Knowledge

Electron microscope

Source 📝

998:– the freeze-fracture method has been modified to allow the identification of the components of the fracture face by immunogold labeling. Instead of removing all the underlying tissue of the thawed replica as the final step before viewing in the microscope the tissue thickness is minimized during or after the fracture process. The thin layer of tissue remains bound to the metal replica so it can be immunogold labeled with antibodies to the structures of choice. The thin layer of the original specimen on the replica with gold attached allows the identification of structures in the fracture plane. There are also related methods which label the surface of etched cells and other replica labeling variations. 255: 1145:
used to increase the z-resolution. More recently, back scattered electron (BSE) images can be acquired of a larger series of sections collected on silicon wafers, known as SEM array tomography. An alternative approach is to use BSE SEM to image the block surface instead of the section, after each section has been removed. By this method, an ultramicrotome installed in an SEM chamber can increase automation of the workflow; the specimen block is loaded in the chamber and the system programmed to continuously cut and image through the sample. This is known as serial block face SEM. A related method uses
977: 984:
some ice sublime) is then shadowed with evaporated platinum or gold at an average angle of 45° in a high vacuum evaporator. The second coat of carbon, evaporated perpendicular to the average surface plane is often performed to improve the stability of the replica coating. The specimen is returned to room temperature and pressure, then the extremely fragile "pre-shadowed" metal replica of the fracture surface is released from the underlying biological material by careful chemical digestion with acids,
1164: 338:. According to patent law (U.S. Patent No. 2058914 and 2070318, both filed in 1932), he is the inventor of the electron microscope, but it is not clear when he had a working instrument. He stated in a very brief article in 1932 that Siemens had been working on this for some years before the patents were filed in 1932, claiming that his effort was parallel to the university development. He died in 1961, so similar to Max Knoll, was not eligible for a share of the 1986 Nobel prize. 1044:. This mixture is applied to an EM grid, pre-coated with a plastic film such as formvar, blotted, then allowed to dry. Viewing of this preparation in the TEM should be carried out without delay for best results. The method is important in microbiology for fast but crude morphological identification, but can also be used as the basis for high-resolution 3D reconstruction using EM tomography methodology when carbon films are used for support. 724: 685: 646: 607: 555: 782: 4796: 969: 431: 40: 65: 4808: 403: 48: 1111:
Electron microscopes are now frequently used in more complex workflows, with each workflow typically using multiple technologies to enable more complex and/or more quantitative analyses of a sample. A few examples are outlined below, but this should not be considered an exhaustive list. The choice of
1144:
datasets of larger depths than TEM tomography (micrometers or millimeters in the z axis), a series of images taken through the sample depth can be used. For example, ribbons of serial sections can be imaged in a TEM as described above, and when thicker sections are used, serial TEM tomography can be
584:
emission, all of which provide signals carrying information about the properties of the specimen surface, such as its topography and composition. The image displayed by SEM represents the varying intensity of any of these signals into the image in a position corresponding to the position of the beam
772:
are primarily in the size of the crystals. In X-ray crystallography, crystals are commonly visible by the naked eye and are generally in the hundreds of micrometers in length. In comparison, crystals for electron diffraction must be less than a few hundred nanometers in thickness, and have no lower
456:
lenses, and transmitted through the specimen. When it emerges from the specimen, the electron beam carries information about the structure of the specimen that is magnified by lenses of the microscope. The spatial variation in this information (the "image") may be viewed by projecting the magnified
1213:
frustules and small mineral crystals (asbestos fibres, for example) require no special treatment before being examined in the electron microscope. Samples of hydrated materials, including almost all biological specimens, have to be prepared in various ways to stabilize them, reduce their thickness
1090:
to scatter imaging electrons and thus give contrast between different structures, since many (especially biological) materials are nearly "transparent" to electrons (weak phase objects). In biology, specimens can be stained "en bloc" before embedding and also later after sectioning. Typically thin
983:
The fresh tissue or cell suspension is frozen rapidly (cryofixation), then fractured by breaking (or by using a microtome) while maintained at liquid nitrogen temperature. The cold fractured surface (sometimes "etched" by increasing the temperature to about −100 °C for several minutes to let
588:
SEMs are different from TEMs in that they use electrons with much lower energy, generally below 20 keV, while TEMs generally use electrons with energies in the range of 80-300 keV. Thus, the electron sources and optics of the two microscopes have different designs, and they are normally separate
322:
successfully generated magnified images of mesh grids placed over an anode aperture. The device, a replicate of which is shown in the figure, used two magnetic lenses to achieve higher magnifications, the first electron microscope. (Max Knoll died in 1969, so did not receive a share of the 1986
1115:
For example, images from light and electron microscopy of the same region of a sample can be overlaid to correlate the data from the two modalities. This is commonly used to provide higher resolution contextual EM information about a fluorescently labelled structure. This correlative light and
1201:
Scanning electron microscopes operating in conventional high-vacuum mode usually image conductive specimens; therefore non-conductive materials require conductive coating (gold/palladium alloy, carbon, osmium, etc.). The low-voltage mode of modern microscopes makes possible the observation of
518:
The STEM rasters a focused incident probe across a specimen. The high resolution of the TEM is thus possible in STEM. The focusing action (and aberrations) occur before the electrons hit the specimen in the STEM, but afterward in the TEM. The STEMs use of SEM-like beam rastering simplifies
393:
became common for electron microscopes, improving the image quality due to the additional coherence and lower chromatic aberrations. The 2000s were marked by advancements in aberration-corrected electron microscopy, allowing for significant improvements in resolution and clarity of images.
1120:) is one of a range of correlative workflows now available. Another example is high resolution mass spectrometry (ion microscopy), which has been used to provide correlative information about subcellular antibiotic localisation, data that would be difficult to obtain by other means. 532: 1108:. However, often these images are then colourized through the use of feature-detection software, or simply by hand-editing using a graphics editor. This may be done to clarify structure or for aesthetic effect and generally does not add new information about the specimen. 406: 374:, and Albert Prebus. Siemens produced a transmission electron microscope (TEM) in 1939. Although current transmission electron microscopes are capable of two million times magnification, as scientific instruments they remain similar but with improved optics. 410: 409: 405: 404: 411: 1128:’ workflows was simply to stack TEM images of serial sections cut through a sample. The next development was virtual reconstruction of a thick section (200-500 nm) volume by backprojection of a set of images taken at different tilt angles - 408: 1149:
milling instead of an ultramicrotome to remove sections. In these serial imaging methods, the output is essentially a sequence of images through a specimen block that can be digitally aligned in sequence and thus reconstructed into a
1154:
dataset. The increased volume available in these methods has expanded the capability of electron microscopy to address new questions, such as mapping neural connectivity in the brain, and membrane contact sites between organelles.
1174:
Electron microscopes are expensive to build and maintain. Microscopes designed to achieve high resolutions must be housed in stable buildings (sometimes underground) with special services such as magnetic field canceling systems.
389:, enabling scanning microscopes at high resolution. By the early 1980s improvements in mechanical stability as well as the use of higher accelerating voltages enabled imaging of materials at the atomic scale. In the 1980s, the 1123:
The initial role of electron microscopes in imaging two-dimensional slices (TEM) or a specimen surface (SEM with secondary electrons) has also increasingly expanded into the depth of samples. An early example of these
341:
In the following year, 1933, Ruska and Knoll built the first electron microscope that exceeded the resolution of an optical (light) microscope. Four years later, in 1937, Siemens financed the work of Ernst Ruska and
274:
in 1883 who made a cathode-ray tube with electrostatic and magnetic deflection, demonstrating manipulation of the direction of an electron beam. Others were focusing of the electrons by an axial magnetic field by
535: 539: 538: 534: 533: 919:– after dehydration, tissue for observation in the transmission electron microscope is embedded so it can be sectioned ready for viewing. To do this the tissue is passed through a 'transition solvent' such as 540: 819:
Materials to be viewed in a transmission electron microscope may require processing to produce a suitable sample. The technique required varies depending on the specimen and the analysis required:
3238:
Rash JE, Johnson TJ, Hudson CS, Giddings FD, Graham WF, Eldefrawi ME (November 1982). "Labelled-replica techniques: post-shadow labelling of intramembrane particles in freeze-fracture replicas".
537: 2869:
Meryman H.T. and Kafig E. (1955). The study of frozen specimens, ice crystals and ices crystal growth by electron microscopy. Naval Med. Res. Ints. Rept NM 000 018.01.09 Vol. 13 pp 529–544
504:), enabling magnifications above 50 million times. The ability of HRTEM to determine the positions of atoms within materials is useful for nano-technologies research and development. 773:
boundary of size. Additionally, electron diffraction is done on a TEM, which can also be used to obtain many other types of information, rather than requiring a separate instrument.
1112:
workflow will be highly dependent on the application and the requirements of the corresponding scientific questions, such as resolution, volume, nature of the target molecule, etc.
407: 4440: 1313: 2930:"Chapter 7 - Natural Surfactants-Based Micro/Nanoemulsion Systems for NSAIDs—Practical Formulation Approach, Physicochemical and Biopharmaceutical Characteristics/Performances" 3901:
Gai PL, Boyes ED (March 2009). "Advances in atomic resolution in situ environmental transmission electron microscopy and 1A aberration corrected in situ electron microscopy".
4117: 3497:
Crowther RA, Amos LA, Finch JT, De Rosier DJ, Klug A (May 1970). "Three dimensional reconstructions of spherical viruses by fourier synthesis from electron micrographs".
4423: 4418: 1255: 493: 1020:
ions are used to produce an electron transparent membrane or 'lamella' in a specific region of the sample, for example through a device within a microprocessor or a
4567: 4270: 482: 458: 4040:
Kasas S, Dumas G, Dietler G, Catsicas S, Adrian M (July 2003). "Vitrification of cryoelectron microscopy specimens revealed by high-speed photographic imaging".
4557: 4160: 1220:, but these can usually be identified by comparing the results obtained by using radically different specimen preparation methods. Since the 1980s, analysis of 1202:
non-conductive specimens without coating. Non-conductive materials can be imaged also by a variable pressure (or environmental) scanning electron microscope.
1036:
or fine biological material (such as viruses and bacteria) are briefly mixed with a dilute solution of an electron-opaque solution such as ammonium molybdate,
572:). When the electron beam interacts with the specimen, it loses energy by a variety of mechanisms. These interactions lead to, among other events, emission of 177:
that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing them to produce magnified images or
4460: 4433: 536: 1024:
SEM. Ion beam milling may also be used for cross-section polishing prior to analysis of materials that are difficult to prepare using mechanical polishing.
