Knowledge (XXG)

Electric sail

Source 📝

31: 83: 640: 218:-backed electric sail study project was announced by the FMI in December 2010. The EU funding contribution was 1.7 million euros. Its goal was to build laboratory prototypes of the key components, it involved five European countries and ended in November 2013. In the EU evaluation, the project got the highest marks in its category. An attempt was made to test the working principles of the electric sail in low Earth orbit in the 1876: 120: 644: 201: 160:. Because the solar wind electrons affect the electric field (similarly to the photons on a traditional solar sail), the effective electric radius of the tethers is based on the electric field that is generated around the tether rather than the actual tether itself. This fact also makes it possible to manoeuvre by regulating the tethers' electric charge. 226:(2013-2015), but there was a technical failure and the attempt was unsuccessful. The piezoelectric motor used to unfurl the sail failed to turn the reel. In subsequent ground-based testing, a likely reason for the failure was found in a slipring contact which was likely physically damaged by launch vibration. 229:
An international research team that includes Janhunen received funding through a 2015 NIAC Phase II solicitation for further development at NASA's Marshall Space Flight Center. Their research project is called 'Heliopause Electrostatic Rapid Transit System' (HERTS). The Heliopause Electrostatic Rapid
400:
The proposed craft has three parts: the E-sail module with solar panels and reels to hold the wires; the main body, including chemical thrusters for adjusting trajectory en route and at destination and communications equipment; and a research module to enter Uranus's atmosphere and make measurements
388:
of about 20 km/s (45,000 mph; 72,000 km/h) by the time it reaches Uranus, 6 years after launch. The downside is that the electric sail cannot be used as a brake, so the craft arrives at a speed of 20 km/s (45,000 mph; 72,000 km/h), limiting the missions to
166:
Compared to a reflective solar light sail, another propellantless deep space propulsion system, the electric solar wind sail could continue to accelerate at greater distances from the Sun, still developing thrust as it cruises toward the outer planets. By the time it reaches the
188:, the tethers would be formed from multiple strands, 25–50 micrometers in diameter, welded together at regular intervals. Thus, even if one wire were severed, a conducting path along the full length of the braided wire would remain in place. The feasibility of using 98:. The positively charged tethers deflect solar wind protons, thus extracting momentum from them. Simultaneously they attract electrons from the solar wind plasma, producing an electron current. The electron gun compensates for the arriving electric current. 147:. Thus, the available pressure is only about 1% of photon pressure; however, this may be compensated by the simplicity of scale-up. In the E-sail, the part of the sail is played by straightened conducting tethers (made of wires) which are placed 155:
is created around the wires. The electric field of the wires extends a few dozen metres into the surrounding solar wind plasma. The penetration distance depends on the solar wind plasma density and it scales as the plasma
281:
Like for other solar sail technologies, while modest variation of the thrust direction can be achieved by inclining the sail, the thrust vector always points more or less radially outward from the
285:. It has been estimated that maximum operational inclination would be 60°, resulting in a thrusting angle of 30° from the outward radial direction. However, like with the sails of a ship, 234:(15 billion kilometers). In the HERTS concept, multiple, 20 kilometer or so long, 1 millimeter thin, positively charged wires would be extended from a rotating spacecraft. 460: 1210: 511: 1606: 1092:
Janhunen, Pekka; Lebreton, Jean-Pierre; Merikallio, Sini; Paton, Mark; Mengali, Giovanni; Quarta, Alessandro A. (2014). "Fast E-sail Uranus entry probe mission".
1724: 1345: 667: 1622: 623: 490: 940: 105:
to keep them stretched. By fine-tuning the potentials of individual tethers and thus the solar wind force individually, the spacecraft's
1203: 1527: 1601: 230:
Transit System (HERTS) concept is currently being tested. For HERTS, it might take only 10 to 15 years to make the trip of over 100
266:
Almost all Earth-orbiting satellites are inside Earth's magnetosphere. However, the electric sail cannot be used inside planetary
254:
granted Centre of Excellence funding for 2018–2025 to a team that includes Janhunen and members from universities, to establish a
71: 30: 749: 1910: 1627: 1492: 1196: 989: 786: 278:. Instead, inside a planetary magnetosphere, the electric sail may function as a brake, allowing deorbiting of satellites. 1731: 1586: 1555: 1550: 311: 124: 437: 171:, it may have accumulated as much as 20 km/s (45,000 mph; 72,000 km/h) velocity, which is on par with the 1920: 112:
E-sail missions can be launched at almost any time with only minor variations in travel time. By contrast, conventional
289:
could be used for changing the trajectory. Interstellar ships approaching a sun might use solar wind flow for braking.
