Knowledge (XXG)

Electric-field screening

Source 📝

287:
region around itself in which there are fewer electrons. This region can be treated as a positively charged "screening hole". Viewed from a large distance, this screening hole has the effect of an overlaid positive charge which cancels the electric field produced by the electron. Only at short distances, inside the hole region, can the electron's field be detected. For a plasma, this effect can be made explicit by an
1551: 1873:. It deals with a single realization of a one-component plasma whose electrons have a velocity dispersion (for a thermal plasma, there must be many particles in a Debye sphere, a volume whose radius is the Debye length). On using the linearized motion of the electrons in their own electric field, it yields an equation of the type 1556:
This result follows from the equations of a Fermi gas, which is a model of non-interacting electrons, whereas the fluid, which we are studying, contains the Coulomb interaction. Therefore, the Thomas–Fermi approximation is only valid when the electron density is low, so that the particle interactions
2230:
by the particle, and the other one is its screened potential, as classically obtained by a linearized Vlasovian calculation involving a test particle. The screened potential is the above screened Coulomb potential for a thermal plasma and a thermal particle. For a faster particle, the potential is
1229: 372:
Consider a fluid of electrons in a background of heavy, positively charged ions. For simplicity, we ignore the motion and spatial distribution of the ions, approximating them as a uniform background charge. This simplification is permissible since the electrons are lighter and more mobile than the
286:
Consider a fluid composed of electrons moving in a uniform background of positive charge (one-component plasma). Each electron possesses a negative charge. According to Coulomb's interaction, negative charges repel each other. Consequently, this electron will repel other electrons creating a small
210:
is the relative position between the charges. This interaction complicates the theoretical treatment of the fluid. For example, a naive quantum mechanical calculation of the ground-state energy density yields infinity, which is unreasonable. The difficulty lies in the fact that even though the
2276:
In real metals, the screening effect is more complex than described above in the Thomas–Fermi theory. The assumption that the charge carriers (electrons) can respond at any wavevector is just an approximation. However, it is not energetically possible for an electron within or on a
1380: 598:. We consider two possible approximations, under which the two quantities are proportional: the Debye–HĂŒckel approximation, valid at high temperatures (e.g. classical plasmas), and the Thomas–Fermi approximation, valid at low temperatures (e.g. electrons in metals). 924: 202: 307:-body calculation. If the background is made up of positive ions, their attraction by the electron of interest reinforces the above screening mechanism. In atomic physics, a germane effect exists for atoms with more than one electron shell: the 2293:, and applies both to surface and bulk screening. In each case the net electric field does not fall off exponentially in space, but rather as an inverse power law multiplied by an oscillatory term. Theoretical calculations can be obtained from 2081: 1079: 1309: 1375: 819: 1758: 1668: 824: 108: 744: 574: 1834: 1546:{\displaystyle k_{0}\ {\stackrel {\mathrm {def} }{=}}\ {\sqrt {\frac {3e^{2}\rho }{2\varepsilon _{0}E_{\mathrm {F} }}}}={\sqrt {\frac {me^{2}k_{\mathrm {F} }}{\varepsilon _{0}\pi ^{2}\hbar ^{2}}}}} 1050: 2118: 2002: 2266: 2201: 1907: 1760:
which is called a screened Coulomb potential. It is a Coulomb potential multiplied by an exponential damping term, with the strength of the damping factor given by the magnitude of
1241: 1975:
is the Fourier-Laplace transform of the electrostatic potential. When substituting an integral over a smooth distribution function for the discrete sum over the particles in
2289:
for functions that vary rapidly in space are not good approximations unless a very large number of terms in the series are retained. In physics, this phenomenon is known as
1997: 1933: 2144: 2164: 2367:
Escande, D F; Elskens, Yves; Doveil, F (1 February 2015). "Direct path from microscopic mechanics to Debye shielding, Landau damping and wave-particle interaction".
1973: 2221: 1953: 1867: 305: 1320: 764: 1677: 239:
interaction between particles to a short-range "screened" Coulomb interaction. This system corresponds to the simplest example of a renormalized interaction.