4368: 1261: 1187: 992:
detergent. The still-floating replica is thoroughly washed free from residual chemicals, carefully fished up on fine grids, dried then viewed in the TEM.
358:. Siemens produced the first commercial electron microscope in 1938. The first North American electron microscopes were constructed in the 1930s, at the 1104:
In their most common configurations, electron microscopes produce images with a single brightness value per pixel, with the results usually rendered in
310:
to lead a team of researchers to advance research on electron beams and cathode-ray oscilloscopes. The team consisted of several PhD students including
4428: 3850:
Williamson MJ, Tromp RM, Vereecken PM, Hull R, Ross FM (August 2003). "Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface".
513: 203: 2061: 4572: 240:
Additional details can be found in the above links. This article contains some general information mainly about transmission electron microscopes.
181:
patterns. As the wavelength of an electron can be up to 100,000 times smaller than that of visible light, electron microscopes have a much higher
4005:
Sabanay I, Arad T, Weiner S, Geiger B (September 1991). "Study of vitrified, unstained frozen tissue sections by cryoimmunoelectron microscopy".
867:. This preserves the specimen in a snapshot of its native state. Methods to achieve this vitrification include plunge freezing rapidly in liquid 4388: 254: 221: 2650: 4512: 4378: 4325: 3341: 3075: 2949: 2689: 2547: 2522: 2272: 2126: 1636: 1422: 1297: 1117: 485:
have no scintillator and are directly exposed to the electron beam, which addresses some of the limitations of scintillator-coupled cameras.
4767: 4495: 4480: 4406: 2750:
Al-Amoudi A, Norlen LP, Dubochet J (October 2004). "Cryo-electron microscopy of vitreous sections of native biological cells and tissues".
82: 1250: 1234: 4517: 4350: 4203: 4153: 3569: 3037: 2726: 1712: 1244: 233: 148: 4114: 980:
External face of bakers yeast membrane showing the small holes where proteins are fractured out, sometimes as small ring patterns.
129: 4869: 4505: 4500: 4398: 4373: 4340: 1183: 1129: 794: 438: 425: 303: 249: 197: 101: 4577: 4562: 4542: 4085: 4280: 2563:
Dusevich V, Purk J, Eick J (January 2010). "Choosing the Right Accelerating Voltage for SEM (An Introduction for Beginners)".
2143: 4345: 4188: 1277: 1066:
are also used because they can be made in the lab and are much cheaper. Sections can also be created in situ by milling in a
829:– for biological specimens this aims to stabilize the specimen's mobile macromolecular structure by chemical crosslinking of 227: 86: 3357: 2470: 883:
milling of lamellae, it is now possible to observe samples from virtually any biological specimen close to its native state.
768:
mode where a map of the angles of the electrons leaving the sample is produced. The advantages of electron diffraction over
4812: 966:– a preparation method particularly useful for examining lipid membranes and their incorporated proteins in "face on" view. 960:– after embedding in resin, the specimen is usually ground and polished to a mirror-like finish using ultra-fine abrasives. 377:
In the 1940s, high-resolution electron microscopes were developed, enabling greater magnification and resolution. By 1965,
108: 4849: 4522: 4485: 4330: 1224:, vitrified specimens has also become increasingly used by scientists, further confirming the validity of this technique. 31: 523:, and other analytical techniques, but also means that image data is acquired in serial rather than in parallel fashion. 4844: 4834: 4800: 4360: 4146: 2267:. Monographs on the physics and chemistry of materials (3rd ed.). Oxford ; New York: Oxford University Press. 2088: 1621:
Proceedings of the 3rd International Conference on Contemporary Education, Social Sciences and Humanities (ICCESSH 2018)
1405:
Hertz H (2019). "Introduction to Heinrich Hertz's Miscellaneous Papers (1895) by Philipp Lenard". In Mulligan JF (ed.).
1302: 549: 355: 209: 1282: 1272: 1195: 359: 3801:"A Magnetic Field Canceling System Design for Diminishing Electromagnetic Interference to Avoid Environmental Hazard" 2074: 115: 4859: 4547: 4465: 3383:"Methods in Cell Biology | Correlative Light and Electron Microscopy III | ScienceDirect.com by Elsevier" 1267: 520: 350:, Ernst's brother, to develop applications for the microscope, especially with biological specimens. Also in 1937, 568:
The SEM produces images by probing the specimen with a focused electron beam that is scanned across the specimen (
461:. For example, the image may be viewed directly by an operator using a fluorescent viewing screen coated with a 97: 4864: 4772: 4726: 4552: 1959: 1448:"Experimentelle Untersuchungen über die Geschwindigkeit und die magnetische Ablenkbarkeit der Kathodenstrahlen" 876: 872: 4762: 1214:(ultrathin sectioning) and increase their electron optical contrast (staining). These processes may result in 4104: 298:
To this day the issue of who invented the transmission electron microscope is controversial. In 1928, at the
4475: 4411: 4285: 4244: 3382: 2496: 976: 492:, but a new generation of hardware correctors can reduce spherical aberration to increase the resolution in 75: 2336: 1850: 1824: 4665: 989: 331: 2225: 4670: 4490: 2929: 1617:"A Historical Investigation of the Debates on the Invention and Invention Rights of Electron Microscope" 902: 769: 382: 363: 299: 3644:"Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure" 3549: 1163: 295:
tried in 1928 to convince him to build an electron microscope, for which Szilárd had filed a patent.
4839: 4675: 4234: 3963: 3859: 3506: 2436: 2190: 1888: 1781: 1738: 1661: 1623:. Advances in Social Science, Education and Humanities Research. Atlantis Press. pp. 1438–1441. 1537: 1459: 1371: 1239: 1041: 825: 765: 759: 489: 178: 4640: 4625: 4532: 4527: 4470: 4335: 4317: 4249: 4239: 4183: 4169: 2654: 2024: 577: 367: 351: 215: 2294:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
4854: 4711: 4290: 4254: 4065: 3987: 3936: 3910: 3883: 3781: 3724: 3624: 3530: 3263: 2732: 2706: 2044: 2005: 1980:
Kruger DH, Schneck P, Gelderblom HR (May 2000). "Helmut Ruska and the visualisation of viruses".
1912: 1805: 1616: 1486: 1428: 573: 390: 386: 335: 186: 182: 122: 3554:
Chapter 7 - A practical guide to starting SEM array tomography—An accessible volume EM technique
2790:"Preparing samples from whole cells using focused-ion-beam milling for cryo-electron tomography" 2517:. Springer series in optical sciences (5th ed.). New York, NY: Springer. pp. 109–112. 2289: 1577: 306:), Adolf Matthias (Professor of High Voltage Technology and Electrical Installations) appointed 1930: 1525: 1447: 1151: 1141: 1125: 1012:) at the surface from an angle and sputtering material from the surface. A subclass of this is 4655: 4650: 4057: 4022: 3979: 3928: 3875: 3832: 3773: 3716: 3675: 3616: 3575: 3565: 3522: 3479: 3427: 3337: 3312: 3255: 3220: 3171: 3122: 3071: 3033: 3002: 2945: 2910: 2852: 2819: 2767: 2722: 2685: 2632: 2580: 2543: 2542:. Springer series in optical sciences (5th ed.). New York, NY: Springer. pp. 12–13. 2518: 2452: 2405: 2356: 2317: 2309: 2268: 2245: 2206: 2163: 2122: 1997: 1904: 1797: 1754: 1708: 1677: 1632: 1597: 1506: 1418: 1387: 560: 3693:
Abbott LF, Bock DD, Callaway EM, Denk W, Dulac C, Fairhall AL, et al. (September 2020).
3595:"Work smart, not hard: How array tomography can help increase the ultrastructure data output" 3331: 2788:
Wagner FR, Watanabe R, Schampers R, Singh D, Persoon H, Schaffer M, et al. (June 2020).
1050:– produces thin slices of the specimen, semitransparent to electrons. These can be cut using 4605: 4537: 4049: 4014: 3971: 3954:
Adrian M, Dubochet J, Lepault J, McDowall AW (1984). "Cryo-electron microscopy of viruses".
3920: 3867: 3822: 3812: 3763: 3755: 3706: 3665: 3655: 3606: 3557: 3514: 3469: 3461: 3417: 3409: 3302: 3294: 3247: 3210: 3202: 3161: 3153: 3112: 3104: 3063: 3025: 2992: 2984: 2937: 2900: 2892: 2842: 2809: 2801: 2759: 2714: 2622: 2614: 2572: 2444: 2395: 2387: 2348: 2301: 2237: 2226:"Recent improvements to the Cambridge University 600 kV High Resolution Electron Microscope" 2198: 2155: 2036: 1989: 1896: 1789: 1746: 1700: 1669: 1624: 1589: 1545: 1498: 1467: 1410: 1379: 1333: 1206: 1146: 1067: 1021: 1013: 880: 850: 810: 453: 343: 4132: 3448:
Peddie CJ, Genoud C, Kreshuk A, Meechan K, Micheva KD, Narayan K, et al. (July 2022).
4660: 4121: 3024:. Quantitative and Qualitative Microscopy. Vol. 3. Academic Press. pp. 343–360. 2679: 1526:"Berechnung der Bahn von Kathodenstrahlen im axialsymmetrischen elektromagnetischen Felde" 1216: 920: 786: 267: 174: 3020:
Black JA (January 1990). "g - Use of Freeze-Fracture in Neurobiology". In Conn PM (ed.).
2181:
Crewe AV (November 1966). "Scanning electron microscopes: is high resolution possible?".
1695:
Rüdenberg R (2010). "Origin and Background of the Invention of the Electron Microscope".