1905: 871: 1039:
Perakis, Nikolaos; Hein, Andreas M. (2016). "Combining magnetic and electric sails for interstellar deceleration".
836:"Ensi yönä kello 00:51 taivaalla kiitää tähdenlento - Kyseessä on epäonnisen suomalaissatelliitin viimeinen matka" 773: 1686: 1545: 1719: 1478: 1452: 1394: 1378: 1368: 163:
A full-sized sail would have 50–100 straightened tethers with a length of about 20 km (12 mi) each.
561: 356:
powered by an electric sail. The mission could reach its destination in about the same time that the earlier
1775: 1748: 1703: 1691: 1671: 1437: 1399: 1373: 321: 1915: 1826: 1676: 1576: 1318: 835: 1411: 1404: 1219: 414: 91: 51: 34:
The Heliopause Electrostatic Rapid Transit System (HERTS) is a spacecraft concept using an electric sail
1522: 1517: 1421: 1335: 1111: 1058: 576: 562:"Simulation study of solar wind push on a charged wire: Basis of solar wind electric sail propulsion" 357: 1015: 1681: 1666: 1581: 1468: 1447: 1416: 1016:"Sail E-way: Spacecraft Riding the Solar Wind on Electric-Field Sails Could Cruise at 180,000 km/h" 66:
that deflects solar wind protons and extracts their momentum. The idea was first conceptualised by
1875: 1880: 1846: 1811: 1651: 1168: 1127: 1101: 1074: 1048: 542: 317: 251: 208: 189: 947: 82: 1900: 1841: 1796: 1696: 1596: 1298: 1272: 505: 394: 299: 286: 231: 131:, launched in May 2013, which was intended to be the first satellite to test an electric sail. 106: 102: 728: 1861: 1851: 1801: 1507: 1260: 1119: 1115: 1066: 791: 584: 534: 491:"New Form of Spacecraft Propulsion Proposed For Uranus Mission | MIT Technology Review" 271: 55: 376:
took 7 years to get to Saturn and cost almost as much. The sail is expected to consume 540
1473: 1277: 1243: 916: 390: 372: 1062: 580: 1806: 1741: 1442: 1282: 853: 336: 275: 267: 215: 185: 178: 152: 113: 67: 63: 1894: 1816: 1736: 1591: 1560: 1340: 1330: 1248: 1238: 1131: 546: 419: 381: 340: 244: 20: 1078: 1070: 1821: 1780: 1753: 1512: 1308: 1303: 1173: 1157: 303: 173: 157: 95: 62:
as a source of thrust. It creates a "virtual" sail by using small wires to form an
893: 119: 854:"EU project to build Electric Solar Wind Sail - Finnish Meteorological Institute" 796: 1836: 1831: 1637: 307: 24: 1856: 1313: 1147: 1123: 589: 140: 136: 59: 330: 223: 168: 128: 668:"EU-Backed 'Electric Sail' Could Be the Fastest Man-Made Device Ever Built" 1169:"Electric Solar Wind Sail Could Power Future Space Travel In Solar System" 641:"Suomen Akatemia Rahoituspäätökset (Academy of Finland Funding decisions)" 247:, currently in orbit, will test the electric sail for deorbiting in 2019. 385: 1188: 990:"Electric Sails" Could Allow Us To Reach the Farthest Recesses of Space" 941:"List of units selected to the Centre of Excellence programme 2018–2025" 200: 1632: 1265: 363: 241: 238: 219: 135:
The electric solar wind sail has little in common with the traditional
685: 1255: 1233: 384:
accelerating the craft by about 1 mm/s. The craft would reach a
353: 320:
which has been accelerated to high speed by some other means such as
270:
because the solar wind does not penetrate them, allowing only slower
151:
around the host ship. The wires are electrically charged and thus an
148: 144: 116:
missions must wait for the planets to reach a particular alignment.
90:
The electric sail consists of a number of thin, long and conducting
1053: 817: 538: 1152: 1106: 710: 604: 402: 199: 118: 81: 101:
One way to deploy the tethers is to rotate the spacecraft, using
525:
Janhunen, P. (2004). "Electric Sail for Spacecraft Propulsion".
