Knowledge (XXG)

Electrochemical quartz crystal microbalance

Source 📝

17: 1273:
Baba, Akira; Tian, Shengjun; Stefani, Fernando; Xia, Chuanjun; Wang, Zhehui; Advincula, Rigoberto C; Johannsmann, Diethelm; Knoll, Wolfgang (Jan 2004). "Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the
696:
EQCM can be used to monitor the chemical reaction occurring on the electrode, which offers the optimized reaction condition by comparing the influence factors during the synthesis process. Some previous work has already investigated the polymerization process and charge transport properties, polymer
830:
EQCM can be used to study the process of adsorption and oxidation of fuel molecules on the electrode surface, and the effect of electrode catalyst or other additives on the electrode, such as assessment of polypyrrole internal Pt load in the polypyrrole/platinum composites fuel cell, methanol fuel
51:
As a high mass sensitive in-situ measurement, EQCM is suitable to monitor the dynamic response of reactions at the electrode–solution interface at the applied potential. When the potential of a QCM metal electrode changes, a negative or positive mass change is monitored depending on the ratio of
839:
composite fuel cells. EQCM can also be used to study the energy storage performance and influencing factors of supercapacitors and electrochemical capacitors. For example, EQCM is used to study the ion movement gauge of conductive polymer of capacitor on cathode. Some work studied the EQCM
1237:
Bose, C. S. C.; Basak, S.; Rajeshwar, K. (Nov 1992). "Electrochemistry of poly(pyrrole chloride) films: a study of polymerization efficiency, ion transport during redox and doping level assay by electrochemical quartz crystal microgravimetry, pH and ion-selective electrode measurements".
43:
part and a QCM part. Two electrodes on both sides of the quartz crystal serve two purposes. Firstly, an alternating electric field is generated between the two electrodes for making up the oscillator. Secondly, the electrode contacting electrolyte is used as a
753:
studied Fe-17Cr-33Mo/ Fe-25Cr alloy electrodes mass changes during the potential sweep and potential step experiments in the passive potential region in an acidic and a basic electrolyte. Another previous work used EQCM and SEM to study the influence of
1608:
Kawaguchi, Toshikazu; Yasuda, Hiroaki; Shimazu, Katsuaki; Porter, Marc D. (Dec 2000). "Electrochemical Quartz Crystal Microbalance Investigation of the Reductive Desorption of Self-Assembled Monolayers of Alkanethiols and Mercaptoalkanoic Acids on Au".
1380:
Bohannan, Eric W.; Huang, Ling-Yuang; Miller, F. Scott; Shumsky, Mark G.; Switzer, Jay A. (Feb 1999). "In Situ Electrochemical Quartz Crystal Microbalance Study of Potential Oscillations during the Electrodeposition of Cu/Cu2O Layered Nanostructures".
169: 840:
application in solar energy, which is mostly additive and thin film material related, for instance, using EQCM to study the electrochemical deposition process and stability of Co-Pi oxygen evolution catalyst for solar storage.
1344:
Aurbach, D.; Moshkovich, M.; Cohen, Y.; Schechter, A. (April 1999). "The Study of Surface Film Formation on Noble-Metal Electrodes in Alkyl Carbonates/Li Salt Solutions, Using Simultaneous in Situ AFM, EQCM, FTIR, and EIS".
48:(WE), together with a counter electrode (CE) and a reference electrode (RE), in the potentiostatic circuit constituting the electrochemistry cell. Thus, the working electrode of electrochemistry cell is the sensor of QCM. 682: 1876:
Levi, Mikhael D.; Salitra, Grigory; Levy, Naomi; Aurbach, Doron; Maier, Joachim (2009-10-18). "Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage".
381: 1722:
Zotti, Gianni; Zecchin, Sandro; Schiavon, Gilberto; Groenendaal, L. “Bert” (Oct 2000). "Conductive and Magnetic Properties of 3,4-Dimethoxy- and 3,4-Ethylenedioxy-Capped Polypyrrole and Polythiophene".
1486:
Schmutz, P; Landolt, D (November 1999). "In-situ microgravimetric studies of passive alloys: potential sweep and potential step experiments with Fe–25Cr and Fe–17Cr–33Mo in acid and alkaline solution".