4099: 3967: 3863: 3768: 3743: 3510: 3422: 3397: 2473:. Office of Basic Energy Sciences, U.S. Department of Energy. 2006-05-26. Archived from 2440: 2194: 1892: 1785: 1742: 1665: 1541: 1463: 1375: 554: 473:. A high-resolution phosphor may also be coupled by means of a lens optical system or a 4615: 4229: 3827: 3800: 3474: 3449: 3307: 3283:"The use of lead citrate at high pH as an electron-opaque stain in electron microscopy" 3282: 3251: 3215: 3191:"Membrane splitting in freeze-ethching. Covalently bound ferritin as a membrane marker" 3190: 3166: 3141: 3117: 3092: 3067: 3029: 2997: 2972: 2941: 2905: 2880: 2847: 2814: 2789: 2675: 2627: 2602: 2400: 2375: 2241: 2027:[Investigation of metal oxide smoking with the universal electron microscope]. 1487:"X. On the discharge of negative ions by glowing metallic oxides, and allied phenomena" 1292: 1092: 1055: 1051: 1037: 1028: 972:
Freeze-fracturing helps to peel open membranes to allow visualization of what is inside
947: 842: 798: 781: 478: 280: 271: 3670: 3643: 3550:"A practical guide to starting SEM array tomography—An accessible volume EM technique" 1993: 1704: 723: 684: 645: 606: 452:, with the electrons typically having energies in the range 20 to 400 keV, focused by 4828: 4691: 4635: 4295: 4053: 3785: 3728: 3628: 2736: 2048: 1916: 1809: 1593: 1432: 943: 910: 864: 445: 371: 276: 4742: 4127: 4069: 3887: 3267: 2009: 968: 4752: 4716: 4610: 4600: 4275: 4224: 3991: 3940: 3534: 3413: 2502:. Information Bridge: DOE Scientific and Technical Information – Sponsored by OSTI. 2448: 1308: 1221: 1186:
using either a closed liquid cell or an environmental chamber, for example, in the
1063: 1033: 985: 859: 838: 806: 470: 466: 449: 448:
to illuminate the specimen and create an image. An electron beam is produced by an
442: 430: 378: 347: 288: 39: 17: 1091:
sections are stained for several minutes with an aqueous or alcoholic solution of
3660: 2474: 2202: 1673: 1359: 1182:, as the molecules that make up air would scatter the electrons. An exception is 4696: 4630: 4620: 2618: 2424: 1628: 569: 474: 324: 319: 311: 292: 259: 236:(PEEM) which is similar to LEEM using electrons emitted from surfaces by photons 64: 3711: 3694: 3561: 3465: 2718: 2391: 1491:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
1407:
Heinrich Rudolf Hertz (1857-1894) : a collection of articles and addresses
4777: 4198: 4193: 3759: 2805: 2763: 2576: 1876: 1502: 1287: 1190:, which allows hydrated samples to be viewed in a low-pressure (up to 20  814: 284: 166: 2584: 2360: 2313: 2249: 2167: 2096: 2040: 1908: 1801: 1758: 1750: 1601: 1549: 1510: 1471: 1391: 946:. After the resin has been polymerized (hardened) the sample is sectioned by 4645: 4300: 3556:. Methods in Cell Biology. Vol. 177. Academic Press. pp. 171–196. 2352: 1414: 1105: 501: 315: 307: 4061: 3932: 3879: 3836: 3817: 3777: 3720: 3679: 3620: 3579: 3483: 3431: 3316: 3142:"Immunolocalization of MP70 in lens fiber 16-17-nm intercellular junctions" 3006: 2914: 2856: 2823: 2771: 2636: 2456: 2409: 2321: 2305: 2210: 2025:"Untersuchung von Metalloxyd-Rauchen mit dem Universal-Elektronenmikroskop" 2001: 1681: 1062:
knife to produce ultra-thin sections about 60–90 nm thick. Disposable
4026: 4018: 3983: 3526: 3259: 3224: 3175: 3157: 3126: 2934:
Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs
4747: 4213: 3298: 3206: 3108: 3058:
Stillwell W (2016-01-01). "Chapter 11 - Long-Range Membrane Properties".
2988: 2881:"Electron microscopy of structural detail in frozen biological specimens" 1729:
Knoll M, Ruska E (1932). "Beitrag zur geometrischen Elektronenoptik. I".
1087: 1074: 951: 939: 935: 834: 802: 497: 462: 279:
in 1899, improved oxide-coated cathodes which produced more electrons by
170: 4757: 4701: 4383: 3924: 2896: 2224:
Smith DJ, Camps RA, Freeman LA, Hill R, Nixon WC, Smith KC (May 1983).
1900: 1793: 1564:
Leo Szilard the Inventor: A Slideshow (1998, Budapest, conference talk)
1083: 1059: 1017: 924: 898: 894: 830: 4138: 3611: 3594: 2684:. North Holland personal library (3rd ed.). Amsterdam: Elsevier. 2159: 1563: 1383: 429: 4721: 3975: 3518: 3093:"A simple freeze-fracture replication method for electron microscopy" 2711:
Biological Field Emission Scanning Electron Microscopy, First Edition
1210: 1179: 906: 868: 3871: 2837:
Luft, J.H. (1961). "Improvements in epoxy resin embedding methods".
2064:. Authors.library.caltech.edu (2002-12-10). Retrieved on 2017-04-29. 3915: 1652:
Freundlich MM (October 1963). "Origin of the Electron Microscope".
1170:
transmission and scanning electron microscope made in the mid-1970s
283:
in 1905 and the development of the electromagnetic lens in 1926 by
47: 3140:
Gruijters WT, Kistler J, Bullivant S, Goodenough DA (March 1987).
2928:
Isailović TM, Todosijević MN, Đorđević SM, Savić SD (2017-01-01).
2705:
Humbel BM, Schwarz H, Tranfield EM, Fleck RA (February 15, 2019).
2497:"Sub-Ångstrom Electron Microscopy for Sub-Ångstrom Nano-Metrology" 1162: 1009: 1004:– thins samples until they are transparent to electrons by firing 975: 967: 931: 928: 890: 846: 780: 581: 553: 530: 401: 253: 46: 38: 3805:
International Journal of Environmental Research and Public Health
2029:
Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie
385:
introduced the scanning transmission electron microscope using a
4706: 1191: 1167: 1079: 1005: 4142: 3398:"Chemical approaches to unraveling the biology of mycobacteria" 1578:"Origins and historical development of the electron microscope" 718: 679: 640: 601: 58: 52: 2121:. London San Diego, CA Cambridge, MA Oxford: Academic Press. 27:
Type of microscope with electrons as a source of illumination
2783: 2781: 2540:
Transmission electron microscopy: physics of image formation
2515:
Transmission electron microscopy: physics of image formation
258:
Reproduction of an early electron microscope constructed by
206:(STEM) which is similar to TEM with a scanned electron probe 2425:"Atomic-resolution imaging with a sub-50-pm electron probe" 2423:
Erni R, Rossell MD, Kisielowski C, Dahmen U (March 2009).
2142:
Crewe AV, Eggenberger DN, Wall J, Welter LM (1968-04-01).
942:; tissues may also be embedded directly in water-miscible 875:
has branched from this technique. With the development of
270:
used in microscopes. One significant step was the work of
3396:
Finin P, Khan RM, Oh S, Boshoff HI, Barry CE (May 2023).
1194:
or 2.7 kPa) wet environment. Various techniques for
576:
and high-energy backscattered electrons, light emission (
415:
Operating principle of a transmission electron microscope
2374:
Cheng Y, Grigorieff N, Penczek PA, Walz T (April 2015).
734: 695: 656: 617: 3799:
Song YL, Lin HY, Manikandan S, Chang LM (March 2022).
2376:"A primer to single-particle cryo-electron microscopy" 212:(SEM) which is similar to STEM, but with thick samples 2651:"Electron Microscopy | Thermo Fisher Scientific - US" 1314:
Transmission Electron Aberration-Corrected Microscope
871:, and high pressure freezing. An entire field called 544:
Operating principle of a scanning electron microscope
1772:
Knoll M, Ruska E (1932). "Das Elektronenmikroskop".