397:
missions. Braking would require a conventional chemical rocket.
377: 370:
took 6 years to reach Jupiter at a cost of $ 1.6 billion, while
326:
Inward-spiralling missions to study the Sun at a closer distance
192:
was demonstrated at the University of Helsinki in January 2013.
1192: 971: 282: 256:
Finnish Centre of Excellence in Research of Sustainable Space
624:
Superthin wire for electric sail space propulsion engineered
461:"'Electric Sails' Could Propel Superfast Spacecraft by 2025" 1162: 94:
which are kept in a high positive potential by an onboard
329:
Two-way missions to inner Solar System objects such as
211:
has been funding electric sail development since 2007.
921:
The Baltic Course | Baltic States news & analytics
917:"ESTCube-1 sends its last words: "Long live Estonia!"" 879: 298:
Fast missions (> 50 km/s  or 10 
184:
In order to minimise damage to the thin tethers from
787:"Aalto-1 is the first Finnish nanosatellite project" 489:
Emerging Technology From the arXiv January 9, 2014.
1789: 1768: 1712: 1659: 1650: 1615: 1569: 1538: 1500: 1491: 1461: 1430: 1387: 1361: 1354: 1291: 1226: 438:Electric Sail For Producing Spacecraft Propulsion. 605:"The electric solar wind sail by Pekka Janhunen" 339:solar wind monitoring spacecraft for predicting 1163:Finnish Meteorological Institute/Space Research 729:"EU project to build Electric Solar Wind Sail" 1204: 1148:Heliopause Electrostatic Rapid Transit System 143:ions, whilst a photonic sail is propelled by 8: 454: 452: 450: 204:Graphical overview electric sail development 510:: CS1 maint: numeric names: authors list ( 352:Janhunen et al. have proposed a mission to 237:A new satellite launched in June 2017, the 1656: 1497: 1358: 1211: 1197: 1189: 750:"Electric Solar Sail Concept Introduction" 1105: 1052: 818:"Tämä domain on varattu | aalto1.fi" 686:"Electric Solar Wind Sail EU FP7 project" 588: 1623:Atmosphere-breathing electric propulsion 1158:List of original scientific publications 1009: 1007: 484: 482: 480: 139:. The E-sail gets its momentum from the 29: 430: 915:курс, The Baltic Course - Балтийский. 894:"Aalto-1 satellite is ready for space" 503: 343:with a longer warning time than 1 hour 16:Proposed spacecraft propulsion device 7: 366:, just over one fourth as far away. 560:Janhunen, P.; Sandroos, A. (2007). 1528:Field-emission electric propulsion 362:space probe required to arrive at 78:Principles of operation and design 14: 1602:Microwave electrothermal thruster 666:Dillow, Clay (December 9, 2010). 440:Patent filed on 2 February 2007; 1874: 72:Finnish Meteorological Institute 1071:10.1016/j.actaastro.2016.07.005 527:Journal of Propulsion and Power 86:Principal of an electrical sail 1732:Pulsed nuclear thermal rocket‎ 1628:High Power Electric Propulsion 972:"News | Aalto University" 459:Wall, Mike (9 November 2015). 348:Fast missions to planet Uranus 214:To test the technology, a new 1: 1587:Helicon double-layer thruster 1556:Electrodeless plasma thruster 1551:Magnetoplasmadynamic thruster 992:. Futurism. October 30, 2017 1094:Planetary and Space Science 1937: 1153:FMI's official E-sail page 756:. SpaceRef. 