909: 5905: 5900: 5895: 5892:(1). 012001. 5891: 5887: 5886: 5878: 5873: 5869: 5863: 5859: 5855: 5851: 5847: 5843: 5837: 5833: 5829: 5825: 5821: 5817: 5813: 5809: 5805: 5799: 5795: 5790: 5786: 5782: 5778: 5774: 5771:(3): 030001. 5770: 5766: 5759: 5754: 5753: 5749: 5733: 5726: 5723: 5711: 5707: 5703: 5699: 5695: 5691: 5687: 5680: 5677: 5672: 5670:1-4020-3555-1 5666: 5662: 5658: 5651: 5648: 5643: 5639: 5635: 5631: 5624: 5617: 5614: 5609: 5605: 5601: 5597: 5593: 5589: 5584: 5579: 5575: 5571: 5570: 5562: 5559: 5554: 5550: 5546: 5542: 5538: 5534: 5529: 5524: 5520: 5516: 5509: 5507: 5503: 5498: 5494: 5490: 5486: 5482: 5478: 5474: 5470: 5466: 5462: 5455: 5448: 5446: 5444: 5440: 5435: 5431: 5427: 5423: 5420:(1). 014201. 5419: 5415: 5411: 5404: 5402: 5398: 5392: 5387: 5383: 5379: 5376:: 03002:1–8. 5375: 5371: 5364: 5357: 5354: 5349: 5345: 5341: 5335: 5331: 5324: 5321: 5305: 5304: 5296: 5294: 5290: 5278: 5271: 5264: 5261: 5248: 5244: 5237: 5234: 5221: 5214: 5207: 5205: 5201: 5197: 5192: 5190: 5188: 5184: 5171: 5164: 5157: 5155: 5153: 5151: 5149: 5145: 5133:on 2019-03-30 5129: 5125: 5117: 5110: 5107: 5094: 5087: 5080: 5078: 5074: 5069: 5065: 5060: 5055: 5051: 5047: 5043: 5039: 5032: 5025: 5022: 5009: 5005: 4999: 4996: 4991: 4987: 4947: 4941: 4938: 4933: 4929: 4925: 4921: 4917: 4913: 4909: 4905: 4898: 4891: 4888: 4883: 4879: 4875: 4871: 4867: 4863: 4856: 4854: 4850: 4845: 4843:1-4020-3555-1 4839: 4835: 4831: 4824: 4821: 4815: 4810: 4806: 4802: 4798: 4791: 4788: 4783: 4779: 4775: 4771: 4767: 4763: 4758: 4753: 4749: 4745: 4741: 4734: 4731: 4726: 4720: 4716: 4709: 4706: 4702: 4697: 4694: 4690: 4685: 4682: 4674: 4667: 4665: 4661: 4656: 4654:0-08-022946-8 4650: 4646: 4639: 4637: 4635: 4633: 4631: 4627: 4623: 4618: 4615: 4612: 4606: 4603: 4597: 4592: 4588: 4584: 4580: 4576: 4569: 4567: 4563: 4558: 4552: 4548: 4541: 4539: 4535: 4530: 4526: 4522: 4518: 4511: 4504: 4501: 4485: 4481: 4477: 4473: 4469: 4465: 4461: 4454: 4447: 4445: 4441: 4438:, p. 40. 4437: 4432: 4429: 4425: 4420: 4418: 4414: 4403: 4402: 4397: 4391: 4388: 4383: 4379: 4375: 4360: 4356: 4350: 4347: 4336: 4335: 4334:Distillations 4330: 4323: 4321: 4317: 4306: 4305: 4300: 4293: 4290: 4285: 4281: 4277: 4273: 4269: 4268:Physics Today 4262: 4259: 4254: 4250: 4246: 4242: 4238: 4234: 4229: 4224: 4220: 4216: 4212: 4208: 4207: 4206:Physics Today 4202: 4195: 4192: 4187: 4183: 4179: 4172: 4169: 4164: 4160: 4156: 4152: 4147: 4142: 4138: 4134: 4130: 4126: 4122: 4115: 4112: 4101: 4097: 4093: 4089: 4088: 4087:Physics World 4083: 4076: 4074: 4070: 4059: 4052: 4051: 4043: 4040: 4035: 4031: 4026: 4021: 4017: 4013: 4009: 4005: 4001: 3994: 3992: 3990: 3986: 3982: 3977: 3974: 3969: 3965: 3961: 3957: 3953: 3949: 3945: 3941: 3937: 3933: 3926: 3923: 3919: 3914: 3911: 3907: 3902: 3900: 3896: 3892: 3887: 3884: 3880: 3875: 3872: 3867: 3863: 3858: 3853: 3849: 3845: 3840: 3835: 3831: 3827: 3823: 3816: 3813: 3802: 3798: 3791: 3784: 3782: 3780: 3778: 3776: 