Knowledge (XXG)

Elementary abelian group

Source 📝

41: 1219: 1065: 1403: 864: 486: 461: 424: 1344: 1293: 1252: 788: 975:
on a (not necessarily finite) set, every element has order 2. Any such group is necessarily abelian because, since every element is its own inverse,
346: 1994: 1969: 1940: 1912: 296: 781: 291: 2019: 1214:{\displaystyle (\mathbb {Z} /p\mathbb {Z} )^{n}\cong \langle e_{1},\ldots ,e_{n}\mid e_{i}^{p}=1,\ e_{i}e_{j}=e_{j}e_{i}\rangle } 707: 994:. Such a group (also called a Boolean group), generalizes the Klein four-group example to an arbitrary number of components. 2041: 1782:
It can also be of interest to go beyond prime order components to prime-power order. Consider an elementary abelian group
774: 939:. (Note that in the finite case the direct product and direct sum coincide, but this is not so in the infinite case.) 391: 205: 1722:(as is true for any vector space). This in fact characterizes elementary abelian groups among all finite groups: if 1715: 1381: 921: 589: 200: 88: 1375:. Note that an elementary abelian group does not in general have a distinguished basis: choice of isomorphism 1053: 2046: 739: 529: 613: 1672: 1441: 972: 868: 818: 553: 541: 159: 93: 1432:, in particular that it has scalar multiplication in addition to (vector/group) addition. However, 1855: 128: 23: 469: 444: 407: 1900: 910: 113: 85: 2051: 2015: 1990: 1965: 1936: 1908: 684: 518: 361: 255: 960:. Addition is performed componentwise, taking the result modulo 2. For instance, 1875: 1863: 1329: 1278: 1237: 965: 669: 661: 653: 645: 637: 625: 565: 505: 495: 337: 279: 154: 123: 753: 746: 732: 689: 577: 500: 330: 244: 184: 64: 863:
elements, and conversely every such vector space is an elementary abelian group. By the
1572: 760: 696: 386: 366: 303: 268: 189: 179: 164: 149: 103: 80: 2035: 1880: 814: 679: 601: 435: 308: 174: 1767: 1629: 1614: 1363: 1304: 902: 852: 822: 806: 534: 233: 222: 169: 144: 139: 98: 69: 32: 1770:, which is necessarily invariant under all automorphisms, and thus equals all of 1957: 856: 802: 932: 701: 429: 522: 40: 59: 1858:
are extensions of elementary abelian groups by a cyclic group of order
830: 401: 315: 1016:
is the least possible number of generators. In particular, the set
840:= 2 (that is, an elementary abelian 2-group) is sometimes called a 16:
Commutative group in which all nonzero elements have the same order
825:, and the elementary abelian groups in which the common order is 871:, every finite elementary abelian group must be of the form ( 817:
in which all elements other than the identity have the same
1052:
Every finite elementary abelian group has a fairly simple
1049:
th component and 0 elsewhere, is a minimal generating set.