1568: 1224:{\displaystyle \rho =2{\frac {1}{(2\pi )^{3}}}\left({\frac {4}{3}}\pi k_{\mathrm {F} }^{3}\right),\quad E_{\mathrm {F} }={\frac {\hbar ^{2}k_{F}^{2}}{2m}},} 311:. In plasma physics, electric-field screening is also called Debye screening or shielding. It manifests itself on macroscopic scales by a sheath ( 627: 463: 982:) and at low temperature. The former condition corresponds, in a real experiment, to keeping the metal/fluid in electrical contact with a fixed 1005: 2424: 617: 2599: 2544: 2344: 2226:
By inverse Fourier-Laplace transform, the potential due to each particle is the sum of two parts One corresponds to the excitation of
334: 2594: 2570: 235:
In reality, these long-range effects are suppressed by the flow of particles in response to electric fields. This flow reduces the
2472: 1777: 1876: 994:
is, by definition, the energy of adding an extra electron to the fluid. This energy may be decomposed into a kinetic energy
1565:
Our results from the Debye–HĂŒckel or Thomas–Fermi approximation may now be inserted into Poisson's equation. The result is
275: 919:{\displaystyle k_{0}\ {\stackrel {\mathrm {def} }{=}}\ {\sqrt {\frac {\rho e^{2}}{\varepsilon _{0}k_{\mathrm {B} }T}}}} 197:{\displaystyle \mathbf {F} ={\frac {q_{1}q_{2}}{4\pi \varepsilon \left|\mathbf {r} \right|^{2}}}{\hat {\mathbf {r} }},} 2086: 957: 607: 346: 2231:
modified. Substituting an integral over a smooth distribution function for the discrete sum over the particles in
440:. After the system has returned to equilibrium, let the change in the electron density and electric potential be Δ 2604: 2432: 2298: 1671: 326: 31: 374: 2234: 2169: 405:. At first, the electrons are evenly distributed so that there is zero net charge at every point. Therefore, 1076:. The Fermi energy for a 3D system is related to the density of electrons (including spin degeneracy) by 612:
In the Debye–HĂŒckel approximation, we maintain the system in thermodynamic equilibrium, at a temperature
2294: 457: 2494: 2386: 2076:{\displaystyle \epsilon (\mathbf {k} ,\omega )\,\Phi (\mathbf {k} ,\omega )=S(\mathbf {k} ,\omega ),} 987: 983: 437: 1978: 1914: 232:. As a result, a charge fluctuation at any one point has non-negligible effects at large distances. 2565: 2290: 1772: 584: 342: 322: 243: 2127: 2510: 2484: 2402: 2376: 2339:(Reprinted with corrections, Reprinted ed.). Oxford: Oxford University Press. §1.2.1, §3.2. 2227: 975: 754: 402: 2281:
to respond at wavevectors shorter than the Fermi wavevector. This constraint is related to the
83:, composed of electrically charged constituent particles, each pair of particles (with charges 2540: 2340: 1304:{\displaystyle \Delta \rho \simeq {\frac {3\rho }{2E_{\mathrm {F} }}}\Delta E_{\mathrm {F} }.} 1055: 2441: 2149: 2502: 2394: 2282: 1768: 1066:
by the kinetic energy of an additional electron in the Fermi gas model, which is simply the
967: 308: 271: 102: 57: 1958: 1767:, the Debye or Thomas–Fermi wave vector. Note that this potential has the same form as the 2121: 961: 330: 49: 2120:
is the plasma permittivity, or dielectric function, classically obtained by a linearized
2506: 2498: 2398: 2390: 17: 2310: 2286: 2206: 1938: 1870: 1852: 417: 394: 290: 274:, the electric fields of ions in conducting solids are further reduced by the cloud of 267: 259: 65: 45: 1054:
If the temperature is extremely low, the behavior of the electrons comes close to the