3772: 3761: 3757: 3750: 3749:"Alpha decay" 3743: 3741: 3737: 3733: 3728: 3725: 3721: 3716: 3713: 3709: 3704: 3701: 3697: 3692: 3689: 3678: 3677: 3672: 3668: 3662: 3660: 3658: 3656: 3652: 3647: 3643: 3639: 3635: 3631: 3627: 3623: 3619: 3615: 3611: 3608:Hyde, E. K.; 3604: 3602: 3598: 3593: 3589: 3585: 3581: 3577: 3573: 3569: 3565: 3564: 3556: 3552: 3546: 3543: 3538: 3534: 3530: 3526: 3519: 3517: 3513: 3508: 3502: 3498: 3494: 3490: 3486: 3482: 3477:Published as 3464: 3458: 3455: 3450: 3446: 3441: 3436: 3431: 3426: 3422: 3418: 3414: 3410: 3409: 3404: 3397: 3394: 3389: 3385: 3381: 3377: 3373: 3369: 3362: 3359: 3348: 3347: 3342: 3335: 3332: 3320: 3316: 3309: 3307: 3305: 3303: 3301: 3299: 3295: 3284: 3283: 3278: 3274: 3268: 3265: 3249: 3245: 3241: 3237: 3233: 3229: 3225: 3221: 3217: 3210: 3206: 3202: 3196: 3193: 3188: 3184: 3180: 3176: 3173:(2): 024608. 3172: 3168: 3167: 3162: 3156: 3153: 3148: 3144: 3140: 3134: 3130: 3126: 3122: 3118: 3111: 3108: 3097:on 2015-09-11 3096: 3092: 3088: 3082: 3079: 3068: 3067: 3062: 3055: 3052: 3047: 3043: 3039: 3035: 3031: 3027: 3023: 3019: 3015: 3014:Pyykkö, Pekka 3009: 3007: 3005: 3001: 2994: 2986: 2981: 2975: 2972: 2966: 2963: 2959: 2955: 2951: 2947: 2943: 2937: 2934: 2930: 2929:Georgy Flerov 2924: 2921: 2917: 2911: 2908: 2901: 2898: 2891: 2888: 2884: 2880: 2874: 2871: 2867: 2860: 2857: 2851: 2848: 2766: 2763: 2750: 2743: 2740: 2736: 2735:superactinide 2732: 2728: 2724: 2720: 2716: 2712: 2706: 2703: 2696: 2694: 2688: 2684: 2679: 2677: 2673: 2669: 2665: 2661: 2653: 2651: 2649: 2645: 2641: 2637: 2633: 2629: 2625: 2621: 2617: 2613: 2609: 2605: 2600: 2595: 2593: 2589: 2585: 2581: 2577: 2573: 2568: 2565: 2561: 2557: 2553: 2549: 2544: 2542: 2538: 2534: 2529: 2525: 2521: 2517: 2513: 2509: 2506: 2502: 2498: 2494: 2490: 2489:Glenn Seaborg 2486: 2482: 2474: 2470: 2466: 2462: 2458: 2454: 2450: 2445: 2438: 2433: 2431: 2429: 2425: 2421: 2417: 2413: 2409: 2405: 2401: 2395: 2393: 2389: 2385: 2381: 2377: 2372: 2368: 2364: 2356: 2354: 2352: 2348: 2344: 2340: 2336: 2332: 2328: 2324: 2321: 2317: 2309: 2307: 2305: 2301: 2295: 2293: 2289: 2285: 2280: 2276: 2272: 2268: 2264: 2260: 2256: 2252: 2248: 2244: 2240: 2236: 2228: 2226: 2224: 2220: 2216: 2212: 2208: 2201: 2142: 2141: 2140: 2138: 2133: 2131: 2127: 2123: 2118: 2114: 2110: 2106: 2102: 2095: 2036: 2035: 2034: 2032: 2028: 2024: 2020: 2016: 2012: 2008: 2004: 1996: 1991: 1985: 1983: 1977: 1974: 1970: 1966: 1962: 1958: 1954: 1950: 1946: 1937: 1933: 1932:dipole magnet 1929: 1924: 1920: 1918: 1914: 1910: 1905: 1901: 1897: 1892: 1890: 1886: 1877: 1875: 1873: 1869: 1865: 1861: 1857: 1853: 1849: 1845: 1841: 1840:excited state 1832: 1828: 1827:Visualization 1819: 1814: 1811: 1809: 1805: 1804:cross section 1799: 1797: 1792: 1788: 1784: 1780: 1776: 1772: 1768: 1765:A superheavy 1760: 1756: 1751: 1744: 1739: 1730: 1728: 1726: 1722: 1718: 1715: 1710: 1708: 1704: 1699: 1697: 1693: 1689: 1685: 1681: 1680:superactinide 1678: 1674: 