1644:
Zotti, G.; Schiavon, G.; Zecchin, S. (June 1995). "Irreversible processes in the electrochemical reduction of polythiophenes. Chemical modifications of the polymer and charge-trapping phenomena".
522: 1573:
Schneider, Thomas W.; Buttry, Daniel A. (Dec 1993). "Electrochemical quartz crystal microbalance studies of adsorption and desorption of self-assembled monolayers of alkyl thiols on gold".
322: 1309:
Kvarnström, C.; Neugebauer, H.; Blomquist, S.; Ahonen, H.J.; Kankare, J.; Ivaska, A. (April 1999). "In situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene)".
1167:
Baker, Charles K.; Qiu, Yong Jian; Reynolds, John R. (May 1991). "Electrochemically-induced charge and mass transport in polypyrrole/poly(styrene sulfonate) molecular composites".
1980:
Irshad, Ahamed; Munichandraiah, Nookala (2013-04-11). "EQCM Investigation of Electrochemical Deposition and Stability of Co–Pi Oxygen Evolution Catalyst of Solar Energy Storage".
463: 1825:
Argirusis, Chr.; Matić, S.; Schneider, O. (Oct 2008). "An EQCM study of ultrasonically assisted electrodeposition of Co/CeO2and Ni/CeO2composites for fuel cell applications".
1202:
Chung, Sun-Mi; Paik, Woon-kie; Yeo, In-Hyeong (Jan 1997). "A study on the initial growth of polypyrrole on a gold electrode by electrochemical quartz crystal microbalance".
77: 903:
Bruckenstein, Stanley; Shay, Michael (June 1985). "An in situ weighing study of the mechanism for the formation of the adsorbed oxygen monolayer at a gold electrode".
857:
Schumacher, R.; Borges, G.; Kanazawa, K.K. (November 1985). "The quartz microbalance: A sensitive tool to probe surface reconstructions on gold electrodes in liquid".
612: 589: 428: 194: 551: 257: 226: 1451:
Lu, Z.; Schechter, A.; Moshkovich, M.; Aurbach, D. (May 1999). "On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions".
405: 1416:
Chen, S.-M. (March 2002). "Preparation, characterization, and electrocatalytic oxidation properties of iron, cobalt, nickel, and indium hexacyanoferrate".
713:
and EQCM to study the effect of different conditions on the formation of poly(3,4-ethylenedioxythiophene) film structure, and using EQCM, together with
733:
EQCM is broadly used to study the deposition/dissolution process on electrode surface, such as the oscillation of electrode potential during Cu/CuO
1040:
Schmutz, P.; Landolt, D. (December 1999). "Electrochemical quartz crystal microbalance study of the transient response of passive Fe–25Cr alloy".
815: 718: 710: 831:
cell anodizing process, and electrodeposition of cerium oxide suspended nanoparticles doped with gadolinium oxide under the ultrasound for Co/CeO
822:, they used EQCM to study conductivity and magnetic properties of 3,4-dimethoxy and 3,4-ethylenedioxy-terminated polypyrrole and polythiophene. 1679:
Naoi, Katsuhiko (1995). "Electrochemistry of Surfactant-Doped Polypyrrole Film(I): Formation of Columnar Structure by Electropolymerization".
1775: 811: 787: 725:, to investigate the film formation process in the alkyl carbonate/lithium salt electrolyte solution on precious metal electrodes surfaces. 619: 68:
and QCM measured frequency shift. The sensitivity factor is only valid when the mass change on the electrode is homogenous. Otherwise,
333: 749:
and corrosion protection study, which is usually combined with other characterization technologies. A previous work used EQCM and
750: 270:
In a certain electrolyte solution, a metal film will deposited on the working electrode, which is the QCM sensor surface of QCM.
819: 722: 2026: 473: 981: 741:
in calcium nitrate and barium nitrate electrolyte solution, and the Mg electrode electrochemical behaviour in various
36: 1790:
WU, Q; ZHEN, C; ZHOU, Z; SUN, S (Feb 2008). "Electrochemical Behavior of Irreversibly Adsorbed Sb on Au Electrode".
275: 2021: 938:
Kanazawa, K. Keiji.; Gordon, Joseph G. (July 1985). "Frequency of a quartz microbalance in contact with liquid".