2588: 2514: 2278: 366: 251: 69: 2406: 2315: 1067: 971: 945: 312: 77: 2425:"The theory of electrolytes. I. Lowering of freezing point and related phenomena" 979: 362: 338: 337:, which explains the predictive power of introductory models of solids like the 61: 373:
ions, provided we consider distances much larger than the ionic separation. In
2268:, yields the Vlasovian expression enabling the calculation of Landau damping. 1059: 1869:-body approach provides together the derivation of screening effect and of 948:. The Debye length is the fundamental length scale of a classical plasma. 1370:{\displaystyle e\Delta \rho \simeq \varepsilon _{0}k_{0}^{2}\Delta \phi } 814:{\displaystyle e\Delta \rho \simeq \varepsilon _{0}k_{0}^{2}\Delta \phi } 456:) respectively. The charge density and electric potential are related by 229: 1753:{\displaystyle \phi (r)={\frac {Q}{4\pi \varepsilon _{0}r}}e^{-k_{0}r},} 1663:{\displaystyle \left\phi (r)=-{\frac {Q}{\varepsilon _{0}}}\delta (r),} 378: 37: 319: 52:
carriers. It is an important part of the behavior of charge-carrying
2489: 2381: 247: 73: 53: 1238:
is the Fermi wavevector. Perturbing to first order, we find that
318:
The screened potential determines the inter atomic force and the
590:
To proceed, we must find a second independent equation relating
620:. At each point in space, the density of electrons with energy 263: 1984: 1920: 1882: 369:, dealt with a stationary point charge embedded in a fluid. 2473:"N -body description of Debye shielding and Landau damping" 739:{\displaystyle \rho _{j}(r)=\rho _{j}^{(0)}(r)\;\exp \left} 569:{\displaystyle -\nabla ^{2}={\frac {1}{\varepsilon _{0}}},} 329:
of a large variety of materials, often in combination with
325:
in metals. The screened potential is used to calculate the
1829:{\displaystyle \varepsilon (r)=\varepsilon _{0}e^{k_{0}r}} 315:) next to a material with which the plasma is in contact. 761:
and expanding the exponential to first order, we obtain
2237: 2209: 2172: 2152: 2130: 2089: 2005: 1981: 1961: 1941: 1917: 1879: 1855: 1780: 1680: 1571: 1383: 1323: 1244: 1082: 1045:{\displaystyle \Delta \mu =\Delta T-e\Delta \phi =0.} 1008: 1002:
part. Since the chemical potential is kept constant,
827: 767: 630: 466: 293: 111: 218:, the average number of particles at each distance 2260: 2215: 2195: 2158: 2138: 2112: 2075: 1991: 1967: 1947: 1927: 1901: 1861: 1828: 1752: 1662: 1553:is called the Thomas–Fermi screening wave vector. 1545: 1369: 1303: 1223: 1044: 974:, the system is maintained at a constant electron 918: 813: 738: 568: 299: 196: 266:inside the solid. Like the electric field of the 2471:Escande, D F; Doveil, F; Elskens, Yves (2016). 2113:{\displaystyle \epsilon (\mathbf {k} ,\omega )} 966:In the Thomas–Fermi approximation, named after 2337:Renormalization methods: a guide for beginners 8: 1313:Inserting this into the above equation for Δ 270:is reduced inside an atom or ion due to the 1955:is a source term due to the particles, and 683: 616:high enough that the fluid particles obey 333:models. The screening effect leads to the 211:Coulomb force diminishes with distance as 2488: 2380: 2244: 2236: 2208: 2179: 2171: 2151: 2131: 2129: 2096: 2088: 2056: 2033: 2026: 2012: 2004: 1983: 1982: 1980: 1960: 1940: 1919: 1918: 1916: 1881: 1880: 1878: 1854: 1815: 1810: 1800: 1779: 1736: 1728: 1712: 1696: 1679: 1637: 1628: 1599: 1594: 1581: 1570: 1533: 1523: 1513: 1500: 1499: 1489: 1478: 1464: 1463: 1453: 1435: 1424: 1406: 