1670: 1666: 1662: 1661:atomic number 1658: 1654: 1650: 1646: 1638: 1635: | 1631: 1626: 1624: 1619: 1617: 1612: 1611: 1608: 1605: 1601: 1597: 1592: 1588: 1586: 1582: 1577: 1574: 1569: 1564: 1562: 1558: 1553: 1550: 1547: 1543: 1537: 1533: 1528: 1524: 1522: 1518: 1515: 1509: 1507: 1503: 1499: 1498:period 8 1496: 1494: 1490: 1486: 1483: 1481: 1477: 1473: 1468: 1463: 1462:Atomic number 1458: 1447: 1439: 1435: 1421: 1414: 1409: 1407: 1402: 1400: 1395: 1393: 1388: 1386: 1381: 1379: 1374: 1372: 1367: 1365: 1360: 1358: 1353: 1351: 1346: 1344: 1339: 1337: 1332: 1330: 1325: 1323: 1318: 1316: 1311: 1309: 1304: 1302: 1297: 1295: 1290: 1288: 1283: 1281: 1276: 1274: 1269: 1267: 1262: 1260: 1257: 1254: 1253: 1250: 1245: 1243: 1238: 1236: 1231: 1229: 1224: 1222: 1217: 1215: 1210: 1208: 1203: 1201: 1196: 1194: 1189: 1187: 1182: 1180: 1175: 1173: 1168: 1166: 1161: 1159: 1154: 1152: 1147: 1145: 1143:Unpentseptium 1140: 1138: 1133: 1131: 1129:Unpentpentium 1126: 1124: 1122:Unpentquadium 1119: 1117: 1112: 1110: 1105: 1103: 1098: 1096: 1091: 1089: 1084: 1082: 1077: 1075: 1073:Unquadseptium 1070: 1068: 1063: 1061: 1059:Unquadpentium 1056: 1054: 1052:Unquadquadium 1049: 1047: 1042: 1040: 1038: 1033: 1031: 1026: 1025: 1018: 1013: 1011: 1006: 1004: 999: 997: 992: 990: 985: 983: 978: 976: 971: 969: 964: 962: 957: 955: 950: 948: 943: 941: 936: 934: 929: 927: 922: 920: 918:Rutherfordium 915: 913: 908: 906: 901: 899: 894: 892: 887: 885: 880: 878: 873: 871: 866: 864: 859: 857: 852: 850: 845: 843: 838: 836: 831: 829: 824: 822: 817: 815: 810: 808: 806: 801: 799: 794: 793: 790: 785: 783: 778: 776: 771: 769: 764: 762: 757: 755: 750: 748: 743: 741: 736: 734: 729: 727: 722: 720: 715: 713: 708: 706: 701: 699: 694: 692: 687: 685: 680: 678: 673: 671: 666: 664: 659: 657: 652: 650: 645: 643: 638: 636: 631: 629: 624: 622: 617: 615: 610: 608: 603: 601: 596: 594: 589: 587: 582: 580: 578: 573: 571: 566: 565: 562: 557: 555: 550: 548: 543: 541: 536: 534: 529: 527: 522: 520: 515: 513: 508: 506: 501: 499: 494: 492: 487: 485: 480: 478: 473: 471: 466: 464: 459: 457: 452: 448: 446: 441: 439: 434: 433: 430: 425: 423: 418: 416: 411: 409: 404: 402: 397: 395: 390: 388: 383: 381: 376: 374: 369: 367: 362: 360: 355: 353: 348: 346: 341: 339: 334: 332: 327: 325: 320: 316: 311: 309: 304: 303: 300: 295: 293: 288: 286: 281: 279: 274: 272: 267: 265: 260: 256: 251: 249: 244: 243: 240: 235: 233: 228: 226: 221: 219: 214: 212: 207: 205: 200: 196: 191: 189: 184: 183: 180: 175: 171: 166: 165: 161: 160: 157: 156: 152: 149: 144: 140: 136: 131: 130: 112: 65: 63:Pronunciation 61: 56: 53: 49: 32: 27: 19: 7502: 5889: 5883: 5853: 5827: 5793: 5768: 5764: 5750:Bibliography 5736:. Retrieved 5725: 5713:. Retrieved 5693: 5689: 5679: 5656: 5650: 5636:(3): 65–78. 