767: 701:
and its derivatives. EQCM was used to study electro-polymerization process and doping/de-doping properties of
806:
and EQCM investigated growth of polypyrrole film in anionic surfactant micellar solution. Then combing with
803: 714: 1953: 1145: 791: 742: 433: 782:
together with other electrochemical measurements or surface characterization methods. A team has used
1886: 1834: 1688: 1539: 1496: 1107: 993: 866: 554: 40: 982:"The Effect of Current and Nickel Nitrate Concentration on the Deposition of Nickel Hydroxide Films" 164:{\displaystyle \Delta f=-\left({\frac {2f_{o}^{2}}{S{\sqrt {\mu \rho }}}}\right)\Delta m=-K\Delta m} 1941: 1858: 1017: 807: 783: 709:
process, sometimes it is necessary to combine other characterization technologies, such as using
1530:
Scendo, M. (Feb 2007). "The effect of purine on the corrosion of copper in chloride solutions".
1997: 1910: 1902: 1850: 1807: 1771: 1740: 1704: 1661: 1626: 1590: 1555: 1512: 1468: 1433: 1398: 1362: 1326: 1291: 1255: 1219: 1184: 1123: 1057: 1009: 955: 920: 882: 770:
of long chain alkyl mercaptan and alkanethiol and mercaptoalkanoic on gold electrode surface.
594: 571: 410: 176: 45: 1989: 1933: 1929: 1894: 1842: 1799: 1763: 1732: 1696: 1653: 1618: 1582: 1547: 1504: 1460: 1425: 1390: 1354: 1318: 1283: 1247: 1211: 1176: 1115: 1049: 1001: 947: 912: 874: 738: 706: 562: 32: 529: 235: 1966: 211: 52:
anions adoption on the electrode surface and the dissolution of metal ions into solution.
758:(PU) on Cu electrode corrosion and spontaneous dissolution in NaCl electrolyte solution. 1890: 1838: 1692: 1543: 1500: 1111: 1098:
Gabrielli, C. (1991). "Calibration of the Electrochemical Quartz Crystal Microbalance".
997: 870: 737:
layered nanostructure electrodeposition, deposition growth process of cobalt and nickel
558: 390: 327: 65: 1803: 1508: 1464: 1429: 1322: 1215: 1053: 916: 2015: 1862: 1657: 878: 795: 1945: 1021: 1758:
Schmidt, V. M.; Stimming, U. (1996), "Fuel Cell Systems for Vehicle Applications",
1287: 799: 1767: 1551: 702: 698: 384: 2001: 1906: 1854: 1811: 1744: 1708: 1665: 1630: 1594: 1559: 1516: 1472: 1437: 1402: 1366: 1330: 1295: 1259: 1223: 1188: 1127: 1061: 1013: 959: 924: 886: 39:, which was generated in the eighties. Typically, an EQCM device contains an 746: 1914: 1846: 779: 1586: 1251: 1180: 951: 905:
Journal of Electroanalytical Chemistry and Interfacial Electrochemistry
1993: 1736: 1700: 1622: 1394: 1358: 1119: 1005: 1898: 755: 697:
film growth on gold electrode surface, and polymerization process of
260: 229: 201: 1937: 1930:"Polymeric electrolytes for ambient temperature lithium batteries" 677:{\displaystyle K=-{\frac {zF}{A_{m}}}{\frac {\Delta f}{\Delta Q}}} 568:
The experimental sensitivity of the EQCM is calculated by combing
15: 1760:
New Promising Electrochemical Systems for Rechargeable Batteries
16: 745:
electrolyte solutions. EQCM can be used as a powerful tool for
64:
can be calculated by combing the electrochemical cell measured
376:{\displaystyle {\frac {\Delta Q}{C}}\cdot \mathrm {cm} ^{-2}} 1146:"Application of Electrochemical Quartz Crystal Microbalance" 705:
film on gold electrode surface as well. To investigate the
729:
Application of EQCM in electrodeposition and dissolution
72:
is taken as the average sensitivity factor of the EQCM.