200:(TEM) where swift electrons go through a thin sample 185:
of about 0.1 nm, which compares to about 200 nm for
4735: 4684: 4593: 4586: 4453: 4397: 4359: 4316: 4309: 4263: 4212: 4176: 3744:"The functional universe of membrane contact sites" 2885:
The Journal of Biophysical and Biochemical Cytology
2839:
The Journal of Biophysical and Biochemical Cytology
89:. Unsourced material may be challenged and removed. 996:Freeze-fracture replica immunogold labeling (FRIL) 437:The original form of the electron microscope, the 330:Apparently independent of this effort was work at 4128:Cell Centered Database – Electron microscopy data 3053: 3051: 3049: 764:Transmission electron microscopes can be used in 1256:Energy filtered transmission electron microscopy 508:Scanning transmission electron microscope (STEM) 494:high-resolution transmission electron microscopy 218:similar to a SEM, but more for chemical analysis 3062:(Second ed.). Elsevier. pp. 221–245. 2713:. John Wiley & Sons Ltd. pp. 191–221. 2603:"Electron Diffraction of 3D Molecular Crystals" 2601:Saha A, Nia SS, Rodríguez JA (September 2022). 789:for viewing with a scanning electron microscope 585:on the specimen when the signal was generated. 488:The resolution of TEMs is limited primarily by 250:Transmission electron microscopy § History 4568:Serial block-face scanning electron microscopy 4271:Detectors for transmission electron microscopy 3443: 3441: 863:– freezing a specimen so that the water forms 4154: 3742:Prinz WA, Toulmay A, Balla T (January 2020). 3333:Under the Microscope: A Hidden World Revealed 2973:"Fine Structure in Frozen-Etched Yeast Cells" 2337:"Historical aspects of aberration correction" 2119:The Beginnings of Electron Microscopy. Part 1 1699:. Vol. 160. Elsevier. pp. 171–205. 1070:SEM, where the section is known as a lamella. 266:Many developments laid the groundwork of the 224:, version of a SEM that can operate very fast 8: 2936:. Boston: Academic Press. pp. 179–217. 2596: 2594: 2144:"Electron Gun Using a Field Emission Source" 327:for the invention of electron microscopes.) 43:A transmission electron microscope from 2002 2075:"North America's first electron microscope" 1851:"Apparatus for producing images of objects" 1825:"Apparatus for producing images of objects" 4590: 4313: 4161: 4147: 4139: 1360:"Historical Background of Electron Optics" 1262:Environmental scanning electron microscope 1188:environmental scanning electron microscope 3914: 3826: 3816: 3767: 3710: 3669: 3659: 3610: 3473: 3421: 3306: 3214: 3189:Pinto da Silva P, Branton D (June 1970). 3165: 3116: 2996: 2904: 2846: 2813: 2626: 2399: 2062:History of electron microscopy, 1931–2000 1178:The samples largely have to be viewed in 514:Scanning transmission electron microscopy 362:by Anderson and Fitzsimmons and at the 204:Scanning transmission electron microscopy 149:Learn how and when to remove this message 2841:. Vol. 9, no. 2. p. 409. 2290:"Aberration correction past and present" 1953: 1951: 1697:Advances in Imaging and Electron Physics 1198:of gaseous samples have been developed. 879:of vitreous sections (CEMOVIS) and cryo- 3060:An Introduction to Biological Membranes 1325: 3748:Nature Reviews. Molecular Cell Biology 564:taken with a 1960s electron microscope 420:Transmission electron microscope (TEM) 222:Ultrafast scanning electron microscopy 173:as a source of illumination. They use 4124:: resources for teachers and students 3642:Denk W, Horstmann H (November 2004). 3358:"Introduction to Electron Microscopy" 1298:Scanning confocal electron microscopy 7: 4807: 2495:O'Keefe MA, Allard LF (2004-01-18). 87:adding citations to reliable sources 2971:Moor H, Mühlethaler K (June 1963). 2265:High-resolution electron microscopy 3252:10.1111/j.1365-2818.1982.tb00444.x 3068:10.1016/b978-0-444-63772-7.00011-7 3030:10.1016/b978-0-12-185255-9.50025-0 2942:10.1016/b978-0-12-804017-1.00007-8 2242:10.1111/j.1365-2818.1983.tb04211.x 2023:Von Ardenne M, Beischer D (1940). 1582:British Journal of Applied Physics 1235:List of materials analysis methods 527:Scanning electron microscope (SEM) 25: 4204:Timeline of microscope technology 3903:Microscopy Research and Technique 3091:Bullivant S, Ames A (June 1966). 2709:. In Fleck RA, Humbel BM (eds.). 1245:Electron energy loss spectroscopy 1095:followed by aqueous lead citrate. 234:Photoemission electron microscopy 55:in a scanning electron microscope 4806: 4795: 4794: 4133:Science Aid: Electron Microscopy 4054:10.1046/j.1365-2818.2003.01193.x 2148:Review of Scientific Instruments 1931:"History of Electron Microscope" 1205:Small, stable specimens such as 1184:liquid-phase electron microscopy 722: 683: 644: 605: 439:transmission electron microscope 426:Transmission electron microscope 198:Transmission electron microscopy 63: 4563:Precession electron diffraction 3454:Nature Reviews. Methods Primers 2707:"Chapter 10: Chemical Fixation" 917:Embedding, biological specimens 905:or infiltration with embedding 477:light-guide to the sensor of a 74:needs additional citations for 4115:An Introduction to Microscopy 3414:10.1016/j.chembiol.2023.04.014 2449:10.1103/PhysRevLett.102.096101 2341:Journal of Electron Microscopy 1278:Low-energy electron microscopy 964:Freeze-fracture or freeze-etch 893:with organic solvents such as 865:vitreous (non-crystalline) ice 574:low-energy secondary electrons 230:(LEEM), used to image surfaces 228:Low-energy electron microscopy 1: 2752:Journal of Structural Biology 2263:Spence JC, Spence JC (2003). 2093:Inventor of the Week: Archive 1994:10.1016/S0140-6736(00)02250-9 1705:10.1016/s1076-5670(10)60005-5 1452:Annalen der Physik und Chemie 1409:. Routledge. pp. 87–88. 927:and then infiltrated with an 304:Technische Universität Berlin 32:Scanning tunneling microscope 4105:Resources in other libraries 3661:10.1371/journal.pbio.0020329 3548:White IJ, Burden JJ (2023). 3450:"Volume electron microscopy" 2653:. 2022-04-07. Archived from 2203:10.1126/science.154.3750.729 2095:. 2003-05-01. Archived from 1674:10.1126/science.142.3589.185 1303:Scanning electron microscope 1136:Serial imaging for volume EM 1078:– uses heavy metals such as 598:Diffraction contrast imaging 550:Scanning electron microscope 356:scanning electron microscope 210:Scanning electron microscope 3336:. CUP Archive. p. 11. 3287:The Journal of Cell Biology 3195:The Journal of Cell Biology 3146:The Journal of Cell Biology 3097:The Journal of Cell Biology 2977:The Journal of Cell Biology 2619:10.1021/acs.chemrev.1c00879 1960:"Ernst Ruska Autobiography" 1629:10.2991/iccessh-18.2018.313 1283:Microscope image processing 1273:In situ electron microscopy 1196:in situ electron microscopy 360:Washington State University 4886: 4548:Immune electron microscopy 4466:Annular dark-field imaging 4281:Everhart–Thornley detector 3712:10.1016/j.cell.2020.08.010 3562:10.1016/bs.mcb.2022.12.023 3466:10.1038/s43586-022-00131-9 3281:Reynolds ES (April 1963). 2879:Steere RL (January 1957). 2719:10.1002/9781118663233.ch10 2392:10.1016/j.cell.2015.03.050 1855:Patent Public Search Basic 1829:Patent Public Search Basic 1594:10.1088/0508-3443/13/5/303 1364:Journal of Applied Physics 1268:Immune electron microscopy 1251:Electron microscope images 792: 777:Sample preparation for TEM 757: 547: 521:annular dark-field imaging 511: 423: 247: 29: 4790: 4702:Hitachi High-Technologies 4100:Resources in your library 3760:10.1038/s41580-019-0180-9 3363:. FEI Company. p. 15 2806:10.1038/s41596-020-0320-x 2764:10.1016/j.jsb.2004.03.010 2577:10.1017/s1551929510991190 2538:Reimer L, Kohl H (2008). 2513:Reimer L, Kohl H (2008). 1503:10.1080/14786440509463347 1032:– suspensions containing 483:Direct electron detectors 370:and students Cecil Hall, 4727:Thermo Fisher Scientific 4553:Geometric phase analysis 4441:Aberration-Corrected TEM 3958:(Submitted manuscript). 