5633: 5629: 5616: 5573: 5567: 5561: 5518: 5514: 5464: 5460: 5417: 5413: 5373: 5369: 5356: 5329: 5323: 5311:. Retrieved 5302: 5280:. Retrieved 5276: 5263: 5253:23 September 5251:. Retrieved 5246: 5236: 5224:. Retrieved 5219: 5174:. Retrieved 5169: 5135:. Retrieved 5128:the original 5124:www.riken.jp 5123: 5109: 5097:. Retrieved 5092: 5041: 5037: 5024: 5012:. Retrieved 5008:the original 4998: 4990:the original 4940: 4907: 4903: 4890: 4865: 4861: 4829: 4823: 4804: 4800: 4790: 4750:(122): 122. 4747: 4743: 4733: 4714: 4708: 4696: 4684: 4644: 4617: 4605: 4578: 4574: 4546: 4520: 4516: 4503: 4491:. Retrieved 4463: 4459: 4431: 4405:. Retrieved 4399: 4390: 4377: 4373: 4363:. Retrieved 4361:(in Russian) 4358: 4349: 4338:. Retrieved 4332: 4308:. Retrieved 4302: 4292: 4267: 4261: 4213:(8): 32–38. 4210: 4204: 4194: 4177: 4171: 4128: 4124: 4114: 4103:. Retrieved 4094:(7): 25–29. 4091: 4085: 4061:. Retrieved 4049: 4042: 4007: 4003: 3976: 3935: 3931: 3925: 3913: 3886: 3874: 3829: 3825: 3815: 3804:. Retrieved 3796: 3763:. Retrieved 3755: 3727: 3722:, p. 3. 3715: 3703: 3691: 3680:. Retrieved 3674: 3624:(2): 67–68. 3621: 3617: 3567: 3561: 3545: 3524: 3484: 3470:. Retrieved 3457: 3412: 3406: 3396: 3371: 3367: 3361: 3350:. Retrieved 3344: 3334: 3323:. Retrieved 3321:(in Russian) 3318: 3286:. Retrieved 3280: 3267: 3255:. Retrieved 3248:the original 3219: 3215: 3195: 3170: 3164: 3155: 3116: 3110: 3099:. Retrieved 3095:the original 3081: 3070:. Retrieved 3064: 3054: 3024:(1): 161–8. 3021: 3017: 2983:the correct 2974: 2965: 2957: 2953: 2936: 2923: 2910: 2900: 2890: 2873: 2859: 2850: 2765: 2742: 2705: 2680: 2657: 2647: 2643: 2627: 2623: 2619: 2615: 2611: 2596: 2591: 2555: 2551: 2547: 2545: 2478: 2468: 2464: 2460: 2456: 2452: 2427: 2419: 2411: 2407: 2396: 2360: 2350: 2342: 2338: 2334: 2330: 2326: 2322: 2313: 2296: 2283: 2232: 2222: 2218: 2215:doubly magic 2204: 2199: 2134: 2112: 2108: 2104: 2098: 2093: 2022: 2003:magic number 2000: 1978: 1941: 1893: 1881: 1837: 1800: 1764: 1731:Introduction 1711: 1700: 1692:magic number 1668: 1664: 1656: 1652: 1648: 1644: 1643: 1572: 1567: 1466: 1398:Unquadnilium 1377:Untriseptium 1363:Untripentium 1356:Untriquadium 1284: 1234:Unseptnilium 1213:Unhexseptium 1199:Unhexpentium 1192:Unhexquadium 1157:Unpentennium 1150:Unpentoctium 1136:Unpenthexium 1094:Unpentnilium 1087:Unquadennium 1080:Unquadoctium 1066:Unquadhexium 960:Darmstadtium 827:Protactinium 599:Praseodymium 51: 26: 7698:Unbiquadium 5824:Ghiorso, A. 5313:18 November 5282:23 November 4986:experiment" 4596:2158/776924 4493:7 September 3981:Beiser 2003 3906:Beiser 2003 3891:Beiser 2003 3732:Beiser 2003 3440:1885/148847 3374:: 226–234. 2580:alpha decay 2567:copernicium 2564:beta-stable 2363:mendelevium 2351:eka-uranium 2343:eka-uranium 2323:unbiquadium 2304:mass number 2288:beta-stable 2247:unbiseptium 2239:livermorium 1909:alpha decay 1791:accelerated 1665:Unbiquadium 1653:eka-uranium 1649:element 124 1645:Unbiquadium 1573:(predicted) 1446:unbipentium 1442:unbiquadium 1405:Unquadunium 1391:Untriennium 1384:Untrioctium 1370:Untrihexium 1328:Untrinilium 1307:Unbiseptium 1293:Unbipentium 1286:Unbiquadium 