17 August 2015 18: 1872: 1546:Pulsed inductive thruster 1124:10.1016/j.pss.2014.08.004 590:10.5194/angeo-25-755-2007 1720:Nuclear pulse propulsion 1479:Electric-pump-fed engine 1379:Hybrid-propellant rocket 1369:Liquid-propellant rocket 896:. Aalto.fi. 2 March 2016 50:) is a proposed form of 44:electric solar wind sail 19:Not to be confused with 1776:Beam-powered propulsion 1749:Fission-fragment rocket 1704:Nuclear photonic rocket 1672:Nuclear electric rocket 1438:Staged combustion cycle 1374:Solid-propellant rocket 1116:2014P&SS..104..141J 858:en.ilmatieteenlaitos.fi 715:www.electric-sailing.fi 690:www.electric-sailing.fi 316:As a brake for a small 1827:Non-rocket spacelaunch 1677:Nuclear thermal rocket 1577:Pulsed plasma thruster 776:program at NASA (2015) 493:. Technologyreview.com 380:, producing about 0.5 205: 132: 87: 35: 1911:Spacecraft propulsion 1493:Electrical propulsion 1220:Spacecraft propulsion 415:Electrodynamic tether 310:with small or modest 262:Intrinsic limitations 203: 122: 85: 52:spacecraft propulsion 33: 1725:Antimatter-catalyzed 1523:Hall-effect thruster 1336:Solar thermal rocket 882:on January 31, 2013. 628:Science World Report 1921:Interstellar travel 1667:Direct Fusion Drive 1582:Vacuum arc thruster 1469:Pressure-fed engine 1448:Gas-generator cycle 1355:Chemical propulsion 1292:Physical propulsion 1063:2016AcAau.128...13P 1020:Scientific American 978:. 15 December 2023. 581:2007AnGeo..25..755J 569:Annales Geophysicae 405:via the main body. 196:Development history 177:probe, but without 109:can be controlled. 1906:Finnish inventions 1881:Spaceflight portal 1847:Reactionless drive 1812:Aerogravity assist 1652:Nuclear propulsion 647:on August 24, 2018 318:interstellar probe 252:Academy of Finland 232:astronomical units 209:Academy of Finland 206: 190:ultrasonic welding 133: 88: 42:(also known as an 36: 1888: 1887: 1842:Atmospheric entry 1797:Orbital mechanics 1764: 1763: 1646: 1645: 1597:Resistojet rocket 1487: 1486: 1462:Intake mechanisms 1395:Liquid propellant 1299:Cold gas thruster 1041:Acta Astronautica 395:atmospheric entry 103:centrifugal force 1928: 1878: 1862:Alcubierre drive 1852:Field propulsion 1802:Orbital maneuver 1790:Related concepts 1657: 1508:Colloid thruster 1498: 1359: 1261:Specific impulse 1213: 1206: 1199: 1190: 1185: 1183: 1182: 1136: 1135: 1109: 1089: 1083: 1082: 1056: 1036: 1030: 1029: 1027: 1026: 1014:Ashley, Steven. 1011: 1002: 1001: 999: 997: 986: 980: 979: 968: 962: 961: 959: 958: 952: 946:. Archived from 945: 937: 931: 930: 928: 927: 912: 906: 905: 903: 901: 890: 884: 883: 878:. Archived from 868: 862: 861: 850: 844: 843: 840:www.iltalehti.fi 832: 826: 825: 814: 808: 807: 805: 804: 795:. Archived from 792:Aalto University 783: 777: 771: 765: 764: 762: 761: 746: 740: 739: 737: 736: 725: 719: 718: 707: 701: 700: 698: 696: 682: 676: 675: 663: 657: 656: 654: 652: 643:. Archived from 637: 631: 626:, Mark Hoffman, 621: 615: 614: 612: 611: 601: 595: 594: 592: 566: 557: 551: 550: 522: 516: 515: 509: 501: 499: 498: 486: 475: 474: 472: 471: 456: 445: 435: 56:dynamic pressure 1936: 1935: 1931: 1930: 1929: 1927: 1926: 1925: 1891: 1890: 1889: 1884: 1868: 1785: 1760: 1708: 1642: 1611: 1565: 1539:Electromagnetic 1534: 1483: 1474:Pump-fed