3593:Kolotuev I (July 2024). 3022:Methods in Neurosciences 2288:Hawkes PW (2009-09-28). 2041:10.1002/bbpc.19400460406 1751:10.1002/andp.19324040506 1550:10.1002/andp.19263862507 1472:10.1002/andp.18993051203 1338:Encyclopaedia Britannica 877:cryo-electron microscopy 873:cryo-electron microscopy 30:Not to be confused with 4870:20th-century inventions 4476:Charge contrast imaging 4286:Field electron emission 4007:Journal of Cell Science 2429:Physical Review Letters 1935:LEO Electron Microscopy 1881:Die Naturwissenschaften 1415:10.4324/9780429198960-4 676:High resolution imaging 302:in Charlottenburg (now 4666:Thomas Eugene Everhart 3818:10.3390/ijerph19063664 2335:Rose HH (2009-06-01). 2306:10.1098/rsta.2009.0004 1774:Zeitschrift für Physik 1171: 981: 973: 795:TEM Sample preparation 790: 731:This section is empty. 692:This section is empty. 653:This section is empty. 637:Phase contrast imaging 614:This section is empty. 565: 545: 457:electron image onto a 434: 416: 263: 56: 44: 4671:Vernon Ellis Cosslett 4491:Dark-field microscopy 4042:Journal of Microscopy 4019:10.1242/jcs.100.1.227 3695:"The Mind of a Mouse" 3599:Journal of Microscopy 3402:Cell Chemical Biology 3240:Journal of Microscopy 3158:10.1083/jcb.104.3.565 2932:. In Čalija B (ed.). 2471:"The Scale of Things" 2353:10.1093/jmicro/dfp012 2230:Journal of Microscopy 1958:Ruska, Ernst (1986). 1877:"Elektronenmikroskop" 1562:Dannen, Gene (1998) 1334:"Electron microscope" 1166: 1116:electron microscopy ( 979: 971: 903:critical point drying 784: 770:X-ray crystallography 557: 543: 496:(HRTEM) to below 0.5 433: 414: 387:field emission source 383:University of Chicago 364:University of Toronto 300:Technische Hochschule 257: 98:"Electron microscope" 50: 42: 4850:Anatomical pathology 4676:Vladimir K. Zworykin 4326:Correlative light EM 4235:Electron diffraction 3299:10.1083/jcb.17.1.208 3207:10.1083/jcb.45.3.598 3109:10.1083/jcb.29.3.435 2989:10.1083/jcb.17.3.609 1875:Rodenberg R (1932). 1240:Electron diffraction 1042:phosphotungstic acid 958:Embedding, materials 766:electron diffraction 760:Electron diffraction 754:Electron diffraction 593:Main operating modes 490:spherical aberration 179:electron diffraction 169:that uses a beam of 83:improve this article 4845:Accelerator physics 4835:Electron microscopy 4641:Manfred von Ardenne 4626:Gerasimos Danilatos 4533:Electron tomography 4528:Electron holography 4471:Cathodoluminescence 4250:Secondary electrons 4240:Electron scattering 4184:Electron microscopy 4170:Electron microscopy 4091:Electron microscopy 3968:1984Natur.308...32A 3864:2003NatMa...2..532W 3511:1970Natur.226..421C 2681:Diffraction physics 2613:(17): 13883–13914. 2441:2009PhRvL.102i6101E 2300:(1903): 3637–3664. 2195:1966Sci...154..729C 1988:(9216): 1713–1717. 1893:1932NW.....20..522R 1786:1932ZPhy...78..318K 1743:1932AnP...404..607K 1666:1963Sci...142..185F 1542:1926AnP...386..974B 1464:1899AnP...305..739W 1446:Wiechert E (1899). 1376:1944JAP....15..685C 1358:Calbick CJ (1944). 578:cathodoluminescence 368:Eli Franklin Burton 352:Manfred von Ardenne 216:Electron microprobe 191:Electron microscope 163:electron microscope 18:Electron Microscopy 4763:Digital Micrograph 4369:Environmental SEM 4291:Field emission gun 4255:X-ray fluorescence 4120:2013-07-19 at the 3925:10.1002/jemt.20668 3330:Burgess J (1987). 2897:10.1083/jcb.3.1.45 2117:Hawkes PW (2021). 1962:. Nobel Foundation 1901:10.1007/BF01505383 1794:10.1007/BF01342199 1731:Annalen der Physik 1530:Annalen der Physik 1485:Wehnelt A (1905). 1172: 982: 974: 923:(epoxypropane) or 791: 566: 546: 435: 417: 391:field emission gun 336:Reinhold Rüdenberg 264: 57: 45: 4860:German inventions 4822: 4821: 4786: 4785: 4656:Nestor J. Zaluzec 4651:Maximilian Haider 4449: 4448: 4086:Library resources 3612:10.1111/jmi.13217 3505:(5244): 421–425. 3343:978-0-521-39940-1 3246:(Pt 2): 121–138. 3077:978-0-444-63772-7 2951:978-0-12-804017-1 2691:978-0-444-82218-5 2549:978-0-387-40093-8 2524:978-0-387-40093-8 2274:978-0-19-850915-8 2189:(3750): 729–738. 2160:10.1063/1.1683435 2128:978-0-323-91507-6 1660:(3589): 185–188. 1638:978-94-6252-528-3 1576:Mulvey T (1962). 1424:978-0-429-19896-0 1384:10.1063/1.1707371 1040:(or formate), or 889:– replacement of 751: 750: 715:Chemical analysis 712: 711: 673: 672: 634: 633: 561:Bacillus subtilis 541: 469:material such as 412: 332:Siemens-Schuckert 187:light microscopes 159: 158: 151: 133: 16:(Redirected from 4877: 4810: 4809: 4798: 4797: 4606:Bodo von Borries 4591: 4351:Photoemission EM 4314: 4163: 4156: 4149: 4140: 4074: 4073: 4037: 4031: 4030: 4002: 3996: 3995: 3976:10.1038/308032a0 3951: 3945: 3944: 3918: 3898: 3892: 3891: 3852:Nature Materials 3847: 3841: 3840: 3830: 3820: 3796: 3790: 3789: 3771: 3739: 3733: 3732: 3714: 3705:(6): 1372–1376. 3690: 3684: 3683: 3673: 3663: 3639: 3633: 3632: 3614: 3590: 3584: 3583: 3545: 3539: 3538: 3519:10.1038/226421a0 3494: 3488: 3487: 3477: 3445: 3436: 3435: 3425: 3393: 3387: 3386: 3379: 3373: 3372: 3370: 3368: 3362: 3354: 3348: 3347: 3327: 3321: 3320: 3310: 3278: 3272: 3271: 3235: 3229: 3228: 3218: 3186: 3180: 3179: 3169: 3137: 3131: 3130: 3120: 3088: 3082: 3081: 3055: 3044: 3043: 3017: 3011: 3010: 3000: 2968: 2962: 2961: 2959: 2958: 2925: 2919: 2918: 2908: 2876: 2870: 2867: 2861: 2860: 2850: 2834: 2828: 2827: 2817: 2800:(6): 2041–2070. 2794:Nature Protocols 2785: 2776: 2775: 2747: 2741: 2740: 2702: 2696: 2695: 2672: 2666: 2665: 2663: 2662: 2647: 2641: 2640: 2630: 2607:Chemical Reviews 2598: 2589: 2588: 2565:Microscopy Today 2560: 2554: 2553: 2535: 2529: 2528: 2510: 2504: 2503: 2501: 2492: 2486: 2485: 2483: 2482: 2467: 2461: 2460: 2420: 2414: 2413: 2403: 2371: 2365: 2364: 2332: 2326: 2325: 2285: 2279: 2278: 2260: 2254: 2253: 2221: 2215: 2214: 2178: 2172: 2171: 2139: 2133: 2132: 2114: 2108: 2107: 2105: 2104: 2085: 2079: 2078: 2071: 2065: 2059: 2053: 2052: 2020: 2014: 2013: 1977: 1971: 1970: 1968: 1967: 1955: 1946: 1945: 1943: 1941: 1927: 1921: 1920: 1872: 1866: 1865: 1863: 1861: 1846: 1840: 1839: 1837: 1835: 1820: 1814: 1813: 1780:(5–6): 318–339. 1769: 1763: 1762: 1726: 1720: 1718: 1692: 1686: 1685: 1649: 1643: 1642: 1612: 1606: 1605: 1573: 1567: 1560: 1554: 1553: 1524:Busch H (1926). 1521: 1515: 1514: 1482: 1476: 1475: 1443: 1437: 1436: 1402: 1396: 1395: 1355: 1349: 1348: 1346: 1344: 1330: 1207:carbon nanotubes 1147:focused ion beam 1068:focused ion beam 1058:with a glass or 1022:focused ion beam 1014:focused ion beam 1002:Ion beam milling 881:focused ion beam 851:osmium tetroxide 811:Chemical milling 746: 743: 733:You can help by 726: 719: 707: 704: 694:You can help by 687: 680: 668: 665: 655:You can help by 648: 641: 629: 626: 616:You can help by 609: 602: 542: 413: 344:Bodo von Borries 291:, the physicist 154: 147: 143: 140: 134: 132: 91: 67: 59: 21: 4885: 4884: 4880: 4879: 4878: 4876: 4875: 4874: 4865:Protein imaging 4825: 4824: 4823: 4818: 4782: 4731: 4680: 4661:Ondrej Krivanek 4582: 4445: 4393: 4355: 4341:Liquid-Phase EM 4305: 4264:Instrumentation 4259: 4217: 4208: 4172: 4167: 4122:Wayback Machine 4111: 4110: 4109: 4094: 4093: 4089: 4082: 4077: 4048:(Pt 1): 48–53. 4039: 4038: 4034: 4004: 4003: 3999: 3962:(5954): 32–36. 