1762:, Dordrecht: Springer Netherlands, pp. 233–246, 622: 597: 574: 532: 476: 436: 413: 393: 336: 278: 238: 214: 179: 80: 20:
Schematic Electrochemical Quartz Crystal Microbalance
826:
Application of EQCM in energy conversion and storage
517:{\displaystyle \Delta m={\frac {A_{m}}{zF}}\Delta Q} 676: 606: 583: 545: 516: 457: 422: 399: 375: 316: 251: 220: 188: 163: 774:Application of EQCM in polymer modified electrode 267:is the intrinsic sensitivity factor of the EQCM. 762:Application of EQCM in adsorption and desorption 468:The active areal mass density is calculated by 794:and EQCM studied irreversible changes of some 317:{\displaystyle M^{z+}+ze^{-}\longrightarrow M} 8: 798:in the electrochemical reduction process in 778:EQCM can be used to ideally modify polymer 25:Electrochemical quartz crystal microbalance 383:) is involved in the electro-reduction of 654: 646: 632: 621: 596: 573: 537: 531: 492: 486: 475: 435: 412: 392: 364: 356: 337: 335: 302: 283: 277: 243: 237: 213: 178: 123: 112: 107: 97: 79: 1575:Journal of the American Chemical Society 849: 692:Application of EQCM in electrosynthesis 1962: 1951: 1681:Journal of the Electrochemical Society 1453:Journal of Electroanalytical Chemistry 1418:Journal of Electroanalytical Chemistry 1276:Journal of Electroanalytical Chemistry 1100:Journal of the Electrochemical Society 986:Journal of the Electrochemical Society 196:is the measured frequency shift (Hz), 1093: 1091: 7: 1139: 1137: 1089: 1087: 1085: 1083: 1081: 1079: 1077: 1075: 1073: 1071: 1035: 1033: 1031: 975: 973: 971: 969: 898: 896: 1982:The Journal of Physical Chemistry C 665: 657: 598: 575: 508: 477: 458:{\displaystyle \Delta Q=I\Delta t} 449: 437: 414: 360: 357: 340: 208:is the density of quartz crystal, 180: 155: 140: 81: 14: 1240:The Journal of Physical Chemistry 1169:The Journal of Physical Chemistry 980:Streinz, Christopher C. (1995). 766:EQCM has been used to study the 1928:Farrington, G.C. (1991-07-01). 1288:10.1016/j.jelechem.2003.08.012 1274:quartz crystal microbalance". 308: 1: 1804:10.1016/s1872-1508(08)60010-8 1509:10.1016/s0010-938x(99)00038-4 1465:10.1016/s0022-0728(99)00146-1 1430:10.1016/s0022-0728(02)00677-0 1323:10.1016/s0013-4686(98)00405-8 1216:10.1016/s0379-6779(97)80690-x 1054:10.1016/s0013-4686(99)00293-5 917:10.1016/s0022-0728(85)80057-7 557:of deposited metal, z is the 1768:10.1007/978-94-009-1643-2_17 1658:10.1016/0379-6779(95)03280-0 1552:10.1016/j.corsci.2006.06.022 879:10.1016/0167-2584(85)90839-4 60:The EQCM sensitivity factor 1792:Acta Physico-Chimica Sinica 37:quartz crystal microbalance 2043: 232:crystal shear modulus and 204:crystal active area (cm), 768:self-assembled monolayers 607:{\displaystyle \Delta f} 584:{\displaystyle \Delta m} 423:{\displaystyle \Delta T} 189:{\displaystyle \Delta f} 31:) is the combination of 1827:Physica Status Solidi A 859:Surface Science Letters 1961:Cite journal requires 1847:10.1002/pssa.200779409 1725:Chemistry of Materials 1144:yan, xiao (Nov 2018). 