1935:. Springer Science & Business Media. p. 88. 1384: 1332: 1281: 1240: 1068: 927:
In general, a (possibly infinite) elementary abelian
886:
a non-negative integer (sometimes called the group's
472: 447: 410: 1964:. Springer Science & Business Media. p. 6. 1498:(considered as an integer with 0 ≤  865:
classification of finitely generated abelian groups
1397: 1338: 1287: 1246: 1213: 480: 455: 418: 1621:can be considered as a linear transformation of 1605:can be considered as a group homomorphism from 1597:extends uniquely to a linear transformation of 1265:) is a finite elementary abelian group. Since 867:, or by the fact that every vector space has a 1754:have the same (necessarily prime) order. Then 782: 8: 1547:} as described in the examples, if we take { 1419:To the observant reader, it may appear that 1208: 1103: 1448:corresponds to repeated addition, and this 1926: 1924: 916:), and the superscript notation means the 789: 775: 227: 53: 18: 2014:. New York: Harper & Row. p. 8. 1452:-module structure is consistent with the 1398:{\displaystyle {\overset {\cong }{\to }}} 1385: 1383: 1331: 1280: 1239: 1202: 1192: 1179: 1169: 1147: 1142: 1129: 1110: 1094: 1086: 1085: 1077: 1073: 1072: 1067: 474: 473: 471: 449: 448: 446: 412: 411: 409: 1892: 345: 111: 21: 1742:is elementary abelian. (Proof: if Aut( 347:Classification of finite simple groups 1527:As a finite-dimensional vector space 7: 1907:. Courier Corporation. p. 142. 1416:) corresponds to a choice of basis. 1750:, then all nonidentity elements of 1617:) and likewise any endomorphism of 2010:Gorenstein, Daniel (1968). "1.2". 1830:isomorphic cyclic groups of order 1428:has more structure than the group 14: 1987:Infinite Abelian Groups. Volume I 1778:A generalisation to higher orders 1461:scalar multiplication. That is, 1436:as an abelian group has a unique 1962:Introduction to Boolean Algebras 1726:is a finite group with identity 1628:If we restrict our attention to 39: 1814:) is an abelian group of type ( 821:. This common order must be a 1989:. Academic Press. p. 43. 1444:structure where the action of 1387: 1091: 1069: 971:In the group generated by the 948:The elementary abelian group ( 909:(or equivalently the integers 708:Infinite dimensional Lie group 1: 1826:) i.e. the direct product of 1477: + ... +  958:{(0,0), (0,1), (1,0), (1,1)} 481:{\displaystyle \mathbb {Z} } 456:{\displaystyle \mathbb {Z} } 419:{\displaystyle \mathbb {Z} } 1834:, of which groups of type ( 206:List of group theory topics 2068: 1695:The automorphism group GL( 935:of cyclic groups of order 1933:A Course on Finite Groups 1862:and are analogous to the 1575:we have that the mapping 847:Every elementary abelian 829:are a particular kind of 1762:-group. It follows that 1358:can be considered as an 922:direct product of groups 811:elementary abelian group 324:Elementary abelian group 201:Glossary of group theory 1746:) acts transitively on 1734:) acts transitively on 1683:invertible matrices on 943:Examples and properties 1846:) are a special case. 1399: 1340: 1339:{\displaystyle \cong } 1289: 1288:{\displaystyle \cong } 1248: 1247:{\displaystyle \cong } 1227:Vector space structure 1215: 964:. This is in fact the 740:Linear algebraic group 482: 457: 420: 1400: 1341: 1290: 1249: 1216: 962:(1,0) + (1,1) = (0,1) 956:) has four elements: 483: 458: 421: 2042:Abelian group theory 1905:The Theory of Groups 1856:extra special groups 1673:general linear group 1382: 1330: 1279: 1238: 1066: 973:symmetric difference 836:. A group for which 470: 445: 408: 1625:as a vector space. 1519:-module structure. 1152: 1054:finite presentation 114:Group homomorphisms 24:Algebraic structure 1931:H.E. Rose (2009). 1901:Hans J. Zassenhaus 1679: ×  1523:Automorphism group 1395: 1336: 1311:elements, we have 1285: 1244: 1211: 1138: 1008:) is generated by 805:, specifically in 590:Special orthogonal 478: 453: 416: 297:Lagrange's theorem 1996:978-0-08-087348-0 1985:L. Fuchs (1970). 1971:978-0-387-40293-2 1942:978-1-84882-889-6 1914:978-0-486-16568-4 1802:) for some prime 1766:has a nontrivial 1393: 1164: 799: 798: 374: 373: 256:Alternating group 213: 212: 2059: 2026: 2025: 2007: 2001: 2000: 1982: 1976: 1975: 1953: 1947: 1946: 1928: 1919: 1918: 1897: 1876:Elementary group 1864:Heisenberg group 1808:homocyclic group 1502: <  1404: 1402: 1401: 1396: 1394: 1386: 1345: 1343: 1342: 1337: 1294: 1292: 1291: 1286: 1253: 1251: 1250: 1245: 1220: 1218: 1217: 1212: 1207: 1206: 1197: 1196: 1184: 1183: 1174: 1173: 1162: 1151: 1146: 1134: 1133: 1115: 1114: 1099: 1098: 1089: 1081: 1076: 1035: 966:Klein four-group 963: 959: 791: 784: 777: 733:Algebraic groups 506:Hyperbolic group 496:Arithmetic group 487: 485: 484: 479: 477: 462: 460: 459: 454: 452: 425: 423: 422: 417: 415: 338:Schur multiplier 292:Cauchy's theorem 280:Quaternion group 228: 54: 43: 30: 19: 2067: 2066: 2062: 2061: 2060: 2058: 2057: 2056: 2032: 2031: 2030: 2029: 2022: 2009: 2008: 2004: 1997: 1984: 1983: 1979: 1972: 1956:Steven Givant; 1955: 1954: 1950: 1943: 1930: 1929: 1922: 1915: 1899: 1898: 1894: 1889: 1872: 1852: 1780: 1713: 1704: 1691: 1670: 1661: 1596: 1587: 1562: 1553: 1546: 1537: 1525: 1518: 1497: 1460: 1427: 1380: 1379: 1374: 1366:over the field 1353: 1328: 1327: 1302: 1277: 1276: 1236: 1235: 1229: 1198: 1188: 1175: 1165: 1125: 1106: 1090: 1064: 1063: 1045:has a 1 in the 1044: 1033: 1024: 1017: 961: 957: 945: 795: 766: 765: 754:Abelian variety 747:Reductive group 735: 725: 724: 723: 722: 673: 665: 657: 649: 641: 614:Special unitary 525: 511: 510: 492: 491: 468: 467: 443: 442: 406: 405: 397: 396: 387:Discrete groups 376: 375: 331:Frobenius group 276: 263: 252: 245:Symmetric group 241: 225: 215: 214: 65:Normal subgroup 51: 31: 22: 17: 12: 11: 5: 2065: 2063: 2055: 2054: 2049: 2044: 2034: 2033: 2028: 2027: 2020: 2002: 1995: 1977: 1970: 1948: 1941: 1920: 1913: 1891: 1890: 1888: 1885: 1884: 1883: 1878: 1871: 1868: 1851: 1850:Related groups 1848: 1779: 1776: 1730:such that Aut( 1709: 1700: 1687: 1666: 1657: 1592: 1583: 1573:linear algebra 1558: 1551: 1542: 1535: 1524: 1521: 1514: 1493: 1456: 1423: 1392: 1389: 1370: 1349: 1335: 1298: 1284: 1243: 1228: 1225: 1224: 1223: 1222: 1221: 1210: 1205: 1201: 1195: 1191: 1187: 1182: 