1405: 1400: 1398: 1397: 1388: 1382: 1355: 1350: 1340: 1322: 1291: 1290: 1273: 1272: 1254: 1243: 1201: 1196: 1186: 1179: 1169: 1168: 1149: 1143: 1142: 1125: 1111: 1092: 1081: 1007: 902: 901: 891: 879: 868: 850: 849: 844: 842: 841: 832: 826: 799: 794: 784: 766: 719: 718: 694: 662: 657: 635: 629: 513: 504: 474: 465: 292: 180: 178: 177: 168: 159: 137: 127: 120: 112: 110: 2327: 2261:{\displaystyle S(\mathbf {k} ,\omega )} 2196:{\displaystyle S(\mathbf {k} ,\omega )} 1530: 1183: 1902:{\displaystyle {\mathcal {E}}\Phi =S,} 412:We now introduce a fixed point charge 1845:Classical physics and linear response 7: 2530: 2528: 2526: 2524: 2477:Plasma Physics and Controlled Fusion 2418: 2416: 2369:Plasma Physics and Controlled Fusion 2362: 2360: 2358: 2356: 2564:Fitzpatrick, Richard (2011-03-31). 2223:source terms due to the particles. 357:The first theoretical treatment of 56:, such as ionized gases (classical 2027: 1962: 1887: 1578: 1501: 1465: 1413: 1410: 1407: 1361: 1327: 1292: 1283: 1274: 1245: 1170: 1144: 1030: 1018: 1009: 903: 857: 854: 851: 805: 771: 720: 545: 483: 471: 335:independent electron approximation 25: 2571:The University of Texas at Austin 2461:(Thomson Learning, Toronto, 1976) 2457:N. W. Ashcroft and N. D. Mermin, 409:is initially a constant as well. 48:caused by the presence of mobile 2245: 2180: 2132: 2097: 2057: 2034: 2013: 181: 160: 113: 2423:P. Debye and E. HĂŒckel (1923). 1163: 998:part and the potential energy − 377:, this model is referred to as 228:, assuming the fluid is fairly 2255: 2241: 2190: 2176: 2107: 2093: 2067: 2053: 2044: 2030: 2023: 2009: 1992:{\displaystyle {\mathcal {E}}} 1928:{\displaystyle {\mathcal {E}}} 1790: 1784: 1690: 1684: 1654: 1648: 1619: 1613: 1108: 1098: 709: 703: 680: 674: 669: 663: 647: 641: 560: 557: 551: 536: 530: 521: 498: 495: 489: 480: 416:at the origin. The associated 185: 1: 2537:Introduction to Plasma Theory 2507:10.1088/0741-3335/58/1/014040 2399:10.1088/0741-3335/57/2/025017 385:Screened Coulomb interactions 2139:{\displaystyle \mathbf {k} } 618:Maxwell–Boltzmann statistics 262:and Coulomb potential of an 76:). In a fluid, with a given 2272:Quantum-mechanical approach 2621: 1771:. This screening yields a 1561:Result: Screened potential 955: 952:Thomas–Fermi approximation 605: 602:Debye–HĂŒckel approximation 347:nearly free electron model 68:in electronic conductors ( 29: 27:Damping of electric fields 2600:Electromagnetism concepts 2535:Nicholson, D. R. (1983). 2440:: 185–206. Archived from 2433:Physikalische Zeitschrift 2299:density functional theory 1672:screened Poisson equation 990:. The chemical potential 327:electronic band structure 32:Electromagnetic shielding 2595:Condensed matter physics 2539:. New York: John Wiley. 375:condensed matter physics 359:electrostatic screening, 18:Electric field screening 2159:{\displaystyle \omega } 2122:Vlasov-Poisson equation 101:) interact through the 2262: 2217: 2197: 2166:is the frequency, and 2160: 2140: 2114: 2077: 1993: 1969: 1949: 1935:is a linear operator, 1929: 1903: 1863: 1830: 1754: 1670:which is known as the 1664: 1547: 1371: 1305: 1225: 1062:. We thus approximate 1046: 958:Thomas–Fermi screening 928:The associated length 920: 815: 740: 570: 301: 198: 2335:McComb, W.D. (2007). 