3953: 3952: 3948: 3900: 3899: 3895: 3872:10.1038/nmat944 3849: 3848: 3844: 3798: 3797: 3793: 3741: 3740: 3736: 3692: 3691: 3687: 3641: 3640: 3636: 3592: 3591: 3587: 3572: 3547: 3546: 3542: 3496: 3495: 3491: 3447: 3446: 3439: 3395: 3394: 3390: 3381: 3380: 3376: 3366: 3364: 3360: 3356: 3355: 3351: 3344: 3329: 3328: 3324: 3280: 3279: 3275: 3237: 3236: 3232: 3188: 3187: 3183: 3139: 3138: 3134: 3090: 3089: 3085: 3078: 3057: 3056: 3047: 3040: 3019: 3018: 3014: 2970: 2969: 2965: 2956: 2954: 2952: 2927: 2926: 2922: 2878: 2877: 2873: 2868: 2864: 2836: 2835: 2831: 2787: 2786: 2779: 2749: 2748: 2744: 2729: 2704: 2703: 2699: 2692: 2674: 2673: 2669: 2660: 2658: 2649: 2648: 2644: 2600: 2599: 2592: 2562: 2561: 2557: 2550: 2537: 2536: 2532: 2525: 2512: 2511: 2507: 2499: 2494: 2493: 2489: 2480: 2478: 2469: 2468: 2464: 2422: 2421: 2417: 2373: 2372: 2368: 2334: 2333: 2329: 2287: 2286: 2282: 2275: 2262: 2261: 2257: 2223: 2222: 2218: 2180: 2179: 2175: 2141: 2140: 2136: 2129: 2116: 2115: 2111: 2102: 2100: 2089:"James Hillier" 2087: 2086: 2082: 2073: 2072: 2068: 2060: 2056: 2022: 2021: 2017: 1979: 1978: 1974: 1965: 1963: 1957: 1956: 1949: 1939: 1937: 1929: 1928: 1924: 1874: 1873: 1869: 1859: 1857: 1848: 1847: 1843: 1833: 1831: 1822: 1821: 1817: 1771: 1770: 1766: 1728: 1727: 1723: 1715: 1694: 1693: 1689: 1651: 1650: 1646: 1639: 1614: 1613: 1609: 1575: 1574: 1570: 1561: 1557: 1536:(25): 974–993. 1523: 1522: 1518: 1484: 1483: 1479: 1458:(12): 739–766. 1445: 1444: 1440: 1425: 1404: 1403: 1399: 1370:(10): 685–690. 1357: 1356: 1352: 1342: 1340: 1332: 1331: 1327: 1323: 1318: 1230: 1161: 1138: 1102: 1016:milling, where 921:propylene oxide 817: 779: 762: 756: 747: 741: 738: 717: 708: 702: 699: 678: 669: 663: 660: 639: 630: 624: 621: 600: 595: 570:raster scanning 552: 531: 529: 516: 510: 454:electromagnetic 428: 422: 402: 400: 346:, and employed 287:. According to 268:electron optics 252: 246: 175:electron optics 155: 144: 138: 135: 92: 90: 80: 68: 51:An image of an 35: 28: 23: 22: 15: 12: 11: 5: 4883: 4881: 4873: 4872: 4867: 4862: 4857: 4852: 4847: 4842: 4837: 4827: 4826: 4820: 4819: 4817: 4816: 4804: 4791: 4788: 4787: 4784: 4783: 4781: 4780: 4775: 4770: 4768:Direct methods 4765: 4760: 4755: 4750: 4745: 4739: 4737: 4733: 4732: 4730: 4729: 4724: 4719: 4714: 4709: 4704: 4699: 4694: 4688: 4686: 4682: 4681: 4679: 4678: 4673: 4668: 4663: 4658: 4653: 4648: 4643: 4638: 4633: 4628: 4623: 4618: 4616:Ernst G. Bauer 4613: 4608: 4603: 4597: 4595: 4588: 4584: 4583: 4581: 4580: 4575: 4570: 4565: 4560: 4555: 4550: 4545: 4540: 4535: 4530: 4525: 4520: 4515: 4510: 4509: 4508: 4498: 4493: 4488: 4483: 4478: 4473: 4468: 4463: 4457: 4455: 4451: 4450: 4447: 4446: 4444: 4443: 4438: 4437: 4436: 4426: 4421: 4416: 4415: 4414: 4403: 4401: 4395: 4394: 4392: 4391: 4386: 4381: 4376: 4371: 4365: 4363: 4357: 4356: 4354: 4353: 4348: 4343: 4338: 4333: 4328: 4322: 4320: 4311: 4307: 4306: 4304: 4303: 4298: 4293: 4288: 4283: 4278: 4273: 4267: 4265: 4261: 4260: 4258: 4257: 4252: 4247: 4242: 4237: 4232: 4230:Bremsstrahlung 4227: 4221: 4219: 4210: 4209: 4207: 4206: 4201: 4196: 4191: 4186: 4180: 4178: 4174: 4173: 4168: 4166: 4165: 4158: 4151: 4143: 4137: 4136: 4135::By Kaden park 4130: 4125: 4108: 4107: 4102: 4096: 4095: 4084: 4083: 4081: 4080:External links 4078: 4076: 4075: 4032: 4013:(1): 227–236. 3997: 3946: 3909:(3): 153–164. 3893: 3858:(8): 532–536. 3842: 3791: 3734: 3685: 3634: 3585: 3570: 3540: 3489: 3437: 3408:(5): 420–435. 3388: 3374: 3349: 3342: 3322: 3293:(1): 208–212. 3273: 3230: 3201:(3): 598–605. 3181: 3152:(3): 565–572. 3132: 3103:(3): 435–447. 3083: 3076: 3045: 3038: 3012: 2983:(3): 609–628. 2963: 2950: 2920: 2871: 2862: 2829: 2777: 2758:(1): 131–135. 2742: 2727: 2697: 2690: 2667: 2642: 2590: 2555: 2548: 2530: 2523: 2505: 2487: 2462: 2415: 2386:(3): 438–449. 2366: 2327: 2280: 2273: 2255: 2236:(2): 127–136. 2216: 2173: 2154:(4): 576–583. 2134: 2127: 2109: 2080: 2066: 2054: 2035:(4): 270–277. 2015: 1972: 1947: 1922: 1867: 1841: 1815: 1764: 1737:(5): 607–640. 1721: 1713: 1687: 1644: 1637: 1615:Tao Y (2018). 1607: 1588:(5): 197–207. 1568: 1555: 1516: 1477: 1438: 1423: 1397: 1350: 1324: 1322: 1319: 1317: 1316: 1311: 1306: 1300: 1295: 1293:Nanotechnology 1290: 1285: 1280: 1275: 1270: 1265: 1259: 1253: 1248: 1242: 1237: 1231: 1229: 1226: 1160: 1157: 1137: 1134: 1130:TEM tomography 1101: 1098: 1097: 1096: 1093:uranyl acetate 1071: 1056:ultramicrotome 1052:ultramicrotomy 1045: 1038:uranyl acetate 1029:Negative stain 1025: 999: 993: 961: 955: 948:ultramicrotomy 914: 901:, followed by 884: 855: 854: 843:glutaraldehyde 799:Ultramicrotomy 787:coated in gold 778: 775: 758:Main article: 755: 752: 749: 748: 742:September 2024 729: 727: 716: 713: 710: 709: 703:September 2024 690: 688: 677: 674: 671: 670: 664:September 2024 651: 649: 638: 635: 632: 631: 625:September 2024 612: 610: 599: 596: 594: 591: 548:Main article: 528: 525: 512:Main article: 509: 506: 479:digital camera 441:(TEM), uses a 424:Main article: 421: 418: 399: 396: 354:pioneered the 281:Arthur Wehnelt 245: 242: 238: 237: 231: 225: 219: 213: 207: 201: 193:may refer to: 157: 156: 139:September 2023 71: 69: 62: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4882: 4871: 4868: 4866: 4863: 4861: 4858: 4856: 4853: 4851: 4848: 4846: 4843: 4841: 4838: 4836: 4833: 4832: 4830: 4815: 4814: 4805: 4803: 4802: 4793: 4792: 4789: 4779: 4776: 4774: 4771: 4769: 4766: 4764: 4761: 4759: 4756: 4754: 4751: 4749: 4746: 4744: 4741: 4740: 4738: 4734: 4728: 4725: 4723: 4720: 4718: 4715: 4713: 4710: 4708: 4705: 4703: 4700: 4698: 4695: 4693: 4692:Carl Zeiss AG 4690: 4689: 4687: 4685:Manufacturers 4683: 4677: 4674: 4672: 4669: 4667: 4664: 4662: 4659: 4657: 4654: 4652: 4649: 4647: 4644: 4642: 4639: 4637: 4636:James Hillier 4634: 4632: 4629: 4627: 4624: 4622: 4619: 4617: 4614: 4612: 4609: 4607: 4604: 4602: 4599: 4598: 4596: 4592: 4589: 4585: 4579: 4576: 4574: 4571: 4569: 4566: 4564: 4561: 4559: 4556: 4554: 4551: 4549: 4546: 4544: 4541: 4539: 4536: 4534: 4531: 4529: 4526: 4524: 4521: 4519: 4516: 4514: 4511: 4507: 4504: 4503: 4502: 4499: 4497: 4494: 4492: 4489: 4487: 4484: 4482: 4479: 4477: 4474: 4472: 4469: 4467: 4464: 4462: 4459: 4458: 4456: 4452: 4442: 4439: 4435: 4432: 4431: 4430: 4427: 4425: 4422: 4420: 4417: 4413: 4410: 4409: 4408: 4405: 4404: 4402: 4400: 4396: 4390: 4389:Ultrafast SEM 4387: 4385: 4382: 4380: 4377: 4375: 4372: 4370: 4367: 4366: 4364: 4362: 4358: 4352: 4349: 4347: 4346:Low-energy EM 4344: 4342: 4339: 4337: 4334: 4332: 4329: 4327: 4324: 4323: 4321: 4319: 4315: 4312: 4308: 4302: 4299: 4297: 4296:Magnetic lens 4294: 4292: 4289: 4287: 4284: 4282: 4279: 4277: 4274: 4272: 4269: 4268: 4266: 4262: 4256: 4253: 4251: 4248: 4246: 4245:Kikuchi lines 4243: 4241: 4238: 4236: 4233: 4231: 4228: 4226: 4223: 4222: 4220: 4215: 4211: 4205: 4202: 4200: 4197: 4195: 4192: 4190: 4187: 4185: 4182: 4181: 4179: 4175: 4171: 4164: 4159: 4157: 4152: 4150: 4145: 4144: 4141: 4134: 4131: 4129: 4126: 4123: 4119: 4116: 4113: 4112: 4106: 4103: 4101: 4098: 4097: 4092: 4087: 4079: 4071: 4067: 4063: 4059: 4055: 4051: 4047: 4043: 4036: 4033: 4028: 4024: 4020: 4016: 4012: 4008: 4001: 3998: 3993: 3989: 3985: 3981: 3977: 3973: 3969: 3965: 3961: 3957: 3950: 3947: 3942: 3938: 3934: 3930: 3926: 3922: 3917: 3912: 3908: 3904: 3897: 3894: 3889: 3885: 3881: 3877: 3873: 3869: 3865: 3861: 3857: 3853: 3846: 3843: 3838: 3834: 3829: 3824: 3819: 3814: 3810: 3806: 3802: 3795: 3792: 3787: 3783: 3779: 3775: 3770: 3765: 3761: 3757: 3753: 3749: 3745: 3738: 3735: 3730: 3726: 3722: 3718: 3713: 3708: 3704: 3700: 3696: 3689: 3686: 3681: 3677: 3672: 3667: 3662: 3657: 3653: 3649: 3645: 3638: 3635: 3630: 3626: 3622: 3618: 3613: 3608: 3604: 3600: 3596: 3589: 3586: 3581: 3577: 3573: 3571:9780323916073 3567: 3563: 3559: 3555: 3551: 3544: 3541: 3536: 3532: 3528: 3524: 3520: 3516: 3512: 3508: 3504: 3500: 3493: 3490: 3485: 3481: 3476: 3471: 3467: 3463: 3459: 3455: 3451: 3444: 3442: 3438: 3433: 3429: 3424: 3419: 3415: 3411: 3407: 3403: 3399: 3392: 3389: 3384: 3378: 3375: 3359: 3353: 3350: 3345: 3339: 3335: 3334: 3326: 3323: 3318: 3314: 3309: 3304: 3300: 3296: 3292: 3288: 3284: 3277: 3274: 3269: 3265: 3261: 3257: 3253: 3249: 3245: 3241: 3234: 3231: 3226: 3222: 3217: 3212: 3208: 3204: 3200: 3196: 3192: 3185: 3182: 3177: 3173: 3168: 3163: 3159: 3155: 3151: 3147: 3143: 3136: 3133: 3128: 3124: 3119: 3114: 3110: 3106: 3102: 3098: 3094: 3087: 3084: 3079: 3073: 3069: 3065: 3061: 3054: 3052: 3050: 3046: 3041: 3039:9780121852559 3035: 3031: 3027: 3023: 3016: 3013: 3008: 3004: 2999: 2994: 2990: 2986: 2982: 2978: 2974: 2967: 2964: 2953: 2947: 2943: 2939: 2935: 2931: 2924: 2921: 2916: 2912: 2907: 2902: 2898: 2894: 2890: 2886: 2882: 2875: 2872: 2866: 2863: 2858: 2854: 2849: 2844: 2840: 2833: 2830: 2825: 2821: 2816: 2811: 2807: 2803: 2799: 2795: 2791: 2784: 2782: 2778: 2773: 2769: 2765: 2761: 2757: 2753: 2746: 2743: 2738: 2734: 2730: 2728:9781118663233 2724: 2720: 2716: 2712: 2708: 2701: 2698: 2693: 2687: 2683: 2682: 2677: 2671: 2668: 2657:on 2022-04-07 2656: 2652: 2646: 2643: 2638: 2634: 2629: 2624: 2620: 2616: 2612: 2608: 2604: 2597: 2595: 2591: 2586: 2582: 2578: 2574: 2570: 2566: 2559: 2556: 2551: 2545: 2541: 2534: 2531: 2526: 2520: 2516: 2509: 2506: 2498: 2491: 2488: 2477:on 2010-02-01 2476: 2472: 2466: 2463: 2458: 2454: 2450: 2446: 2442: 2438: 2435:(9): 096101. 