1178: 1172: 1168: 1161: 1158: 1155: 1150: 1145: 1141: 1137: 1132: 1128: 1124: 1121: 1118: 1113: 1109: 1105: 1102: 1097: 1093: 1088: 1084: 1080: 1075: 1071: 1058: 1057: 1050: 1040: 1029: 1022: 1012:elements, and 995: 969: 944: 941: 797: 796: 794: 793: 786: 779: 771: 768: 767: 764: 763: 761:Elliptic curve 757: 756: 750: 749: 743: 742: 736: 731: 730: 727: 726: 721: 720: 717: 714: 710: 706: 705: 704: 699: 697:Diffeomorphism 693: 692: 687: 682: 676: 675: 671: 667: 663: 659: 655: 651: 647: 643: 639: 634: 633: 622: 621: 610: 609: 598: 597: 586: 585: 574: 573: 562: 561: 554:Special linear 550: 549: 542:General linear 538: 537: 532: 526: 517: 516: 513: 512: 509: 508: 503: 498: 490: 489: 476: 464: 451: 438: 436:Modular groups 434: 433: 432: 427: 414: 398: 395: 394: 389: 383: 382: 381: 378: 377: 372: 371: 370: 369: 364: 359: 356: 350: 349: 343: 342: 341: 340: 334: 333: 327: 326: 321: 312: 311: 309:Hall's theorem 306: 304:Sylow theorems 300: 299: 294: 286: 285: 284: 283: 277: 272: 269:Dihedral group 265: 264: 259: 253: 248: 242: 237: 226: 221: 220: 217: 216: 211: 210: 209: 208: 203: 195: 194: 193: 192: 187: 182: 177: 172: 167: 162: 160:multiplicative 157: 152: 147: 142: 134: 133: 132: 131: 126: 118: 117: 109: 108: 107: 106: 104:Wreath product 101: 96: 91: 89:direct product 83: 81:Quotient group 75: 74: 73: 72: 67: 62: 52: 49: 48: 45: 44: 36: 35: 15: 13: 10: 9: 6: 4: 3: 2: 2064: 2053: 2050: 2048: 2047:Finite groups 2045: 2043: 2040: 2039: 2037: 2023: 2021:0-8218-4342-7 2017: 2013: 2012:Finite Groups 2006: 2003: 1998: 1992: 1988: 1981: 1978: 1973: 1967: 1963: 1959: 1952: 1949: 1944: 1938: 1934: 1927: 1925: 1921: 1916: 1910: 1906: 1902: 1896: 1893: 1886: 1882: 1881:Hamming space 1879: 1877: 1874: 1873: 1869: 1867: 1865: 1861: 1857: 1849: 1847: 1845: 1841: 1837: 1833: 1829: 1825: 1821: 1817: 1813: 1809: 1805: 1801: 1797: 1793: 1789: 1785: 1777: 1775: 1773: 1769: 1765: 1761: 1757: 1753: 1749: 1745: 1741: 1737: 1733: 1729: 1725: 1721: 1717: 1712: 1708: 1703: 1698: 1693: 1690: 1686: 1682: 1678: 1674: 1669: 1665: 1660: 1655: 1651: 1647: 1643: 1639: 1635: 1631: 1630:automorphisms 1626: 1624: 1620: 1616: 1612: 1608: 1604: 1601:. Each such 1600: 1595: 1591: 1586: 1582: 1578: 1574: 1570: 1566: 1561: 1557: 1550: 1545: 1541: 1534: 1531:has a basis { 1530: 1522: 1520: 1517: 1513: 1509: 1505: 1501: 1496: 1492: 1488: 1485:times) where 1484: 1480: 1476: 1473: +  1472: 1468: 1464: 1459: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1426: 1422: 1417: 1415: 1412: 1408: 1390: 1378: 1373: 1369: 1365: 1362:-dimensional 1361: 1357: 1352: 1348: 1333: 1325: 1322: 1318: 1314: 1310: 1306: 1301: 1297: 1282: 1275: 1272: 1268: 1264: 1261: 1257: 1241: 1234: 1226: 1203: 1199: 1193: 1189: 1185: 1180: 1176: 1170: 1166: 1159: 1156: 1153: 1148: 1143: 1139: 1135: 1130: 1126: 1122: 1119: 1116: 1111: 1107: 1100: 1095: 1082: 1078: 1062: 1061: 1060: 1059: 1055: 1051: 1048: 1043: 1039: 1032: 1028: 1021: 1015: 1011: 1007: 1004: 1000: 996: 993: 989: 986: 982: 978: 974: 970: 967: 955: 951: 947: 946: 942: 940: 938: 934: 930: 925: 923: 919: 915: 912: 908: 904: 900: 897: 893: 889: 885: 