2295:quantum hydrodynamics 2263: 2218: 2198: 2161: 2141: 2115: 2078: 1994: 1970: 1968:{\displaystyle \Phi } 1950: 1930: 1904: 1864: 1831: 1755: 1665: 1557:are relatively weak. 1548: 1372: 1306: 1226: 1047: 921: 816: 741: 571: 302: 199: 2291:Friedel oscillations 2235: 2207: 2170: 2150: 2146:is the wave vector, 2128: 2087: 2003: 1979: 1959: 1939: 1915: 1877: 1853: 1778: 1678: 1569: 1381: 1321: 1242: 1080: 1006: 984:potential difference 825: 765: 628: 464: 438:Dirac delta function 291: 276:conduction electrons 109: 2499:2016PPCF...58a4040E 2459:Solid State Physics 2391:2015PPCF...57b5017E 1773:dielectric function 1604: 1360: 1206: 1154: 804: 673: 608:Debye–HĂŒckel theory 585:vacuum permittivity 343:free electron model 323:dispersion relation 260:electrostatic field 244:solid-state physics 222:is proportional to 2258: 2213: 2193: 2156: 2136: 2110: 2073: 1989: 1965: 1945: 1925: 1899: 1859: 1826: 1750: 1674:. The solution is 1660: 1590: 1543: 1367: 1346: 1301: 1221: 1192: 1138: 1056:quantum mechanical 1042: 976:chemical potential 916: 811: 790: 755:Boltzmann constant 736: 653: 566: 458:Poisson's equation 403:electric potential 397:of electrons, and 297: 194: 44:is the damping of 2566:"Debye Shielding" 2216:{\displaystyle N} 1948:{\displaystyle S} 1862:{\displaystyle N} 1722: 1643: 1541: 1540: 1473: 1472: 1423: 1418: 1396: 1281: 1216: 1133: 1118: 914: 913: 867: 862: 840: 730: 519: 353:Theory and models 300:{\displaystyle N} 246:, especially for 204:where the vector 188: 175: 16:(Redirected from 2612: 2605:Plasma phenomena 2581: 2579: 2578: 2551: 2550: 2532: 2519: 2518: 2492: 2468: 2462: 2455: 2449: 2448: 2446: 2429: 2420: 2411: 2410: 2384: 2364: 2351: 2350: 2332: 2283:Gibbs phenomenon 2267: 2265: 2264: 2259: 2248: 2222: 2220: 2219: 2214: 2202: 2200: 2199: 2194: 2183: 2165: 2163: 2162: 2157: 2145: 2143: 2142: 2137: 2135: 2119: 2117: 2116: 2111: 2100: 2082: 2080: 2079: 2074: 2060: 2037: 2016: 1998: 1996: 1995: 1990: 1988: 1987: 1974: 1972: 1971: 1966: 1954: 1952: 1951: 1946: 1934: 1932: 1931: 1926: 1924: 1923: 1908: 1906: 1905: 1900: 1886: 1885: 1868: 1866: 1865: 1860: 1840:Many-body theory 1835: 1833: 1832: 1827: 1825: 1824: 1820: 1819: 1805: 1804: 1769:Yukawa potential 1759: 1757: 1756: 1751: 1746: 1745: 1741: 1740: 1723: 1721: 1717: 1716: 1697: 1669: 1667: 1666: 1661: 1644: 1642: 1641: 1629: 1609: 1605: 1603: 1598: 1586: 1585: 1552: 1550: 1549: 1544: 1542: 1539: 1538: 1537: 1528: 1527: 1518: 1517: 1507: 1506: 1505: 1504: 1494: 1493: 1480: 1479: 1474: 1471: 1470: 1469: 1468: 1458: 1457: 1444: 1440: 1439: 1426: 1425: 1421: 1420: 1419: 1417: 1416: 1404: 1399: 1394: 1393: 1392: 1376: 1374: 1373: 1368: 1359: 1354: 1345: 1344: 1310: 1308: 1307: 1302: 1297: 1296: 1295: 1282: 1280: 1279: 1278: 1277: 1263: 1255: 1230: 1228: 1227: 1222: 1217: 1215: 1207: 1205: 1200: 1191: 1190: 1180: 1175: 1174: 1173: 1159: 1155: 1153: 1148: 1147: 1134: 1126: 1119: 1117: 1116: 1115: 1093: 1051: 1049: 1048: 1043: 968:Llewellyn Thomas 943: 925: 923: 922: 917: 915: 912: 908: 907: 906: 896: 895: 885: 884: 883: 870: 869: 865: 864: 863: 861: 860: 848: 843: 838: 837: 836: 820: 818: 817: 812: 803: 798: 789: 788: 757:. Perturbing in 745: 743: 742: 737: 735: 731: 729: 725: 724: 723: 712: 695: 672: 661: 640: 639: 575: 573: 572: 567: 520: 518: 517: 505: 479: 478: 309:shielding effect 306: 304: 303: 298: 272:shielding effect 256:screening effect 227: 221: 217: 209: 203: 201: 200: 195: 190: 189: 184: 179: 176: 174: 173: 172: 167: 163: 143: 142: 141: 132: 131: 121: 116: 100: 91: 82: 21: 2620: 2619: 2615: 2614: 2613: 2611: 2610: 2609: 2585: 2584: 2576: 2574: 2563: 2560: 2555: 2554: 2547: 2534: 2533: 