1241:Unseptunium 1227:Unhexennium 1220:Unhexoctium 1206:Unhexhexium 1164:Unhexnilium 1115:Unpenttrium 1101:Unpentunium 1045:Unquadtrium 1002:Livermorium 974:Copernicium 967:Roentgenium 897:Mendelevium 883:Einsteinium 876:Californium 58:Unbiquadium 18:Element 124 7692:Categories 5738:2010-03-16 5715:31 January 5528:1609.05498 5176:30 October 5099:30 October 5014:18 January 4436:Kragh 2018 4424:Kragh 2018 4407:2020-03-01 4365:2020-01-07 4340:2020-02-22 4310:2020-01-27 4105:2020-02-16 4063:2020-02-16 3938:(7): 158. 3806:2020-02-16 3765:2020-02-16 3682:2020-01-27 3570:(6): 883. 3472:2020-01-27 3352:2020-01-30 3325:2020-02-02 3288:2020-01-18 3257:20 October 3101:2020-03-15 3072:2020-03-15 2995:References 2879:beta decay 2528:superheavy 2493:unbihexium 2487:professor 2473:nanosecond 2382:(JINR) or 2371:tennessine 2251:radiohalos 2243:unbihexium 2235:primordial 1842:—termed a 1637:references 1585:CAS Number 1412:Unquadbium 1349:Untritrium 1335:Untriunium 1321:Unbiennium 1314:Unbioctium 1300:Unbihexium 1248:Unseptbium 1185:Unhextrium 1171:Unhexunium 1108:Unpentbium 1036:Unbinilium 1029:Ununennium 1009:Tennessine 953:Meitnerium 932:Seaborgium 911:Lawrencium 648:Dysprosium 634:Gadolinium 613:Promethium 483:Technetium 476:Molybdenum 277:Phosphorus 5924:1742-6588 5899:1207.5700 5850:Kragh, H. 5642:0010-2709 5583:0802.4161 5553:119219218 5497:120690838 5489:1062-8738 5348:223349096 4924:0012-5016 4882:117157377 4782:119264543 4757:1207.3432 4284:239775403 4253:119531411 4237:0031-9228 4155:1364-503X 4034:1742-6596 3968:125849923 3960:1434-6001 3866:0556-2813 3839:1208.1215 3638:2193-3405 3584:1365-3075 3449:2100-014X 3415:: 00061. 3319:nplus1.ru 3244:123288075 3187:0556-2813 3147:127060181 2958:joliotium 2942:Stockholm 2895:form one. 2747:2.5  2584:flerovium 2533:oganesson 2512:half-life 2367:oganesson 2300:r-process 2259:flerovium 2130:half-life 2031:germanium 1872:electrons 1856:gamma ray 1438:unbitrium 1342:Untribium 1279:Unbitrium 1265:Unbiunium 1178:Unhexbium 1016:Oganesson 995:Moscovium 988:Flerovium 869:Berkelium 855:Americium 848:Plutonium 841:Neptunium 676:Ytterbium 606:Neodymium 585:Lanthanum 546:Tellurium 504:Palladium 490:Ruthenium 462:Zirconium 444:Strontium 400:Germanium 351:Manganese 307:Potassium 263:Aluminium 254:Magnesium 194:Beryllium 7466:‍ 7461:‍ 7219:⑧ 6920:⑦ 6621:⑥ 6448:⑤ 6275:④ 6192:③ 6109:② 6080:① 5932:55434734 5858:Springer 5852:(2018). 5812:48965418 5608:96718440 5226:30 April 5068:20481935 4932:95738861 4484:Archived 4480:95069384 4163:25666065 3669:(2016). 3646:99193729 3592:95737691 3553:(1991). 