2434: 2430: 2426: 2419: 2416: 2411: 2407: 2402: 2397: 2393: 2389: 2385: 2381: 2377: 2370: 2367: 2362: 2358: 2354: 2350: 2346: 2342: 2338: 2331: 2328: 2323: 2319: 2315: 2311: 2307: 2303: 2299: 2295: 2291: 2284: 2281: 2276: 2270: 2266: 2259: 2256: 2251: 2247: 2243: 2239: 2235: 2231: 2227: 2220: 2217: 2212: 2208: 2204: 2200: 2196: 2192: 2188: 2184: 2177: 2174: 2169: 2165: 2161: 2157: 2153: 2149: 2145: 2138: 2135: 2130: 2124: 2120: 2113: 2110: 2099:on 2003-08-23 2098: 2094: 2090: 2084: 2081: 2076: 2070: 2067: 2063: 2058: 2055: 2050: 2046: 2042: 2038: 2034: 2031:(in German). 2030: 2026: 2019: 2016: 2011: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1976: 1973: 1961: 1954: 1952: 1948: 1936: 1932: 1926: 1923: 1918: 1914: 1910: 1906: 1902: 1898: 1894: 1890: 1886: 1883:(in German). 1882: 1878: 1871: 1868: 1856: 1852: 1849:Rüdenberg R. 1845: 1842: 1830: 1826: 1823:Rüdenberg R. 1819: 1816: 1811: 1807: 1803: 1799: 1795: 1791: 1787: 1783: 1779: 1776:(in German). 1775: 1768: 1765: 1760: 1756: 1752: 1748: 1744: 1740: 1736: 1732: 1725: 1722: 1716: 1714:9780123810175 1710: 1706: 1702: 1698: 1691: 1688: 1683: 1679: 1675: 1671: 1667: 1663: 1659: 1655: 1648: 1645: 1640: 1634: 1630: 1626: 1622: 1618: 1611: 1608: 1603: 1599: 1595: 1591: 1587: 1583: 1579: 1572: 1569: 1565: 1559: 1556: 1551: 1547: 1543: 1539: 1535: 1532:(in German). 1531: 1527: 1520: 1517: 1512: 1508: 1504: 1500: 1497:(55): 80–90. 1496: 1492: 1488: 1481: 1478: 1473: 1469: 1465: 1461: 1457: 1454:(in German). 1453: 1449: 1442: 1439: 1434: 1430: 1426: 1420: 1416: 1412: 1408: 1401: 1398: 1393: 1389: 1385: 1381: 1377: 1373: 1369: 1365: 1361: 1354: 1351: 1339: 1335: 1329: 1326: 1320: 1315: 1312: 1310: 1307: 1304: 1301: 1299: 1296: 1294: 1291: 1289: 1286: 1284: 1281: 1279: 1276: 1274: 1271: 1269: 1266: 1263: 1260: 1257: 1254: 1252: 1249: 1246: 1243: 1241: 1238: 1236: 1233: 1232: 1227: 1225: 1223: 1219: 1218: 1212: 1208: 1203: 1199: 1197: 1193: 1189: 1185: 1181: 1176: 1169: 1165: 1159:Disadvantages 1158: 1156: 1153: 1148: 1143: 1135: 1133: 1131: 1127: 1121: 1119: 1113: 1109: 1107: 1099: 1094: 1089: 1085: 1081: 1077: 1076: 1072: 1069: 1065: 1061: 1057: 1053: 1049: 1046: 1043: 1039: 1035: 1034:nanoparticles 1031: 1030: 1026: 1023: 1019: 1015: 1011: 1007: 1003: 1000: 997: 994: 991: 987: 978: 970: 965: 962: 959: 956: 953: 949: 945: 944:acrylic resin 941: 937: 933: 930: 926: 922: 918: 915: 912: 911:freeze drying 908: 904: 900: 896: 892: 888: 885: 882: 878: 874: 870: 866: 862: 861: 857: 856: 852: 848: 844: 840: 836: 832: 828: 827: 822: 821: 820: 816: 812: 808: 804: 800: 796: 788: 783: 776: 774: 771: 767: 761: 753: 745: 736: 732: 728: 725: 721: 720: 714: 706: 697: 693: 689: 686: 682: 681: 675: 667: 658: 654: 650: 647: 643: 642: 636: 628: 619: 615: 611: 608: 604: 603: 597: 592: 590: 589:instruments. 586: 583: 579: 575: 571: 563: 562: 556: 551: 526: 524: 522: 515: 507: 505: 503: 499: 495: 491: 486: 484: 480: 476: 472: 468: 464: 460: 455: 451: 447: 446:electron beam 444: 440: 432: 427: 419: 397: 395: 392: 388: 384: 380: 375: 373: 372:James Hillier 369: 365: 361: 357: 353: 349: 345: 339: 337: 333: 328: 326: 321: 317: 313: 309: 305: 301: 296: 294: 290: 286: 282: 278: 277:Emil Wiechert 273: 269: 261: 256: 251: 243: 241: 235: 232: 229: 226: 223: 220: 217: 214: 211: 208: 205: 202: 199: 196: 195: 194: 192: 188: 184: 180: 176: 172: 168: 164: 153: 150: 142: 131: 128: 124: 121: 117: 114: 110: 107: 103: 100: –  99: 95: 94:Find sources: 88: 84: 78: 77: 72:This article 70: 66: 61: 60: 54: 49: 41: 37: 33: 19: 4811: 4799: 4753:EM Data Bank 4717:Nion Company 4611:Dennis Gabor 4601:Albert Crewe 4379:Confocal SEM 4276:Electron gun 4225:Auger effect 4090: 4045: 4041: 4035: 4010: 4006: 4000: 3959: 3955: 3949: 3906: 3902: 3896: 3855: 3851: 3845: 3808: 3804: 3794: 3751: 3747: 3737: 3702: 3698: 3688: 3654:(11): e329. 3651: 3648:PLOS Biology 3647: 3637: 3605:(1): 42–60. 3602: 3598: 3588: 3553: 3543: 3502: 3498: 3492: 3457: 3453: 3405: 3401: 3391: 3377: 3365:. Retrieved 3352: 3332: 3325: 3290: 3286: 3276: 3243: 3239: 3233: 3198: 3194: 3184: 3149: 3145: 3135: 3100: 3096: 3086: 3059: 3021: 3015: 2980: 2976: 2966: 2955:. Retrieved 2933: 2923: 2891:(1): 45–60. 2888: 2884: 2874: 2865: 2838: 2832: 2797: 2793: 2755: 2751: 2745: 2710: 2700: 2680: 2670: 2659:. Retrieved 2655:the original 2645: 2610: 2606: 2571:(1): 48–52. 2568: 2564: 2558: 2539: 2533: 2514: 2508: 2490: 2479:. Retrieved 2475:the original 2465: 2432: 2428: 2418: 2383: 2379: 2369: 2347:(3): 77–85. 2344: 2340: 2330: 2297: 2293: 2283: 2264: 2258: 2233: 2229: 2219: 2186: 2182: 2176: 2151: 2147: 2137: 2118: 2112: 2101:. Retrieved 2097:the original 2092: 2083: 2069: 2057: 2032: 2028: 2018: 1985: 1981: 1975: 1964:. Retrieved 1938:. Retrieved 1934: 1925: 1884: 1880: 1870: 1858:. Retrieved 1854: 1844: 1832:. Retrieved 1828: 1818: 1777: 1773: 1767: 1734: 1730: 1724: 1696: 1690: 1657: 1653: 1647: 1620: 1610: 1585: 1581: 1571: 1566:. dannen.com 1558: 1533: 1529: 1519: 1494: 1490: 1480: 1455: 1451: 1441: 1406: 1400: 1367: 1363: 1353: 1341:. Retrieved 1337: 1328: 1309:Thin section 1215: 1204: 1200: 1177: 1173: 1139: 1122: 1114: 1110: 1103: 1100:EM workflows 1073: 1064:glass knives 1047: 1027: 1001: 995: 988:solution or 986:hypochlorite 963: 957: 916: 886: 860:Cryofixation 858: 839:formaldehyde 823: 818: 807:Cryofixation 763: 739: 735:adding to it 730: 700: 696:adding to it 691: 661: 657:adding to it 652: 622: 618:adding to it 613: 587: 567: 559: 517: 487: 471:zinc sulfide 467:scintillator 450:electron gun 443:high voltage 436: 379:Albert Crewe 376: 348:Helmut Ruska 340: 329: 297: 289:Dennis Gabor 265: 262:in the 1930s 239: 190: 162: 160: 145: 136: 126: 119: 112: 105: 93: 81:Please help 76:verification 73: 36: 4840:Microscopes 4697:FEI Company 4631:Harald Rose 4621:Ernst Ruska 4310:Microscopes 4218:with matter 4216:interaction 3811:(6): 3664. 3754:(1): 7–24. 3367:12 December 1887:(28): 522. 1860:24 February 1834:24 February 1140:To acquire 1008:(typically 938:, Epon, or 909:. See also 887:Dehydration 475:fibre optic 325:Nobel prize 320:Ernst Ruska 314:. In 1931, 312:Ernst Ruska 293:Leó Szilárd 260:Ernst Ruska 4829:Categories 4778:Multislice 4594:Developers 4454:Techniques 4199:Microscope 4194:Micrograph 3916:1705.05754 2957:2020-10-22 2661:2024-07-13 2481:2010-01-31 2103:2010-01-31 1966:2010-01-31 1321:References 1288:Microscopy 1048:Sectioning 815:Sputtering 793:See also: 785:An insect 502:picometres 285:Hans Busch 248:See also: 183:resolution 167:microscope 109:newspapers 4855:Pathology 4646:Max Knoll 4301:Stigmator 3786:208019972 3729:221766693 3629:261174348 2737:243064180 2676:Cowley JM 2585:1551-9295 2361:0022-0744 2314:1364-503X 2250:0022-2720 2168:0034-6748 2049:137136299 1917:263996652 1909:0028-1042 1810:186239132 1802:1434-6001 1759:0003-3804 1602:0508-3443 1511:1941-5982 1433:195494352 1392:0021-8979 1222:cryofixed 1217:artifacts 1152:volume EM 1142:volume EM 1126:volume EM 1106:greyscale 835:aldehydes 824:Chemical 558:Image of 316:Max Knoll 308:Max Knoll 171:electrons 4801:Category 4748:CrysTBox 4736:Software 4407:Cryo-TEM 4214:Electron 4118:Archived 4070:40058086 4062:12839550 3933:19140163 3888:21379512 3880:12872162 3837:35329350 3778:31732717 3769:10619483 3721:32946777 3680:15514700 3621:37626455 3580:37451766 3484:37409324 3432:37207631 3423:10201459 3317:13986422 3268:45238172 3007:19866628 2915:13416310 2857:13764136 2824:32405053 2772:15363793 2678:(1995). 