engine 1457: 1426: 1383: 1350: 1287: 1278:Rocket equation 1244:Reaction engine 1222: 1217: 1180: 1178: 1167: 1144: 1139: 1091: 1090: 1086: 1038: 1037: 1033: 1024: 1022: 1013: 1012: 1005: 995: 993: 988: 987: 983: 970: 969: 965: 956: 954: 950: 943: 939: 938: 934: 925: 923: 914: 913: 909: 899: 897: 892: 891: 887: 870: 869: 865: 852: 851: 847: 834: 833: 829: 816: 815: 811: 802: 800: 785: 784: 780: 772: 768: 759: 757: 748: 747: 743: 734: 732: 727: 726: 722: 709: 708: 704: 694: 692: 684: 683: 679: 672:Popular Science 665: 664: 660: 650: 648: 639: 638: 634: 622: 618: 609: 607: 603: 602: 598: 564: 559: 558: 554: 524: 523: 519: 502: 496: 494: 488: 487: 478: 469: 467: 458: 457: 448: 436: 432: 428: 411: 373:Cassini-Huygens 350: 322:laser lightsail 295: 276:magnetic fields 264: 198: 186:micrometeoroids 179:gravity assists 80: 70:in 2006 at the 28: 17: 12: 11: 5: 1934: 1932: 1924: 1923: 1918: 1913: 1908: 1903: 1893: 1892: 1886: 1885: 1873: 1870: 1869: 1867: 1866: 1865: 1864: 1859: 1849: 1844: 1839: 1834: 1829: 1824: 1819: 1814: 1809: 1807:Gravity assist 1804: 1799: 1793: 1791: 1787: 1786: 1784: 1783: 1778: 1772: 1770: 1769:External power 1766: 1765: 1762: 1761: 1759: 1758: 1757: 1756: 1746: 1745: 1744: 1742:Bussard ramjet 1734: 1729: 1728: 1727: 1716: 1714: 1710: 1709: 1707: 1706: 1701: 1700: 1699: 1694: 1689: 1684: 1674: 1669: 1663: 1661: 1654: 1648: 1647: 1644: 1643: 1641: 1640: 1635: 1630: 1625: 1619: 1617: 1613: 1612: 1610: 1609: 1604: 1599: 1594: 1589: 1584: 1579: 1573: 1571: 1570:Electrothermal 1567: 1566: 1564: 1563: 1558: 1553: 1548: 1542: 1540: 1536: 1535: 1533: 1532: 1531: 1530: 1525: 1520: 1510: 1504: 1502: 1495: 1489: 1488: 1485: 1484: 1482: 1481: 1476: 1471: 1465: 1463: 1459: 1458: 1456: 1455: 1450: 1445: 1443:Expander cycle 1440: 1434: 1432: 1428: 1427: 1425: 1424: 1419: 1414: 1412:Monopropellant 1409: 1408: 1407: 1402: 1391: 1389: 1385: 1384: 1382: 1381: 1376: 1371: 1365: 1363: 1356: 1352: 1351: 1349: 1348: 1343: 1338: 1333: 1328: 1323: 1322: 1321: 1311: 1306: 1301: 1295: 1293: 1289: 1288: 1286: 1285: 1283:Thermal rocket 1280: 1275: 1270: 1269: 1268: 1263: 1253: 1252: 1251: 1246: 1236: 1230: 1228: 1224: 1223: 1218: 1216: 1215: 1208: 1201: 1193: 1187: 1186: 1165: 1160: 1155: 1150: 1143: 1142:External links 1140: 1138: 1137: 1084: 1031: 1003: 981: 963: 932: 907: 885: 863: 845: 827: 809: 778: 766: 741: 720: 702: 677: 658: 632: 630:, 10 Jan 2013. 616: 596: 552: 539:10.2514/1.8580 533:(4): 763–764. 517: 476: 446: 429: 427: 424: 423: 422: 417: 410: 407: 349: 346: 345: 344: 337:Lagrange point 333: 327: 324: 314: 294: 291: 268:magnetospheres 263: 260: 222:nanosatellite 216:European Union 197: 194: 153:electric field 79: 76: 68:Pekka Janhunen 64:electric field 15: 13: 10: 9: 6: 4: 3: 2: 1933: 1922: 1919: 1917: 1916:Solar sailing 1914: 1912: 1909: 1907: 1904: 1902: 1899: 1898: 1896: 1883: 1882: 1877: 1871: 1863: 1860: 1858: 1855: 1854: 1853: 1850: 1848: 1845: 1843: 1840: 1838: 1835: 1833: 1830: 1828: 1825: 1823: 1820: 1818: 1817:Oberth effect 1815: 1813: 1810: 1808: 1805: 1803: 1800: 1798: 1795: 1794: 1792: 1788: 1782: 1779: 1777: 1774: 1773: 1771: 1767: 1755: 1752: 1751: 1750: 1747: 1743: 1740: 1739: 1738: 1737:Fusion rocket 