678: 608: 585: 547: 518: 459: 424: 407:, in a period of time 401: 387:at a constant current 377: 318: 253: 222: 190: 165: 21: 1150:Progress in Chemistry 802:. Later on they used 679: 609: 586: 548: 546:{\displaystyle A_{m}} 519: 460: 425: 402: 378: 319: 254: 252:{\displaystyle f_{o}} 223: 191: 166: 41:electrochemical cells 19: 2027:Weighing instruments 940:Analytical Chemistry 620: 595: 572: 530: 474: 434: 411: 391: 334: 276: 236: 221:{\displaystyle \mu } 212: 177: 78: 1891:2009NatMa...8..872L 1839:2008PSSAR.205.2400A 1693:1995JElS..142..417N 1587:10.1021/ja00079a021 1581:(26): 12391–12397. 1544:2007Corro..49..373S 1501:1999Corro..41.2143S 1311:Electrochimica Acta 1252:10.1021/j100203a059 1181:10.1021/j100164a053 1112:1991JElS..138.2657G 1042:Electrochimica Acta 998:1995JElS..142.1084S 952:10.1021/ac00285a062 871:1985SurSL.163L.621S 263:crystal frequency. 259:is the fundamental 117: 674: 604: 581: 543: 514: 455: 420: 397: 373: 314: 249: 218: 186: 161: 103: 22: 1994:10.1021/jp312752q 1988:(16): 8001–8008. 1833:(10): 2400–2404. 1777:978-94-010-7235-9 1737:10.1021/cm000400l 1731:(10): 2996–3005. 1701:10.1149/1.2044042 1623:10.1021/la000756b 1617:(25): 9830–9840. 1532:Corrosion Science 1495:(11): 2143–2163. 1489:Corrosion Science 1395:10.1021/la980825a 1359:10.1021/la981275j 1317:(16): 2739–2750. 1246:(24): 9899–9906. 1175:(11): 4446–4452. 1120:10.1149/1.2086033 1006:10.1149/1.2044134 672: 652: 506: 400:{\displaystyle I} 350: 134: 131: 46:working electrode 2034: 2022:Electrochemistry 2006: 2005: 1977: 1971: 1970: 1964: 1959: 1957: 1949: 1925: 1919: 1918: 1899:10.1038/nmat2559 1879:Nature Materials 1873: 1867: 1866: 1822: 1816: 1815: 1787: 1781: 1780: 1755: 1749: 1748: 1719: 1713: 1712: 1676: 1670: 1669: 1646:Synthetic Metals 1641: 1635: 1634: 1605: 1599: 1598: 1570: 1564: 1563: 1527: 1521: 1520: 1483: 1477: 1476: 1448: 1442: 1441: 1413: 1407: 1406: 1377: 1371: 1370: 1353:(8): 2947–2960. 1341: 1335: 1334: 1306: 1300: 1299: 1270: 1264: 1263: 1234: 1228: 1227: 1210:(1–3): 155–156. 1204:Synthetic Metals 1199: 1193: 1192: 1164: 1158: 1157: 1141: 1132: 1131: 1106:(9): 2657–2660. 1095: 1066: 1065: 1037: 1026: 1025: 992:(4): 1084–1089. 977: 964: 963: 946:(8): 1770–1771. 935: 929: 928: 911:(1–2): 131–136. 900: 891: 890: 865:(1): L621–L626. 854: 739:hexacyanoferrate 707:electrosynthesis 687:EQCM application 683: 681: 680: 675: 673: 671: 663: 655: 653: 651: 650: 641: 633: 613: 611: 610: 605: 590: 588: 587: 582: 563:Faraday constant 552: 550: 549: 544: 542: 541: 523: 521: 520: 515: 507: 505: 497: 496: 487: 464: 462: 461: 456: 429: 427: 426: 421: 406: 404: 403: 398: 382: 380: 379: 374: 372: 371: 363: 351: 346: 338: 323: 321: 320: 315: 307: 306: 291: 290: 258: 256: 255: 250: 248: 247: 227: 225: 224: 219: 195: 193: 192: 187: 170: 168: 167: 162: 139: 135: 133: 132: 124: 118: 116: 111: 98: 56:EQCM calibration 33:electrochemistry 2042: 2041: 2037: 2036: 2035: 2033: 2032: 2031: 2012: 2011: 2010: 2009: 1979: 1978: 1974: 1960: 1950: 1938:10.2172/5176162 1927: 1926: 1922: 1885:(11): 872–875. 