881: 878: 874: 870: 866: 862: 858: 854: 850: 845: 843: 842:Boolean group 839: 835: 833: 828: 824: 820: 816: 815:abelian group 812: 808: 804: 792: 787: 785: 780: 778: 773: 772: 770: 769: 762: 759: 758: 755: 752: 751: 748: 745: 744: 741: 738: 737: 734: 729: 728: 718: 715: 712: 711: 709: 703: 700: 698: 695: 694: 691: 688: 686: 683: 681: 678: 677: 674: 668: 666: 660: 658: 652: 650: 644: 642: 636: 635: 631: 627: 624: 623: 619: 615: 612: 611: 607: 603: 600: 599: 595: 591: 588: 587: 583: 579: 576: 575: 571: 567: 564: 563: 559: 555: 552: 551: 547: 543: 540: 539: 536: 533: 531: 528: 527: 524: 520: 515: 514: 507: 504: 502: 499: 497: 494: 493: 465: 440: 439: 437: 431: 428: 403: 400: 399: 393: 390: 388: 385: 384: 380: 379: 368: 365: 363: 360: 357: 354: 353: 352: 351: 348: 344: 339: 336: 335: 332: 329: 328: 325: 322: 320: 318: 314: 313: 310: 307: 305: 302: 301: 298: 295: 293: 290: 289: 288: 287: 281: 278: 275: 270: 267: 266: 262: 257: 254: 251: 246: 243: 240: 235: 232: 231: 230: 229: 224: 223:Finite groups 219: 218: 207: 204: 202: 199: 198: 197: 196: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 161: 158: 156: 153: 151: 148: 146: 143: 141: 138: 137: 136: 135: 130: 127: 125: 122: 121: 120: 119: 116: 115: 110: 105: 102: 100: 97: 95: 92: 90: 87: 84: 82: 79: 78: 77: 76: 71: 68: 66: 63: 61: 58: 57: 56: 55: 50:Basic notions 47: 46: 42: 38: 37: 34: 29: 25: 20: 2011: 2005: 1986: 1980: 1961: 1951: 1932: 1904: 1895: 1859: 1853: 1843: 1839: 1835: 1831: 1827: 1823: 1819: 1815: 1811: 1807: 1803: 1799: 1795: 1791: 1787: 1783: 1781: 1771: 1763: 1759: 1755: 1751: 1747: 1743: 1739: 1735: 1731: 1727: 1723: 1719: 1716:transitively 1710: 1706: 1701: 1696: 1694: 1688: 1684: 1680: 1676: 1667: 1663: 1658: 1653: 1649: 1645: 1641: 1637: 1636:we have Aut( 1633: 1627: 1622: 1618: 1615:endomorphism 1610: 1606: 1602: 1598: 1593: 1589: 1584: 1580: 1576: 1568: 1567:elements of 1564: 1563:} to be any 1559: 1555: 1548: 1543: 1539: 1532: 1528: 1526: 1515: 1511: 1507: 1503: 1499: 1494: 1490: 1486: 1482: 1478: 1474: 1470: 1466: 1462: 1457: 1453: 1449: 1445: 1437: 1433: 1429: 1424: 1420: 1418: 1413: 1410: 1406: 1376: 1371: 1367: 1364:vector space 1359: 1355: 1350: 1346: 1323: 1320: 1316: 1312: 1308: 1305:finite field 1299: 1295: 1273: 1270: 1266: 1262: 1259: 1255: 1232: 1230: 1046: 1041: 1037: 1030: 1026: 1019: 1013: 1009: 1005: 1002: 998: 991: 987: 984: 980: 976: 953: 949: 936: 931:-group is a 928: 926: 917: 913: 906: 903:cyclic group 901:denotes the 898: 895: 891: 887: 883: 879: 876: 872: 860: 853:vector space 851:-group is a 848: 846: 841: 837: 831: 826: 823:prime number 810: 807:group theory 800: 629: 617: 605: 593: 581: 569: 557: 545: 323: 316: 273: 260: 249: 238: 234:Cyclic group 112: 99:Free product 70:Group action 33:Group theory 28:Group theory 27: 1958:Paul Halmos 857:prime field 803:mathematics 519:Topological 358:alternating 2036:Categories 1887:References 1656:= 0 } = GL 1571:, then by 1510:a natural 933:direct sum 626:Symplectic 566:Orthogonal 523:Lie groups 430:Free group 155:continuous 94:Direct sum 1903:(1999) . 