1735: 1733: 1730: 1726: 1723: 1722: 1721: 1718: 1717: 1715: 1711: 1705: 1702: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1679: 1678: 1675: 1673: 1670: 1668: 1665: 1664: 1662: 1660:Closed system 1658: 1655: 1653: 1649: 1639: 1636: 1634: 1631: 1629: 1626: 1624: 1621: 1620: 1618: 1614: 1608: 1605: 1603: 1600: 1598: 1595: 1593: 1592:Arcjet rocket 1590: 1588: 1585: 1583: 1580: 1578: 1575: 1574: 1572: 1568: 1562: 1561:Plasma magnet 1559: 1557: 1554: 1552: 1549: 1547: 1544: 1543: 1541: 1537: 1529: 1526: 1524: 1521: 1519: 1516: 1515: 1514: 1511: 1509: 1506: 1505: 1503: 1501:Electrostatic 1499: 1496: 1494: 1490: 1480: 1477: 1475: 1472: 1470: 1467: 1466: 1464: 1460: 1454: 1453:Tap-off cycle 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1435: 1433: 1429: 1423: 1422:Tripropellant 1420: 1418: 1415: 1413: 1410: 1406: 1403: 1401: 1398: 1397: 1396: 1393: 1392: 1390: 1386: 1380: 1377: 1375: 1372: 1370: 1367: 1366: 1364: 1360: 1357: 1353: 1347: 1344: 1342: 1341:Photon rocket 1339: 1337: 1334: 1332: 1331:Magnetic sail 1329: 1327: 1326:Electric sail 1324: 1320: 1317: 1316: 1315: 1312: 1310: 1307: 1305: 1302: 1300: 1297: 1296: 1294: 1290: 1284: 1281: 1279: 1276: 1274: 1271: 1267: 1264: 1262: 1259: 1258: 1257: 1254: 1250: 1249:Reaction mass 1247: 1245: 1242: 1241: 1240: 1239:Rocket engine 1237: 1235: 1232: 1231: 1229: 1225: 1221: 1214: 1209: 1207: 1202: 1200: 1195: 1194: 1191: 1176: 1175: 1170: 1166: 1164: 1161: 1159: 1156: 1154: 1151: 1149: 1146: 1145: 1141: 1133: 1129: 1125: 1121: 1117: 1113: 1108: 1103: 1099: 1095: 1088: 1085: 1080: 1076: 1072: 1068: 1064: 1060: 1055: 1050: 1046: 1042: 1035: 1032: 1021: 1017: 1010: 1008: 1004: 991: 985: 982: 977: 973: 967: 964: 953:on 2017-12-01 949: 942: 936: 933: 922: 918: 911: 908: 895: 889: 886: 881: 877: 873: 867: 864: 859: 855: 849: 846: 841: 837: 831: 828: 823: 822:www.aalto1.fi 819: 813: 810: 799:on 2014-12-23 798: 794: 793: 788: 782: 779: 775: 770: 767: 755: 751: 745: 742: 731:. Physorg.com 730: 724: 721: 716: 712: 706: 703: 691: 687: 681: 678: 673: 669: 662: 659: 646: 642: 636: 633: 629: 625: 620: 617: 606: 600: 597: 591: 586: 582: 578: 574: 570: 563: 556: 553: 548: 544: 540: 536: 532: 528: 521: 518: 513: 507: 492: 485: 483: 481: 477: 466: 462: 455: 453: 451: 447: 443: 439: 434: 431: 425: 421: 420:Magnetic sail 418: 416: 413: 412: 408: 406: 404: 401:for relay to 398: 396: 392: 387: 383: 379: 375: 374: 369: 365: 361: 360: 355: 347: 342: 341:space weather 338: 334: 332: 328: 325: 323: 319: 315: 313: 309: 305: 302:) out of the 301: 297: 296: 292: 290: 288: 284: 279: 277: 273: 269: 261: 259: 257: 253: 248: 246: 245:nanosatellite 243: 240: 235: 233: 227: 225: 221: 217: 212: 210: 202: 195: 193: 191: 187: 182: 180: 176: 175: 170: 164: 161: 159: 154: 150: 146: 142: 138: 130: 126: 121: 117: 115: 110: 108: 104: 99: 97: 93: 84: 77: 75: 73: 69: 65: 61: 57: 53: 49: 45: 41: 40:electric sail 32: 26: 22: 21:magnetic sail 1879: 1822:Space launch 1754:Fission sail 1682:Radioisotope 1513:Ion thruster 1431:Power cycles 1417:Bipropellant 1325: 1309:Steam rocket 1304:Water rocket 1179:. Retrieved 1177:. 