1875: 1874: 1870: 1824: 1823: 1819: 1789: 1788: 1784: 1778: 1757: 1756: 1752: 1721: 1720: 1716: 1678: 1677: 1673: 1643: 1642: 1638: 1607: 1606: 1602: 1572: 1571: 1567: 1529: 1528: 1524: 1485: 1484: 1480: 1450: 1449: 1445: 1415: 1414: 1410: 1379: 1378: 1374: 1343: 1342: 1338: 1308: 1307: 1303: 1272: 1271: 1267: 1236: 1235: 1231: 1201: 1200: 1196: 1166: 1165: 1161: 1143: 1142: 1135: 1097: 1096: 1069: 1039: 1038: 1029: 979: 978: 967: 937: 936: 932: 902: 901: 894: 856: 855: 851: 846: 838: 834: 828: 776: 764: 736: 731: 694: 689: 664: 656: 642: 634: 618: 617: 593: 592: 570: 569: 561:, and F is the 533: 528: 527: 498: 488: 472: 471: 432: 431: 409: 408: 389: 388: 355: 339: 332: 331: 298: 279: 274: 273: 239: 234: 233: 210: 209: 175: 174: 119: 99: 93: 76: 75: 58: 12: 11: 5: 2040: 2038: 2030: 2029: 2024: 2014: 2013: 2008: 2007: 1972: 1963:|journal= 1920: 1868: 1817: 1798:(2): 201–204. 1782: 1776: 1750: 1714: 1687:(2): 417–422. 1671: 1652:(3): 275–281. 1636: 1600: 1565: 1538:(2): 373–390. 1522: 1478: 1459:(2): 203–217. 1443: 1424:(1–2): 29–52. 1408: 1389:(3): 813–818. 1372: 1336: 1301: 1265: 1229: 1194: 1159: 1133: 1067: 1048:(6): 899–911. 1027: 965: 930: 892: 848: 847: 845: 842: 836: 832: 827: 824: 796:polythiophenes 775: 772: 763: 760: 734: 730: 727: 693: 690: 688: 685: 670: 667: 662: 659: 649: 645: 640: 637: 631: 628: 625: 603: 600: 580: 577: 559:electrovalency 540: 536: 513: 510: 504: 501: 495: 491: 485: 482: 479: 454: 451: 448: 445: 442: 439: 419: 416: 396: 370: 367: 362: 359: 354: 349: 345: 342: 328:charge density 313: 310: 305: 301: 297: 294: 289: 286: 282: 246: 242: 217: 185: 182: 160: 157: 154: 151: 148: 145: 142: 138: 130: 127: 122: 115: 110: 106: 102: 96: 92: 89: 86: 83: 66:charge density 57: 54: 13: 10: 9: 6: 4: 3: 2: 2039: 2028: 2025: 2023: 2020: 2019: 2017: 2003: 1999: 1995: 1991: 1987: 1983: 1976: 1973: 1968: 1955: 1947: 1943: 1939: 1935: 1931: 1924: 1921: 1916: 1912: 1908: 1904: 1900: 1896: 1892: 1888: 1884: 1880: 1872: 1869: 1864: 1860: 1856: 1852: 1848: 1844: 1840: 1836: 1832: 1828: 1821: 1818: 1813: 1809: 1805: 1801: 1797: 1793: 1786: 1783: 1779: 1773: 1769: 1765: 1761: 1754: 1751: 1746: 1742: 1738: 1734: 1730: 1726: 1718: 1715: 1710: 1706: 1702: 1698: 1694: 1690: 1686: 1682: 1675: 1672: 1667: 1663: 1659: 1655: 1651: 1647: 1640: 1637: 1632: 1628: 1624: 1620: 1616: 1612: 1604: 1601: 1596: 1592: 1588: 1584: 1580: 1576: 1569: 1566: 1561: 1557: 1553: 1549: 1545: 1541: 1537: 1533: 1526: 1523: 1518: 1514: 1510: 1506: 1502: 1498: 1494: 1490: 1482: 1479: 1474: 1470: 1466: 1462: 1458: 1454: 1447: 1444: 1439: 1435: 1431: 1427: 1423: 1419: 1412: 1409: 1404: 1400: 1396: 1392: 1388: 1384: 1376: 1373: 1368: 1364: 1360: 1356: 1352: 1348: 1340: 1337: 1332: 1328: 1324: 1320: 1316: 1312: 1305: 1302: 1297: 1293: 1289: 1285: 1282:(1): 95–103. 