3537:28796927 3046:20967377 2954:nobelium 2654:Chemical 2376:actinide 2325:(symbol 2255:congener 2117:nucleons 2011:neutrons 1949:nobelium 1896:nucleons 1852:neutrons 1714:congener 1703:isotopes 1696:neutrons 1539:at  1272:Unbibium 981:Nihonium 904:Nobelium 813:Actinium 797:Francium 781:Astatine 774:Polonium 753:Thallium 732:Platinum 704:Tungsten 697:Tantalum 683:Lutetium 627:Europium 620:Samarium 539:Antimony 437:Rubidium 414:Selenium 344:Chromium 337:Vanadium 330:Titanium 323:Scandium 291:Chlorine 231:Fluorine 217:Nitrogen 169:Hydrogen 7673:p-block 7668:d-block 7663:f-block 7658:g-block 7653:s-block 5904:Bibcode 5773:Bibcode 5698:Bibcode 5588:Bibcode 5533:Bibcode 5469:Bibcode 5422:Bibcode 5378:Bibcode 5277:jinr.ru 5247:jinr.ru 5046:Bibcode 4762:Bibcode 4384:. 1977. 4245:1337838 4215:Bibcode 4182:Bibcode 4133:Bibcode 4012:Bibcode 3940:Bibcode 3844:Bibcode 3531:: 4–8. 3417:Bibcode 3376:Bibcode 3224:Bibcode 3026:Bibcode 2687:halides 2660:uranium 2526:in the 2510:with a 2497:uranium 2200:fission 2122:nuclide 2094:fission 2007:protons 1992:History 1957:fermium 1953:thorium 1945:uranium 1900:protons 1868:decayed 1848:fission 1759:neutron 1717:uranium 1698:(184). 1677:g-block 1594:History 1571:) 1549:unknown 1514:g-block 946:Hassium 939:Bohrium 925:Dubnium 890:Fermium 834:Uranium 820:Thorium 767:Bismuth 725:Iridium 711:Rhenium 690:Hafnium 669:Thulium 655:Holmium 641:Terbium 569:Caesium 518:Cadmium 497:Rhodium 469:Niobium 455:Yttrium 428:Krypton 421:Bromine 407:Arsenic 393:Gallium 314:Calcium 270:Silicon 187:Lithium 117:​ 5930:  5922:  5864:  5838:  5810:  5800:  5667:  5640:  5606:  5551:  5495:  5487:  5346:  5336:  5249:. JINR 5066:  4930:  4922:  4880:  4840:  4780:  4721:  4651:  4553:  4478:  4359:n-t.ru 4282:  4251:  4243:  4235:  4161:  4153:  4032:  3966:  3958:  3864:  3644:  3636:  3590:  3582:  3535:  3503:  3447:  3242:  3185:  3145:  3135:  3044:  2985:parent 2980:series 2950:Sweden 2541:models 2310:Naming 2292:cerium 2279:X-rays 2245:, and 2221:= 50, 1889:energy 1808:tunnel 1785:. The 1684:period 1602:IUPAC 1599:Naming 1511:  1493:Period 862:Curium 804:Radium 718:Osmium 662:Erbium 592:Cerium 576:Barium 553:Iodine 525:Indium 511:Silver 379:Copper 372:Nickel 365:Cobalt 284:Sulfur 247:Sodium 224:Oxygen 210:Carbon 178:Helium 129:-ee-əm 115: 5928:S2CID 5894:arXiv 5880:(PDF) 5761:(PDF) 5626:(PDF) 5604:S2CID 5578:arXiv 5549:S2CID 5523:arXiv 5493:S2CID 5457:(PDF) 5366:(PDF) 5307:(PDF) 5273:(PDF) 5222:. MSU 5216:(PDF) 5166:(PDF) 5137:5 May 5131:(PDF) 5120:(PDF) 5089:(PDF) 5034:(PDF) 4928:S2CID 4900:(PDF) 4878:S2CID 4778:S2CID 4752:arXiv 4676:(PDF) 4513:(PDF) 4487:(PDF) 4476:S2CID 4456:(PDF) 4382:Nauka 4376:[ 4280:S2CID 4249:S2CID 4054:(PDF) 3964:S2CID 3834:arXiv 3793:(PDF) 3752:(PDF) 3642:S2CID 3588:S2CID 3558:(PDF) 3533:S2CID 3466:(PDF) 3251:(PDF) 3240:S2CID 3212:(PDF) 3143:S2CID 2715:heavy 2697:Notes 2384:RIKEN 2337:, or 2335:(124) 2126:IUPAC 2027:shell 2019:GANIL 1663:124. 