2522: 2470: 2469: 2465: 2456: 2452: 2444: 2427: 2422: 2421: 2414: 2366: 2365: 2354: 2347: 2334: 2333: 2329: 2324: 2307: 2274: 2233: 2232: 2205: 2204: 2168: 2167: 2148: 2147: 2126: 2125: 2085: 2084: 2001: 2000: 1977: 1976: 1957: 1956: 1937: 1936: 1913: 1912: 1875: 1874: 1851: 1850: 1847: 1842: 1811: 1806: 1796: 1776: 1775: 1766: 1732: 1724: 1708: 1701: 1676: 1675: 1633: 1577: 1576: 1572: 1567: 1566: 1563: 1529: 1519: 1509: 1508: 1495: 1485: 1481: 1459: 1449: 1445: 1431: 1427: 1384: 1379: 1378: 1336: 1319: 1318: 1286: 1268: 1264: 1256: 1240: 1239: 1237: 1208: 1182: 1181: 1164: 1124: 1120: 1107: 1097: 1078: 1077: 1075: 1004: 1003: 964: 962:Lindhard theory 956:Main articles: 954: 942: 935: 929: 897: 887: 886: 875: 871: 828: 823: 822: 780: 763: 762: 752: 714: 713: 696: 690: 631: 626: 625: 610: 604: 582: 509: 470: 462: 461: 387: 355: 331:pseudopotential 289: 288: 284: 223: 219: 212: 205: 155: 154: 144: 133: 123: 122: 107: 106: 99: 93: 90: 84: 80: 66:charge carriers 46:electric fields 34: 28: 23: 22: 15: 12: 11: 5: 2618: 2616: 2608: 2607: 2602: 2597: 2587: 2586: 2583: 2582: 2559: 2558:External links 2556: 2553: 2552: 2546:978-0471090458 2545: 2520: 2463: 2450: 2447:on 2013-11-02. 2412: 2352: 2346:978-0199236527 2345: 2326: 2325: 2323: 2320: 2319: 2318: 2313: 2311:Bjerrum length 2306: 2303: 2287:Fourier series 2273: 2270: 2257: 2254: 2251: 2247: 2243: 2240: 2228:Langmuir waves 2212: 2203:is the sum of 2192: 2189: 2186: 2182: 2178: 2175: 2155: 2134: 2109: 2106: 2103: 2099: 2095: 2092: 2072: 2069: 2066: 2063: 2059: 2055: 2052: 2049: 2046: 2043: 2040: 2036: 2032: 2029: 2025: 2022: 2019: 2015: 2011: 2008: 1986: 1964: 1944: 1922: 1898: 1895: 1892: 1889: 1884: 1871:Landau damping 1858: 1846: 1843: 1841: 1838: 1823: 1818: 1814: 1809: 1803: 1799: 1795: 1792: 1789: 1786: 1783: 1764: 1749: 1744: 1739: 1735: 1731: 1727: 1720: 1715: 1711: 1707: 1704: 1700: 1695: 1692: 1689: 1686: 1683: 1659: 1656: 1653: 1650: 1647: 1640: 1636: 1632: 1627: 1624: 1621: 1618: 1615: 1612: 1608: 1602: 1597: 1593: 1589: 1584: 1580: 1575: 1562: 1559: 1536: 1532: 1526: 1522: 1516: 1512: 1503: 1498: 1492: 1488: 1484: 1477: 1467: 1462: 1456: 1452: 1448: 1443: 1438: 1434: 1430: 1415: 1412: 1409: 1403: 1391: 1387: 1366: 1363: 1358: 1353: 1349: 1343: 1339: 1335: 1332: 1329: 1326: 1300: 1294: 1289: 1285: 1276: 1271: 1267: 1262: 1259: 1253: 1250: 1247: 1235: 1220: 1214: 1211: 1204: 1199: 1195: 1189: 1185: 1178: 1172: 1167: 1162: 1158: 1152: 1146: 1141: 1137: 1132: 1129: 1123: 1114: 1110: 1106: 1103: 1100: 1096: 1091: 1088: 1085: 1073: 1041: 1038: 1035: 1032: 1029: 1026: 1023: 1020: 1017: 1014: 1011: 953: 950: 944:is called the 940: 933: 911: 905: 900: 894: 890: 882: 878: 874: 859: 856: 853: 847: 835: 831: 810: 807: 802: 797: 793: 787: 783: 779: 776: 773: 770: 750: 734: 728: 722: 717: 711: 708: 705: 702: 699: 693: 689: 686: 682: 679: 676: 671: 668: 665: 660: 656: 652: 649: 646: 643: 638: 634: 606:Main article: 603: 600: 580: 565: 562: 559: 556: 553: 550: 547: 544: 541: 538: 535: 532: 529: 526: 523: 516: 512: 508: 503: 500: 497: 494: 491: 488: 485: 482: 477: 473: 469: 460:, which gives 418:charge density 395:number density 386: 383: 354: 351: 296: 283: 280: 258:describes the 252:semiconductors 193: 187: 183: 171: 166: 162: 158: 153: 150: 147: 140: 136: 130: 126: 119: 115: 97: 88: 70:semiconductors 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2617: 2606: 2603: 2601: 2598: 2596: 2593: 2592: 2590: 2573: 2572: 2567: 2562: 2561: 2557: 2548: 2542: 2538: 2531: 2529: 2527: 2525: 2521: 2516: 2512: 2508: 2504: 2500: 2496: 2491: 2486: 2483:(1): 014040. 