1810:(of rank 1786:to be of 1391:≅ 1388:→ 1334:≅ 1283:≅ 1242:≅ 1209:⟩ 1136:∣ 1120:… 1104:⟨ 1101:≅ 905:of order 890:). Here, 855:over the 690:Conformal 578:Euclidean 185:nilpotent 2052:P-groups 1960:(2009). 1870:See also 1648:→ 1644: : 1506:) gives 1354:, hence 1231:Suppose 1036:, where 685:Poincaré 530:Solenoid 402:Integers 392:Lattices 367:sporadic 362:Lie type 190:solvable 180:dihedral 165:additive 150:infinite 60:Subgroup 1748:G \ {e} 1738:, then 1736:G \ {e} 1720:V \ {0} 1714:) acts 1671:), the 1554:, ..., 1538:, ..., 1465:⋅ 1025:, ..., 680:Lorentz 602:Unitary 501:Lattice 441:PSL(2, 175:abelian 86:(Semi-) 2018:  1993:  1968:  1939:  1911:  1768:center 1699:) = GL 1652:| ker 1640:) = { 1442:module 1303:, the 1163:  920:-fold 882:) for 834:-group 813:is an 535:Circle 466:SL(2, 355:cyclic 319:-group 170:cyclic 145:finite 140:simple 124:kernel 1842:,..., 1822:,..., 1798:,..., 1758:is a 869:basis 859:with 819:order 809:, an 719:Sp(∞) 716:SU(∞) 129:image 2016:ISBN 1991:ISBN 1966:ISBN 1937:ISBN 1909:ISBN 1854:The 1806:. A 1788:type 1613:(an 1588:) = 983:) = 888:rank 713:O(∞) 702:Loop 521:and 1774:.) 1718:on 1675:of 1632:of 1609:to 1489:in 1315:= ( 1307:of 979:= ( 911:mod 801:In 628:Sp( 616:SU( 592:SO( 556:SL( 544:GL( 2038:: 1923:^ 1866:. 1860:p, 1692:. 1469:= 1326:) 1034:} 992:yx 990:= 981:xy 977:xy 952:/2 924:. 844:. 604:U( 580:E( 568:O( 26:→ 2024:. 1999:. 1974:. 1945:. 1917:. 1844:p 1840:p 1838:, 1836:p 1832:m 1828:n 1824:m 1820:m 1818:, 1816:m 1812:n 1804:p 1800:p 1796:p 1794:, 1792:p 1790:( 1784:G 1772:G 1764:G 1760:p 1756:G 1752:G 1744:G 1740:G 1732:G 1728:e 1724:G 1711:p 1707:F 1705:( 1702:n 1697:V 1689:p 1685:F 1681:n 1677:n 1668:p 1664:F 1662:( 1659:n 1654:T 1650:V 1646:V 1642:T 1638:V 1634:V 1623:V 1619:V 1611:V 1607:V 1603:T 1599:V 1594:i 1590:v 1585:i 1581:e 1579:( 1577:T 1569:V 1565:n 1560:n 1556:v 1552:1 1549:v 1544:n 1540:e 1536:1 1533:e 1529:V 1516:p 1512:F 1508:V 1504:p 1500:c 1495:p 1491:F 1487:c 1483:c 1481:( 1479:g 1475:g 1471:g 1467:g 1463:c 1458:p 1454:F 1450:Z 1446:Z 1440:- 1438:Z 1434:V 1430:V 1425:p 1421:F 1414:Z 1411:p 1409:/ 1407:Z 1405:( 1377:V 1372:p 1368:F 1360:n 1356:V 1351:p 1347:F 1324:Z 1321:p 1319:/ 1317:Z 1313:V 1309:p 1300:p 1296:F 1274:Z 1271:p 1269:/ 1267:Z 1263:Z 1260:p 1258:/ 1256:Z 1254:( 1233:V 1204:i 1200:e 1194:j 1190:e 1186:= 1181:j 1177:e 1171:i 1167:e 1160:, 1157:1 1154:= 1149:p 1144:i 1140:e 1131:n 1127:e 1123:, 1117:, 1112:1 1108:e 1096:n 1092:) 1087:Z 1083:p 1079:/ 1074:Z 1070:( 1056:. 1047:i 1042:i 1038:e 1031:n 1027:e 1023:1 1020:e 1018:{ 1014:n 1010:n 1006:Z 1003:p 1001:/ 999:Z 997:( 988:x 985:y 968:. 954:Z 950:Z 937:p 929:p 918:n 914:p 907:p 899:Z 896:p 894:/ 892:Z 884:n 880:Z 877:p 875:/ 873:Z 861:p 849:p 838:p 832:p 827:p 790:e 783:t 776:v 672:8 670:E 664:7 662:E 656:6 654:E 648:4 646:F 640:2 638:G 632:) 630:n 620:) 618:n 608:) 606:n 596:) 594:n 584:) 582:n 572:) 570:n 560:) 558:n 548:) 546:n 488:) 475:Z 463:) 450:Z 426:) 413:Z 404:( 317:p 282:Q 274:n 271:D 261:n 258:A 250:n 247:S 239:n 236:Z

Index

Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups
Cyclic group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.