2637:35970513 2457:19392535 2410:25910204 2322:19687058 2211:17745977 2010:12347337 2002:10905259 1940:June 26, 1682:14057363 1343:June 26, 1228:See also 1088:tungsten 1075:Staining 940:Durcupan 936:Araldite 934:such as 837:such as 831:proteins 826:fixation 803:Staining 498:angstrom 463:phosphor 459:detector 4813:Commons 4461:4D STEM 4434:4D STEM 4412:Cryo-ET 4384:SEM-XRF 4374:CryoSEM 4331:Cryo-EM 4189:History 4027:1795028 3992:4319199 3984:6322001 3964:Bibcode 3941:1746538 3860:Bibcode 3828:8954143 3535:4217806 3527:4314822 3507:Bibcode 3475:7614724 3308:2106263 3260:6184475 3225:4918216 3216:2107921 3176:3818793 3167:2114558 3127:5962938 3118:2106967 2998:2106217 2906:2224015 2848:2224998 2815:8053421 2628:9479085 2437:Bibcode 2401:4409659 2191:Bibcode 2183:Science 1889:Bibcode 1782:Bibcode 1739:Bibcode 1662:Bibcode 1654:Science 1538:Bibcode 1460:Bibcode 1372:Bibcode 1258:(EFTEM) 1084:uranium 1060:diamond 1018:gallium 952:stained 925:acetone 899:acetone 895:ethanol 381:at the 244:History 123:scholar 4758:EMsoft 4743:CASINO 4722:TESCAN 4587:Others 4486:cryoEM 4177:Basics 4088:about 4068:  4060:  4025:  3990:  3982:  3956:Nature 3939:  3931:  3886:  3878:  3835:  3825:  3784:  3776:  3766:  3727:  3719:  3678:  3671:524270 3668:  3627:  3619:  3578:  3568:  3533:  3525:  3499:Nature 3482:  3472:  3460:: 51. 3430:  3420:  3340:  3315:  3305:  3266:  3258:  3223:  3213:  3174:  3164:  3125:  3115:  3074:  3036:  3005:  2995:  2948:  2913:  2903:  2855:  2845:  2822:  2812:  2770:  2735:  2725:  2688:  2635:  2625:  2583:  2546:  2521:  2455:  2408:  2398:  2359:  2320:  2312:  2271:  2248:  2209:  2166:  2125:  2047:  2008:  2000:  1982:Lancet 1915:  1907:  1808:  1800:  1757:  1711:  1680:  1635:  1600:  1509:  1431:  1421:  1390:  1264:(ESEM) 1247:(EELS) 1211:diatom 1180:vacuum 1054:on an 907:resins 869:ethane 847:lipids 845:, and 813:, and 125:  118:  111:  104:  96:  4712:Leica 4558:PINEM 4424:HRTEM 4419:EFTEM 4066:S2CID 3988:S2CID 3937:S2CID 3911:arXiv 3884:S2CID 3782:S2CID 3725:S2CID 3625:S2CID 3531:S2CID 3361:(PDF) 3264:S2CID 2733:S2CID 2500:(PDF) 2045:S2CID 2006:S2CID 1913:S2CID 1806:S2CID 1429:S2CID 1305:(SEM) 1010:argon 932:resin 929:epoxy 891:water 849:with 833:with 582:X-ray 580:) or 398:Types 272:Hertz 165:is a 130:JSTOR 116:books 4773:IUCr 4707:JEOL 4578:WBDF 4573:WDXS 4523:EBIC 4518:EELS 4513:ECCI 4501:EBSD 4481:CBED 4429:STEM 4058:PMID 4023:PMID 3980:PMID 3929:PMID 3876:PMID 3833:PMID 3774:PMID 3717:PMID 3699:Cell 3676:PMID 3617:PMID 3576:PMID 3566:ISBN 3523:PMID 3480:PMID 3428:PMID 3369:2012 3338:ISBN 3313:PMID 3256:PMID 3221:PMID 3172:PMID 3123:PMID 3072:ISBN 3034:ISBN 3003:PMID 2946:ISBN 2911:PMID 2853:PMID 2820:PMID 2768:PMID 2723:ISBN 2686:ISBN 2633:PMID 2581:ISSN 2544:ISBN 2519:ISBN 2453:PMID 2406:PMID 2380:Cell 2357:ISSN 2318:PMID 2310:ISSN 2269:ISBN 2246:ISSN 2207:PMID 2164:ISSN 2123:ISBN 1998:PMID 1942:2024 1905:ISSN 1862:2023 1836:2023 1798:ISSN 1755:ISSN 1709:ISBN 1678:PMID 1633:ISBN 1598:ISSN 1507:ISSN 1419:ISBN 1388:ISSN 1345:2024 1192:Torr 1168:JEOL 1118:CLEM 1080:lead 1006:ions 950:and 841:and 500:(50 318:and 102:news 4543:FEM 4538:FIB 4506:TKD 4496:EDS 4399:TEM 4361:SEM 4336:EMP 4050:doi 4046:211 4015:doi 4011:100 3972:doi 3960:308 3921:doi 3868:doi 3823:PMC 3813:doi 3764:PMC 3756:doi 3707:doi 3703:182 3666:PMC 3656:doi 3607:doi 3603:295 3558:doi 3515:doi 3503:226 3470:PMC 3462:doi 3418:PMC 3410:doi 3303:PMC 3295:doi 3248:doi 3244:128 3211:PMC 3203:doi 3162:PMC 3154:doi 3150:104 3113:PMC 3105:doi 3064:doi 3026:doi 2993:PMC 2985:doi 2938:doi 2901:PMC 2893:doi 2843:PMC 2810:PMC 2802:doi 2760:doi 2756:148 2715:doi 2623:PMC 2615:doi 2611:122 2573:doi 2445:doi 2433:102 2396:PMC 2388:doi 2384:161 2349:doi 2302:doi 2298:367 2238:doi 2234:130 2199:doi 2187:154 2156:doi 2037:doi 1990:doi 1986:355 1897:doi 1790:doi 1747:doi 1735:404 1701:doi 1670:doi 1658:142 1625:doi 1590:doi 1546:doi 1534:386 1499:doi 1468:doi 1456:305 1411:doi 1380:doi 1086:or 990:SDS 897:or 737:. 698:. 659:. 620:. 465:or 366:by 334:by 161:An 85:by 53:ant 4831:: 4318:EM 4064:. 4056:. 4044:. 4021:. 4009:. 3986:. 3978:. 3970:. 3935:. 3927:. 3919:. 3907:72 3905:. 3882:. 3874:. 3866:. 3854:. 3831:. 3821:. 3809:19 3807:. 3803:. 3780:. 3772:. 3762:. 3752:21 3750:. 3746:. 3723:. 3715:. 3701:. 3697:. 3674:. 3664:. 3650:. 3646:. 3623:. 3615:. 3601:. 3597:. 3574:. 3564:. 3552:. 3529:. 3521:. 3513:. 3501:. 3478:. 3468:. 3456:. 3452:. 3440:^ 3426:. 3416:. 3406:30 3404:. 3400:. 3311:. 3301:. 3291:17 3289:. 3285:. 3262:. 3254:. 3242:. 3219:. 3209:. 3199:45 3197:. 3193:. 3170:. 3160:. 3148:. 3144:. 3121:. 3111:. 3101:29 3099:. 3095:. 3070:. 3048:^ 3032:. 3001:. 2991:. 2981:17 2979:. 2975:. 2944:. 2909:. 2899:. 2887:. 2883:. 2851:. 2818:. 2808:. 2798:15 2796:. 2792:. 2780:^ 2766:. 2754:. 2731:. 2721:. 2631:. 2621:. 2609:. 2605:. 2593:^ 2579:. 2569:18 2567:. 2451:. 2443:. 2431:. 2427:. 2404:. 2394:. 2382:. 2378:. 2355:. 2345:58 2343:. 2339:. 2316:. 2308:. 2296:. 2292:. 2244:. 2232:. 2228:. 2205:. 2197:. 2185:. 2162:. 2152:39 2150:. 2146:. 2091:. 2043:. 2033:46 2004:. 1996:. 1984:. 1950:^ 1933:. 1911:. 1903:. 1895:. 1885:20 1879:. 1853:. 1827:. 1804:. 1796:. 1788:. 1778:78 1753:. 1745:. 1733:. 1707:. 1676:. 1668:. 1656:. 1631:. 1619:. 1596:. 1586:13 1584:. 1580:. 1544:. 1528:. 1505:. 1495:10 1493:. 1489:. 1466:. 1450:. 1427:. 1417:. 1386:. 1378:. 1368:15 1366:. 1362:. 1336:. 1209:, 1132:. 1082:, 809:, 805:, 801:, 797:, 481:. 189:. 4162:e 4155:t 4148:v 4072:. 4052:: 4029:. 4017:: 3994:. 3974:: 3966:: 3943:. 3923:: 3913:: 3890:. 3870:: 3862:: 3856:2 3839:. 3815:: 3788:. 3758:: 3731:. 3709:: 3682:. 3658:: 3652:2 3631:. 3609:: 3582:. 3560:: 3537:. 3517:: 3509:: 3486:. 3464:: 3458:2 3434:. 3412:: 3385:. 3371:. 3346:. 3319:. 3297:: 3270:. 3250:: 3227:. 3205:: 3178:. 3156:: 3129:. 3107:: 3080:. 3066:: 3042:. 3028:: 3009:. 2987:: 2960:. 2940:: 2917:. 2895:: 2889:3 2859:. 2826:. 2804:: 2774:. 2762:: 2739:. 2717:: 2694:. 2664:. 2639:. 2617:: 2587:. 2575:: 2552:. 2527:. 2484:. 2459:. 2447:: 2439:: 2412:. 2390:: 2363:. 2351:: 2324:. 2304:: 2277:. 2252:. 2240:: 2213:. 2201:: 2193:: 2170:. 2158:: 2131:. 2106:. 2077:. 2051:. 2039:: 2012:. 1992:: 1969:. 1944:. 1919:. 1899:: 1891:: 1864:. 1838:. 1812:. 1792:: 1784:: 1761:. 1749:: 1741:: 1719:. 1717:. 1703:: 1684:. 1672:: 1664:: 1641:. 1627:: 1604:. 1592:: 1552:. 1548:: 1540:: 1513:. 1501:: 1474:. 1470:: 1462:: 1435:. 1413:: 1394:. 1382:: 1374:: 1347:. 1124:‘ 954:. 913:. 853:. 744:) 740:( 705:) 701:( 666:) 662:( 627:) 623:( 152:) 146:( 141:) 137:( 127:· 120:· 113:· 106:· 79:. 34:. 20:)

Index

Electron Microscopy
Scanning tunneling microscope


ant

verification
improve this article
adding citations to reliable sources
"Electron microscope"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
microscope
electrons
electron optics
electron diffraction
resolution
light microscopes
Transmission electron microscopy
Scanning transmission electron microscopy
Scanning electron microscope
Electron microprobe
Ultrafast scanning electron microscopy
Low-energy electron microscopy
Photoemission electron microscopy
Transmission electron microscopy § History

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.