2482: 2478: 2474: 2467: 2464: 2460: 2454: 2451: 2443: 2439: 2435: 2434: 2426: 2419: 2417: 2413: 2408: 2404: 2400: 2396: 2392: 2388: 2383: 2378: 2375:(2): 025017. 2374: 2370: 2363: 2361: 2359: 2357: 2353: 2348: 2342: 2338: 2331: 2328: 2321: 2317: 2314: 2312: 2309: 2308: 2304: 2302: 2300: 2296: 2292: 2288: 2284: 2280: 2279:Fermi surface 2271: 2269: 2252: 2249: 2238: 2229: 2224: 2210: 2187: 2184: 2173: 2153: 2123: 2104: 2101: 2090: 2070: 2064: 2061: 2050: 2047: 2041: 2038: 2020: 2017: 2006: 1942: 1909: 1896: 1893: 1890: 1872: 1856: 1849:A mechanical 1844: 1839: 1837: 1821: 1816: 1812: 1807: 1801: 1797: 1793: 1787: 1781: 1774: 1770: 1763: 1747: 1742: 1737: 1733: 1729: 1725: 1718: 1713: 1709: 1705: 1702: 1698: 1693: 1687: 1681: 1673: 1657: 1651: 1645: 1638: 1634: 1630: 1625: 1622: 1616: 1610: 1606: 1600: 1595: 1591: 1587: 1582: 1573: 1560: 1558: 1554: 1534: 1524: 1520: 1514: 1510: 1496: 1490: 1486: 1482: 1475: 1460: 1454: 1450: 1446: 1441: 1436: 1432: 1428: 1401: 1389: 1385: 1364: 1356: 1351: 1347: 1341: 1337: 1333: 1330: 1324: 1316: 1311: 1298: 1287: 1269: 1265: 1260: 1257: 1251: 1248: 1234: 1218: 1212: 1209: 1202: 1197: 1193: 1187: 1176: 1165: 1160: 1156: 1150: 1139: 1135: 1130: 1127: 1121: 1112: 1104: 1101: 1094: 1089: 1086: 1083: 1072: 1069: 1065: 1061: 1057: 1052: 1039: 1036: 1033: 1027: 1024: 1021: 1015: 1012: 1001: 997: 993: 989: 985: 981: 977: 973: 969: 963: 959: 951: 949: 947: 939: 932: 926: 909: 898: 892: 888: 880: 876: 872: 845: 833: 829: 808: 800: 795: 791: 785: 781: 777: 774: 768: 760: 756: 749: 732: 726: 715: 706: 700: 697: 691: 687: 684: 677: 666: 658: 654: 650: 644: 636: 632: 624:has the form 623: 619: 615: 609: 601: 599: 597: 593: 588: 586: 579: 563: 554: 548: 542: 539: 533: 527: 524: 514: 510: 506: 501: 492: 486: 475: 467: 459: 455: 451: 447: 443: 439: 435: 431: 427: 423: 419: 415: 410: 408: 404: 400: 396: 392: 384: 382: 380: 376: 370: 368: 364: 360: 352: 350: 348: 344: 340: 336: 332: 328: 324: 321: 316: 314: 310: 294: 281: 279: 277: 273: 269: 265: 261: 257: 253: 249: 245: 240: 238: 233: 231: 226: 216: 208: 191: 169: 164: 156: 151: 148: 145: 138: 134: 128: 124: 117: 104: 103:Coulomb force 96: 87: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 39: 33: 19: 2575:. Retrieved 2569: 2536: 2480: 2476: 2466: 2458: 2453: 2442:the original 2437: 2431: 2372: 2368: 2336: 2330: 2316:Debye length 2275: 2225: 1910: 1848: 1761: 1564: 1555: 1314: 1312: 1232: 1070: 1068:Fermi energy 1063: 1053: 999: 995: 991: 972:Enrico Fermi 965: 946:Debye length 937: 930: 927: 758: 747: 621: 613: 611: 595: 591: 589: 577: 453: 449: 445: 441: 433: 429: 425: 421: 413: 411: 406: 398: 390: 388: 371: 367:Erich HĂŒckel 358: 356: 317: 313:Debye sheath 285: 255: 241: 236: 234: 224: 214: 206: 94: 85: 78:permittivity 62:electrolytes 41: 35: 1999:, one gets 1058:model of a 980:Fermi level 393:denote the 363:Peter Debye 339:Drude model 282:Description 2589:Categories 2577:2018-07-12 2490:1506.06468 2322:References 30:See also: 2515:118576116 2382:1409.4323 2253:ω 2188:ω 2154:ω 2105:ω 2091:ϵ 2065:ω 2042:ω 2028:Φ 2021:ω 2007:ϵ 1963:Φ 1888:Φ 1798:ε 1782:ε 1730:− 1710:ε 1706:π 1682:ϕ 1646:δ 1635:ε 1626:− 1611:ϕ 1588:− 1579:∇ 1531:ℏ 1521:π 1511:ε 1451:ε 1442:ρ 1365:ϕ 1362:Δ 1338:ε 1334:≃ 1331:ρ 1328:Δ 1284:Δ 1261:ρ 1252:≃ 1249:ρ 1246:Δ 1184:ℏ 1136:π 1105:π 1084:ρ 1060:Fermi gas 1034:ϕ 1031:Δ 1025:− 1019:Δ 1013:μ 1010:Δ 889:ε 873:ρ 809:ϕ 806:Δ 782:ε 778:≃ 775:ρ 772:Δ 701:ϕ 688:⁡ 655:ρ 633:ρ 549:ρ 546:Δ 540:− 528:δ 511:ε 487:ϕ 484:Δ 472:∇ 468:− 436:) is the 428:), where 237:effective 230:isotropic 186:^ 152:ε 149:π 42:screening 2305:See also 2285:, where 345:and the 2495:Bibcode 2407:8246103 2387:Bibcode 2301:(DFT). 