1536:Phase 1506:Block 1480:Group 788:Radon 560:Xenon 298:Argon 203:Boron 5920:ISSN 5862:ISBN 5836:ISBN 5808:OCLC 5798:ISBN 5717:2021 5665:ISBN 5638:ISSN 5485:ISSN 5344:OCLC 5334:ISBN 5315:2018 5284:2018 5255:2016 5228:2017 5178:2018 5139:2017 5101:2018 5064:PMID 5016:2008 4920:ISSN 4838:ISBN 4719:ISBN 4649:ISBN 4551:ISBN 4495:2016 4241:OSTI 4233:ISSN 4159:PMID 4151:ISSN 4030:ISSN 3956:ISSN 3862:ISSN 3634:ISSN 3580:ISSN 3501:ISBN 3445:ISSN 3259:2012 3183:ISSN 3133:ISBN 3042:PMID 2719:lead 2689:UbqX 2331:E124 2277:and 2263:lead 2198:* → 2092:* → 1911:and 1779:fuse 1775:beam 1771:mass 1667:and 1659:and 1629:edit 1622:talk 1615:view 760:Lead 739:Gold 386:Zinc 358:Iron 238:Neon 127:KWOD 125:-by- 7633:142 7626:141 7619:140 7612:139 7605:138 7598:137 7591:136 7584:135 7577:134 7570:133 7563:132 7556:131 7549:130 7542:129 7535:128 7528:127 7520:126 7512:125 7504:124 7496:123 7488:122 7479:121 7454:172 7447:171 7440:170 7433:169 7426:168 7419:167 7412:166 7405:165 7398:164 7391:163 7384:162 7377:161 7370:160 7363:159 7356:158 7349:157 7342:156 7335:155 7328:154 7321:153 7314:152 7307:151 7300:150 7293:149 7286:148 7279:147 7272:146 7265:145 7258:144 7251:143 7236:120 7227:119 5912:doi 5890:420 5781:doi 5706:doi 5596:doi 5541:doi 5519:955 5477:doi 5430:doi 5386:doi 5374:131 5054:doi 5042:104 4912:doi 4908:408 4870:doi 4809:doi 4770:doi 4591:hdl 4583:doi 4525:doi 4468:doi 4272:doi 4223:doi 4141:doi 4129:373 4096:doi 4020:doi 4008:337 3948:doi 3852:doi 3626:doi 3572:doi 3493:doi 3435:hdl 3425:doi 3384:doi 3232:doi 3220:317 3175:doi 3125:doi 3034:doi 2756:-11 2731:112 2729:or 2727:100 2723:103 2709:In 2537:104 2520:114 2516:110 2505:101 2392:121 2390:or 2388:120 2339:124 2327:Ubq 2209:), 2189:Ubq 2083:Ubq 2009:or 2005:of 1694:of 1669:Ubq 1657:Ubq 1651:or 1542:STP 1474:124 1427:Ubq 532:Tin 123:OON 45:Ubq 43:124 7694:: 7209:Og 7200:Ts 7191:Lv 7182:Mc 7173:Fl 7164:Nh 7155:Cn 7146:Rg 7137:Ds 7128:Mt 7119:Hs 7110:Bh 7101:Sg 7092:Db 7083:Rf 7074:Lr 7065:No 7056:Md 7047:Fm 7038:Es 7029:Cf 7020:Bk 7011:Cm 7002:Am 6993:Pu 6984:Np 6966:Pa 6957:Th 6948:Ac 6937:Ra 6928:Fr 6910:Rn 6901:At 6892:Po 6883:Bi 6874:Pb 6865:Tl 6856:Hg 6847:Au 6838:Pt 6829:Ir 6820:Os 6811:Re 6793:Ta 6784:Hf 6775:Lu 6766:Yb 6757:Tm 6748:Er 6739:Ho 6730:Dy 6721:Tb 6712:Gd 6703:Eu 6694:Sm 6685:Pm 6676:Nd 6667:Pr 6658:Ce 6649:La 6638:Ba 6629:Cs 6611:Xe 6593:Te 6584:Sb 6575:Sn 6566:In 6557:Cd 6548:Ag 6539:Pd 6530:Rh 6521:Ru 6512:Tc 6503:Mo 6494:Nb 6485:Zr 6465:Sr 6456:Rb 6438:Kr 6429:Br 6420:Se 6411:As 6402:Ge 6393:Ga 6384:Zn 6375:Cu 6366:Ni 6357:Co 6348:Fe 6339:Mn 6330:Cr 6312:Ti 6303:Sc 6292:Ca 6265:Ar 6256:Cl 6229:Si 6220:Al 6209:Mg 6200:Na 6182:Ne 6126:Be 6117:Li 6099:He 6072:18 6067:17 6062:16 6057:15 6052:14 6047:13 6042:12 6037:11 6032:10 5926:. 5918:. 5910:. 5902:. 5888:. 5882:. 5860:. 5856:. 5834:. 5830:. 5822:; 5806:. 5779:. 5769:41 5767:. 5763:. 5704:. 5694:65 5692:. 5688:. 5663:. 5632:. 5628:. 5602:. 5594:. 5586:. 5574:94 5572:. 5547:. 5539:. 5531:. 5517:. 5505:^ 5491:. 5483:. 5475:. 5465:76 5463:. 5459:. 5442:^ 5428:. 5418:82 5416:. 5412:. 5400:^ 5384:. 5372:. 5368:. 5342:. 5292:^ 5275:. 5245:. 5218:. 5203:^ 5186:^ 5168:. 5147:^ 5122:. 5091:. 5076:^ 5062:. 5052:. 5040:. 5036:. 4977:Ca 4968:+ 4959:Cf 4926:. 4918:. 4906:. 4902:. 4876:. 4866:21 4864:. 