2008-04-17 1174:ScienceDaily 1172: 1097: 1093: 1087: 1044: 1040: 1034: 1023:. Retrieved 1019: 994:. Retrieved 984: 976:www.aalto.fi 975: 966: 955:. Retrieved 948:the original 935: 924:. Retrieved 920: 910: 898:. Retrieved 888: 880:the original 875: 866: 857: 848: 839: 830: 821: 812: 801:. Retrieved 797:the original 790: 781: 769: 758:. Retrieved 753: 744: 733:. Retrieved 723: 714: 705: 693:. Retrieved 689: 680: 671: 661: 649:. Retrieved 645:the original 635: 627: 619: 608:. Retrieved 599: 572: 568: 555: 530: 526: 520: 495:. Retrieved 468:. Retrieved 464: 441: 433: 399: 371: 367: 358: 351: 304:Solar System 293:Applications 280: 265: 255: 249: 236: 228: 213: 207: 183: 174:New Horizons 172: 165: 162: 158:Debye length 134: 111: 100: 96:electron gun 89: 47: 43: 39: 37: 1837:Aerocapture 1832:Aerobraking 1713:Open system 1697:"Lightbulb" 1638:Mass driver 1388:Propellants 1319:Diffractive 1100:: 141–146. 442:PatentScope 308:heliosphere 25:photon sail 1895:Categories 1857:Warp drive 1687:Salt-water 1405:Hypergolic 1314:Solar sail 1181:2008-10-15 1054:1603.03015 1025:2018-07-21 957:2017-11-23 926:2016-04-24 803:2016-04-25 760:2015-08-18 735:2014-01-12 610:2008-04-18 575:(3): 755. 497:2014-01-12 470:2015-11-10 426:References 274:flows and 169:ice giants 141:solar wind 137:solar sail 60:solar wind 54:using the 1400:Cryogenic 1132:118329908 1107:1312.6554 1047:: 13–20. 872:"uudised" 547:122272677 465:Space.com 331:asteroids 250:In 2017, 224:ESTCube-1 129:ESTCube-1 125:rendering 123:Artist's 114:slingshot 1901:CubeSats 1692:Gas core 1227:Concepts 1079:17732634 900:25 April 711:"E-sail" 506:cite web 409:See also 386:velocity 220:Estonian 149:radially 107:attitude 1781:Tethers 1633:MagBeam 1518:Gridded 1273:Staging 1266:Delta-v 1112:Bibcode 1059:Bibcode 996:May 23, 577:Bibcode 382:newtons 368:Galileo 364:Jupiter 359:Galileo 312:payload 287:tacking 242:Aalto-1 239:Finnish 145:photons 92:tethers 58:of the 1607:VASIMR 1256:Thrust 1234:Rocket 1130:  1077:  695:Jan 2, 651:Jan 2, 545:  391:flybys 354:Uranus 272:plasma 48:E-sail 46:or an 1616:Other 1362:State 1128:S2CID 1102:arXiv 1075:S2CID 1049:arXiv 951:(PDF) 944:(PDF) 774:HERTS 565:(PDF) 543:S2CID 403:Earth 378:watts 1346:WINE 998:2023 902:2015 754:NASA 697:2022 653:2022 512:link 335:Off- 306:and 1120:doi 1098:104 1067:doi 1045:128 876:ERR 585:doi 535:doi 393:or 283:Sun 127:of 38:An 23:or 1897:: 1171:. 1126:. 1118:. 1110:. 1096:. 1073:. 1065:. 1057:. 1043:. 1018:. 1006:^ 974:. 919:. 874:. 856:. 838:. 820:. 789:. 752:. 713:. 688:. 670:. 583:. 573:25 571:. 567:. 541:. 531:20 529:. 508:}} 504:{{ 479:^ 463:. 449:^ 300:AU 258:. 181:. 74:. 1212:e 1205:t 1198:v 1184:. 1134:. 1122:: 1114:: 1104:: 1081:. 1069:: 1061:: 1051:: 1028:. 1000:. 960:. 929:. 904:. 860:. 842:. 824:. 806:. 763:. 738:. 717:. 699:. 674:. 655:. 613:. 593:. 587:: 579:: 549:. 537:: 514:) 500:. 473:. 444:. 27:.

Index

magnetic sail
photon sail

spacecraft propulsion
dynamic pressure
solar wind
electric field
Pekka Janhunen
Finnish Meteorological Institute

tethers
electron gun
centrifugal force
attitude
slingshot

rendering
ESTCube-1
solar sail
solar wind
photons
radially
electric field
Debye length
ice giants
New Horizons
gravity assists
micrometeoroids
ultrasonic welding

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.