1317:yields 753:is the 583:is the 448:) and Δ 379:jellium 361:due to 268:nucleus 58:plasmas 38:physics 2543:  2513:  2405:  2343:  2083:where 1911:where 1422:  1395:  1377:where 1231:where 988:ground 866:  839:  821:where 746:where 576:where 341:, the 320:phonon 254:, the 248:metals 74:metals 64:, and 54:fluids 50:charge 2511:S2CID 2485:arXiv 2445:(PDF) 2428:(PDF) 2403:S2CID 2377:arXiv 986:with 2541:ISBN 2341:ISBN 2297:and 970:and 960:and 936:≡ 1/ 594:and 401:the 389:Let 365:and 250:and 92:and 2503:doi 2395:doi 685:exp 420:is 264:ion 242:In 105:as 60:), 36:In 2591:: 2568:. 2523:^ 2509:. 2501:. 2493:. 2481:58 2479:. 2475:. 2438:24 2436:. 2430:. 2415:^ 2401:. 2393:. 2385:. 2373:57 2371:. 2355:^ 2124:, 1836:. 1040:0. 1000:eφ 596:Δφ 592:Δρ 587:. 422:QÎŽ 381:. 349:. 278:. 213:1/ 72:, 40:, 2580:. 2549:. 2517:. 2505:: 2497:: 2487:: 2409:. 2397:: 2389:: 2379:: 2349:. 2256:) 2250:, 2246:k 2242:( 2239:S 2211:N 2191:) 2185:, 2181:k 2177:( 2174:S 2133:k 2108:) 2102:, 2098:k 2094:( 2071:, 2068:) 2062:, 2058:k 2054:( 2051:S 2048:= 2045:) 2039:, 2035:k 2031:( 2024:) 2018:, 2014:k 2010:( 1985:E 1943:S 1921:E 1897:, 1894:S 1891:= 1883:E 1857:N 1822:r 1817:0 1813:k 1808:e 1802:0 1794:= 1791:) 1788:r 1785:( 1765:0 1762:k 1748:, 1743:r 1738:0 1734:k 1726:e 1719:r 1714:0 1703:4 1699:Q 1694:= 1691:) 1688:r 1685:( 1658:, 1655:) 1652:r 1649:( 1639:0 1631:Q 1623:= 1620:) 1617:r 1614:( 1607:] 1601:2 1596:0 1592:k 1583:2 1574:[ 1535:2 1525:2 1515:0 1502:F 1497:k 1491:2 1487:e 1483:m 1476:= 1466:F 1461:E 1455:0 1447:2 1437:2 1433:e 1429:3 1414:f 1411:e 1408:d 1402:= 1390:0 1386:k 1357:2 1352:0 1348:k 1342:0 1325:e 1315:ÎŒ 1299:. 1293:F 1288:E 1275:F 1270:E 1266:2 1258:3 1236:F 1233:k 1219:, 1213:m 1210:2 1203:2 1198:F 1194:k 1188:2 1177:= 1171:F 1166:E 1161:, 1157:) 1151:3 1145:F 1140:k 1131:3 1128:4 1122:( 1113:3 1109:) 1102:2 1099:( 1095:1 1090:2 1087:= 1074:F 1071:E 1064:T 1037:= 1028:e 1022:T 1016:= 996:T 992:ÎŒ 978:( 941:0 938:k 934:D 931:λ 910:T 904:B 899:k 893:0 881:2 877:e 858:f 855:e 852:d 846:= 834:0 830:k 801:2 796:0 792:k 786:0 769:e 759:φ 751:B 748:k 733:] 727:T 721:B 716:k 710:) 707:r 704:( 698:e 692:[ 681:) 678:r 675:( 670:) 667:0 664:( 659:j 651:= 648:) 645:r 642:( 637:j 622:j 614:T 581:0 578:Δ 564:, 561:] 558:) 555:r 552:( 543:e 537:) 534:r 531:( 525:Q 522:[ 515:0 507:1 502:= 499:] 496:) 493:r 490:( 481:[ 476:2 454:r 452:( 450:φ 446:r 444:( 442:ρ 434:r 432:( 430:ÎŽ 426:r 424:( 414:Q 407:φ 399:φ 391:ρ 295:N 225:r 220:r 215:r 207:r 192:, 182:r 170:2 165:| 161:r 157:| 146:4 139:2 135:q 129:1 125:q 118:= 114:F 98:2 95:q 89:1 86:q 81:Δ 20:)

Index

Electric field screening
Electromagnetic shielding
physics
electric fields
charge
fluids
plasmas
electrolytes
charge carriers
semiconductors
metals
permittivity
Coulomb force
isotropic
solid-state physics
metals
semiconductors
electrostatic field
ion
nucleus
shielding effect
conduction electrons
shielding effect
Debye sheath
phonon
dispersion relation
electronic band structure
pseudopotential
independent electron approximation
Drude model

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