1281: 1277: 1269: 1266: 1261: 1257: 1253: 1249: 1245: 1241: 1233: 1230: 1225: 1221: 1217: 1213: 1209: 1205: 1198: 1195: 1190: 1186: 1182: 1178: 1174: 1170: 1163: 1160: 1155: 1151: 1147: 1140: 1138: 1134: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1101: 1094: 1092: 1090: 1088: 1086: 1084: 1082: 1080: 1078: 1076: 1074: 1072: 1068: 1063: 1059: 1055: 1051: 1047: 1043: 1036: 1034: 1032: 1028: 1023: 1019: 1015: 1011: 1007: 1003: 999: 995: 991: 987: 983: 976: 974: 972: 970: 966: 961: 957: 953: 949: 945: 941: 934: 931: 926: 922: 918: 914: 910: 906: 899: 897: 893: 888: 884: 880: 876: 872: 868: 864: 860: 853: 850: 843: 841: 825: 823: 821: 817: 813: 809: 805: 801: 797: 793: 789: 785: 781: 773: 771: 769: 761: 759: 757: 752: 748: 744: 743:polar aprotic 740: 728: 726: 724: 720: 716: 712: 708: 704: 700: 691: 686: 684: 668: 660: 647: 643: 638: 635: 629: 626: 623: 615: 601: 578: 566: 564: 560: 556: 555:atomic weight 538: 534: 524: 511: 502: 499: 493: 489: 483: 480: 469: 466: 452: 446: 443: 440: 417: 394: 386: 368: 365: 352: 347: 343: 329: 324: 311: 303: 299: 295: 292: 287: 284: 280: 271: 268: 266: 262: 244: 240: 231: 215: 207: 203: 199: 183: 171: 158: 152: 149: 146: 143: 136: 128: 125: 120: 113: 108: 104: 100: 94: 90: 87: 84: 73: 71: 67: 63: 55: 53: 49: 47: 42: 38: 34: 30: 26: 18: 1985: 1981: 1975: 1954:cite journal 1923: 1882: 1878: 1871: 1830: 1826: 1820: 1795: 1791: 1785: 1759: 1753: 1728: 1724: 1717: 1684: 1680: 1674: 1649: 1645: 1639: 1614: 1610: 1603: 1578: 1574: 1568: 1535: 1531: 1525: 1492: 1488: 1481: 1456: 1452: 1446: 1421: 1417: 1411: 1386: 1382: 1375: 1350: 1346: 1339: 1314: 1310: 1304: 1279: 1275: 1268: 1243: 1239: 1232: 1207: 1203: 1197: 1172: 1168: 1162: 1153: 1149: 1103: 1099: 1045: 1041: 989: 985: 943: 939: 933: 908: 904: 862: 858: 852: 829: 800:acetonitrile 777: 765: 732: 695: 616: 567: 525: 470: 467: 325: 272: 269: 264: 205: 197: 172: 74: 69: 61: 59: 50: 28: 24: 23: 1156:(11): 1701. 703:polyaniline 699:polypyrrole 2016:Categories 844:References 835:and Ni/CeO 385:metal ions 2002:1932-7447 1907:1476-1122 1863:123082512 1855:1862-6300 1812:1872-1508 1745:0897-4756 1709:0013-4651 1666:0379-6779 1631:0743-7463 1595:0002-7863 1560:0010-938X 1517:0010-938X 1473:1572-6657 1438:1572-6657 1403:0743-7463 1367:0743-7463 1331:0013-4686 1296:1572-6657 1260:0022-3654 1224:0379-6779 1189:0022-3654 1128:0013-4651 1062:0013-4686 1014:0013-4651 960:0003-2700 925:0022-0728 887:0167-2584 780:membranes 747:corrosion 666:Δ 658:Δ 630:− 599:Δ 576:Δ 509:Δ 478:Δ 450:Δ 438:Δ 415:Δ 366:− 353:⋅ 341:Δ 309:⟶ 304:− 216:μ 181:Δ 156:Δ 150:− 141:Δ 129:ρ 126:μ 91:− 82:Δ 1946:94438069 1915:19838184 1611:Langmuir 1383:Langmuir 1347:Langmuir 1022:52106125 1887:Bibcode 1835:Bibcode 1689:Bibcode 1540:Bibcode 1497:Bibcode 1108:Bibcode 994:Bibcode 867:Bibcode 553:is the 228:is the 200:is the 2000:  1944:  1913:  1905:  1861:  1853:  1810:  1774:  1743:  1707:  1664:  1629:  1593:  1558:  1515:  1471:  1436:  