4852:^ 4805:51 4803:. 4799:. 4776:. 4768:. 4760:. 4748:48 4746:. 4742:. 4663:^ 4629:^ 4589:. 4579:75 4577:. 4565:^ 4537:^ 4521:69 4519:. 4515:. 4482:. 4474:. 4464:65 4462:. 4458:. 4443:^ 4416:^ 4398:. 4331:. 4319:^ 4301:. 4278:. 4270:. 4247:. 4239:. 4231:. 4221:. 4211:68 4209:. 4203:. 4157:. 4149:. 4139:. 4127:. 4123:. 4092:17 4090:. 4084:. 4072:^ 4028:. 4018:. 4006:. 4002:. 3988:^ 3962:. 3954:. 3946:. 3936:53 3934:. 3898:^ 3860:. 3850:. 3842:. 3830:87 3828:. 3824:. 3799:. 3795:. 3774:^ 3758:. 3754:. 3739:^ 3673:. 3654:^ 3640:. 3632:. 3622:42 3620:. 3616:. 3600:^ 3586:. 3578:. 3568:63 3566:. 3560:. 3527:. 3515:^ 3499:. 3487:. 3443:. 3433:. 3423:. 3413:86 3411:. 3405:. 3382:. 3372:10 3370:. 3343:. 3297:^ 3279:. 3238:. 3230:. 3218:. 3214:. 3203:; 3181:. 3171:79 3169:. 3141:. 3131:. 3119:. 3089:. 3063:. 3040:. 3032:. 3022:13 3020:. 3003:^ 2948:, 2944:, 2826:+ 2817:Al 2813:13 2807:→ 2788:+ 2779:Si 2775:14 2749:pb 2676:Og 2672:Og 2400:Cf 2333:, 2180:→ 2171:Se 2167:34 2161:+ 2152:Th 2148:90 2074:→ 2065:Ge 2061:32 2055:+ 2042:92 1727:. 1568:+6 1444:→ 1440:← 1432:— 84:aɪ 75:uː 6975:U 6802:W 6602:I 6476:Y 6321:V 6283:K 6247:S 6238:P 6173:F 6164:O 6155:N 6146:C 6137:B 6088:H 6027:9 6022:8 6017:7 6012:6 6007:5 6002:4 5997:3 5990:2 5985:1 5962:e 5955:t 5948:v 5934:. 5914:: 5906:: 5896:: 5870:. 5844:. 5814:. 5787:. 5783:: 5775:: 5741:. 5719:. 5708:: 5700:: 5673:. 5644:. 5634:7 5610:. 5598:: 5590:: 5580:: 5555:. 5543:: 5535:: 5525:: 5499:. 5479:: 5471:: 5436:. 5432:: 5424:: 5394:. 5388:: 5380:: 5350:. 5317:. 5286:. 5257:. 5230:. 5198:. 5180:. 5141:. 5103:. 5070:. 5056:: 5048:: 5018:. 4934:. 4914:: 4884:. 4872:: 4846:. 4817:. 4811:: 4784:. 4772:: 4764:: 4754:: 4727:. 4678:. 4657:. 4599:. 4593:: 4585:: 4559:. 4531:. 4527:: 4497:. 4470:: 4410:. 4368:. 4343:. 4313:. 4286:. 4274:: 4255:. 4225:: 4217:: 4188:. 4184:: 4165:. 4143:: 4135:: 4108:. 4098:: 4066:. 4036:. 4022:: 4014:: 3970:. 3950:: 3942:: 3868:. 3854:: 3846:: 3836:: 3809:. 3768:. 3685:. 3648:. 3628:: 3594:. 3574:: 3539:. 3509:. 3495:: 3475:. 3451:. 3437:: 3427:: 3419:: 3390:. 3386:: 3378:: 3355:. 3328:. 3291:. 3261:. 3234:: 3226:: 3189:. 3177:: 3149:. 3127:: 3104:. 3075:. 3048:. 3036:: 3028:: 2885:. 2836:p 2832:1 2798:n 2794:0 2691:6 2648:N 2644:N 2628:N 2624:N 2620:N 2616:N 2612:N 2592:N 2556:Z 2552:N 2548:N 2518:– 2475:. 2469:N 2465:N 2461:Z 2457:N 2453:Z 2428:N 2420:N 2412:N 2408:Z 2284:N 2223:N 2219:Z 2113:Z 2109:Z 2105:Z 2046:U 2023:Z 1898:( 1740:. 1565:( 1469:) 1467:Z 1465:( 1430:↓ 1424:↑ 1422:— 132:) 119:( 111:/ 108:m 105:ə 102:i 99:d 96:ɒ 93:w 90:k 87:ˈ 81:b 78:n 72:ˌ 69:/ 33:. 20:)

Index

Element 124
Ubq (disambiguation)
/ˌnbˈkwɒdiəm/
OON-by-KWOD-ee-əm
periodic table
Hydrogen
Helium
Lithium
Beryllium
Boron
Carbon
Nitrogen
Oxygen
Fluorine
Neon
Sodium
Magnesium
Aluminium
Silicon
Phosphorus
Sulfur
Chlorine
Argon
Potassium
Calcium
Scandium
Titanium
Vanadium
Chromium
Manganese

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.