1401:  1365:  1329:  1294:  1258:  1222:  1187:  1126:  1060:  1020:  1012:  958:  923:  885:  812:UV-Vis 788:UV-Vis 756:purine 526:where 261:quartz 230:quartz 202:quartz 173:where 1942:S2CID 1859:S2CID 1018:S2CID 1998:ISSN 1967:help 1911:PMID 1903:ISSN 1851:ISSN 1808:ISSN 1772:ISBN 1741:ISSN 1705:ISSN 1662:ISSN 1627:ISSN 1591:ISSN 1556:ISSN 1513:ISSN 1469:ISSN 1434:ISSN 1399:ISSN 1363:ISSN 1327:ISSN 1292:ISSN 1256:ISSN 1220:ISSN 1185:ISSN 1124:ISSN 1058:ISSN 1010:ISSN 956:ISSN 921:ISSN 883:ISSN 816:FTIR 719:FTIR 711:FTIR 591:and 326:The 35:and 29:EQCM 1990:doi 1986:117 1934:doi 1895:doi 1843:doi 1831:205 1800:doi 1764:doi 1733:doi 1697:doi 1685:142 1654:doi 1619:doi 1583:doi 1579:115 1548:doi 1505:doi 1461:doi 1457:466 1426:doi 1422:521 1391:doi 1355:doi 1319:doi 1284:doi 1280:562 1248:doi 1212:doi 1177:doi 1116:doi 1104:138 1050:doi 1002:doi 990:142 948:doi 913:doi 909:188 875:doi 863:163 820:ESR 804:AFM 751:XPS 723:EIS 715:AFM 465:). 2018:: 1996:. 1984:. 1958:: 1956:}} 1952:{{ 1940:. 1932:. 1909:. 1901:. 1893:. 1881:. 1857:. 1849:. 1841:. 1829:. 1806:. 1796:24 1794:. 1770:, 1739:. 1729:12 1727:. 1703:. 1695:. 1683:. 1660:. 1650:72 1648:. 1625:. 1615:16 1613:. 1589:. 1577:. 1554:. 1546:. 1536:49 1534:. 1511:. 1503:. 1493:41 1491:. 1467:. 1455:. 1432:. 1420:. 1397:. 1387:15 1385:. 1361:. 1351:15 1349:. 1325:. 1315:44 1313:. 1290:. 1278:. 1254:. 1244:96 1242:. 1218:. 1208:84 1206:. 1183:. 1173:95 1171:. 1154:30 1152:. 1148:. 1136:^ 1122:. 1114:. 1102:. 1070:^ 1056:. 1046:45 1044:. 1030:^ 1016:. 1008:. 1000:. 988:. 984:. 968:^ 954:. 944:57 942:. 919:. 907:. 895:^ 881:. 873:. 861:. 818:, 814:, 810:, 808:CV 792:IR 790:, 786:, 784:CV 721:, 717:, 614:. 565:. 2004:. 1992:: 1969:) 1965:( 1948:. 1936:: 1917:. 1897:: 1889:: 1883:8 1865:. 1845:: 1837:: 1814:. 1802:: 1766:: 1747:. 1735:: 1711:. 1699:: 1691:: 1668:. 1656:: 1633:. 1621:: 1597:. 1585:: 1562:. 1550:: 1542:: 1519:. 1507:: 1499:: 1475:. 1463:: 1440:. 1428:: 1405:. 1393:: 1369:. 1357:: 1333:. 1321:: 1298:. 1286:: 1262:. 1250:: 1226:. 1214:: 1191:. 1179:: 1130:. 1118:: 1110:: 1064:. 1052:: 1024:. 1004:: 996:: 962:. 950:: 927:. 915:: 889:. 877:: 869:: 837:2 833:2 735:2 669:Q 661:f 648:m 644:A 639:F 636:z 627:= 624:K 602:f 579:m 539:m 535:A 512:Q 503:F 500:z 494:m 490:A 484:= 481:m 453:t 447:I 444:= 441:Q 430:( 418:T 395:I 369:2 361:m 358:c 348:C 344:Q 330:( 312:M 300:e 296:z 293:+ 288:+ 285:z 281:M 265:K 245:o 241:f 206:ρ 198:S 184:f 159:m 153:K 147:= 144:m 137:) 121:S 114:2 109:o 105:f 101:2 95:( 88:= 85:f 70:K 62:K 27:(

Index


electrochemistry
quartz crystal microbalance
electrochemical cells
working electrode
charge density
quartz
quartz
quartz
charge density
metal ions
atomic weight
electrovalency
Faraday constant
polypyrrole
polyaniline
electrosynthesis
FTIR
AFM
FTIR
EIS
hexacyanoferrate
polar aprotic
corrosion
XPS
purine
self-assembled monolayers
membranes
CV
UV-Vis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.