Knowledge

Modular form

Source 📝

4626: 4332: 6185: 5109: 43: 4621:{\displaystyle {\begin{aligned}\Gamma _{0}(N)&=\left\{{\begin{pmatrix}a&b\\c&d\end{pmatrix}}\in {\text{SL}}(2,\mathbf {Z} ):c\equiv 0{\pmod {N}}\right\}\\\Gamma (N)&=\left\{{\begin{pmatrix}a&b\\c&d\end{pmatrix}}\in {\text{SL}}(2,\mathbf {Z} ):c\equiv b\equiv 0,a\equiv d\equiv 1{\pmod {N}}\right\}.\end{aligned}}} 1587: 5878:
are a mixture of modular forms and elliptic functions. Examples of such functions are very classical - the Jacobi theta functions and the Fourier coefficients of Siegel modular forms of genus two - but it is a relatively recent observation that the Jacobi forms have an arithmetic theory very
4936: 2878: 5494:. Such rings of modular forms are generated in weight at most 6 and the relations are generated in weight at most 12 when the congruence subgroup has nonzero odd weight modular forms, and the corresponding bounds are 5 and 10 when there are no nonzero odd weight modular forms. 2066: 2717: 870: 1329: 3032: 6115: 3394: 262: 5104:{\displaystyle \dim _{\mathbf {C} }M_{k}\left({\text{SL}}(2,\mathbf {Z} )\right)={\begin{cases}\left\lfloor k/12\right\rfloor &k\equiv 2{\pmod {12}}\\\left\lfloor k/12\right\rfloor +1&{\text{otherwise}}\end{cases}}} 2533: 1441: 2177: 1225: 3187: 2728: 5759: 1772: 1929: 6462: 3614: 3804: 5473: 1095: 330: 924: 582: 3696: 5669: 3944: 1382: 4337: 2733: 1963: 422: 5979: 4214: 996: 534: 2569: 1033: 685: 648: 5138: 6165: 4062:) of an elliptic curve, regarded as a function on the set of all elliptic curves, is a modular function. More conceptually, modular functions can be thought of as functions on the 761: 456: 132: 6497: 3856: 6726: 786: 6972: 1858: 1259: 61: 6355: 5611: 1248: 1115: 360: 3488:
The second and third examples give some hint of the connection between modular forms and classical questions in number theory, such as representation of integers by
3988: 5328:
vary, we can find the numerators and denominators for constructing all the rational functions which are really functions on the underlying projective space P(
781: 872:
The identification of such functions with such matrices causes composition of such functions to correspond to matrix multiplication. In addition, it is called a
5581: 5561: 5541: 5162: 1949: 1135: 380: 2950: 6318: 5987: 3274: 195: 1582:{\displaystyle {\text{SL}}(2,\mathbf {Z} )=\left\{\left.{\begin{pmatrix}a&b\\c&d\end{pmatrix}}\right|a,b,c,d\in \mathbf {Z} ,\ ad-bc=1\right\}} 7395: 3517: 2461: 5358:
Modular forms can also be profitably approached from this geometric direction, as sections of line bundles on the moduli space of elliptic curves.
2873:{\displaystyle {\begin{aligned}G_{k}\left(-{\frac {1}{\tau }}\right)&=\tau ^{k}G_{k}(\tau ),\\G_{k}(\tau +1)&=G_{k}(\tau ).\end{aligned}}} 4051:. Thus, a modular function can also be regarded as a meromorphic function on the set of isomorphism classes of elliptic curves. For example, the 7124: 6297:. In 2001 all elliptic curves were proven to be modular over the rational numbers. In 2013 elliptic curves were proven to be modular over real 2077: 1143: 5168: 3104: 7487: 7084: 6965: 6603: 6301:. In 2023 elliptic curves were proven to be modular over about half of imaginary quadratic fields, including fields formed by combining the 5779:
is a modular form with a zero constant coefficient in its Fourier series. It is called a cusp form because the form vanishes at all cusps.
5674: 6523: 5285:. Unfortunately, the only such functions are constants. If we allow denominators (rational functions instead of polynomials), we can let 6945: 5497:
More generally, there are formulas for bounds on the weights of generators of the ring of modular forms and its relations for arbitrary
3259: 1677: 7564: 7175: 7074: 6797: 3493: 2937:
vectors forming the columns of a matrix of determinant 1 and satisfying the condition that the square of the length of each vector in
7554: 6734: 6386:
function can only have a finite number of negative-exponent terms in its Laurent series, its q-expansion. It can only have at most a
1863: 6869: 6775: 6564: 6414: 6232: 3566: 79: 3718: 5411: 1054: 289: 7253: 6958: 5842:
variables, each a complex number in the upper half-plane, satisfying a modular relation for 2×2 matrices with entries in a
5787:
There are a number of other usages of the term "modular function", apart from this classical one; for example, in the theory of
7594: 1385: 883: 541: 7400: 7311: 6210: 4279: 3626: 7321: 7248: 5616: 3870: 1828:
is "holomorphic at the cusp", a terminology that is explained below. Explicitly, the condition means that there exist some
1341: 6998: 6206: 7218: 6260:
and others towards the end of the nineteenth century as the automorphic form concept became understood (for one variable)
2061:{\displaystyle S={\begin{pmatrix}0&-1\\1&0\end{pmatrix}},\qquad T={\begin{pmatrix}1&1\\0&1\end{pmatrix}}} 7114: 7477: 7441: 4025:
be invariant with respect to a sub-group of the modular group of finite index. This is not adhered to in this article.
7140: 7053: 3247: 389: 5912: 4017:
Sometimes a weaker definition of modular functions is used – under the alternative definition, it is sufficient that
1396:
A modular function is a function that is invariant with respect to the modular group, but without the condition that
2712:{\displaystyle G_{k}(\Lambda )=G_{k}(\tau )=\sum _{(0,0)\neq (m,n)\in \mathbf {Z} ^{2}}{\frac {1}{(m+n\tau )^{k}}},} 7599: 7451: 7089: 6861: 6821: 6639: 4264: 4248: 4164: 929: 143: 6294: 461: 7497: 6849: 5843: 3038: 2191: 7410: 7390: 7326: 7243: 7104: 4919: 1335: 7145: 6914: 6195: 1001: 653: 7109: 5520: 5515: 587: 4047:
elliptic curves if and only if one is obtained from the other by multiplying by some non-zero complex number
7301: 6387: 6214: 6199: 5188: 5117: 6123: 7589: 7094: 5293:
polynomials of the same degree. Alternatively, we can stick with polynomials and loosen the dependence on
693: 7472: 7208: 7008: 6395: 6168: 5367: 5196: 3960: 3501: 3265: 435: 275: 111: 7170: 7119: 1415:: they are holomorphic on the complement of a set of isolated points, which are poles of the function. 865:{\textstyle \gamma ={\begin{pmatrix}a&b\\c&d\end{pmatrix}}\in {\text{SL}}_{2}(\mathbb {Z} ).\,} 6360:"DLMF: §23.15 Definitions ‣ Modular Functions ‣ Chapter 23 Weierstrass Elliptic and Modular Functions" 7559: 7420: 7331: 7079: 6927: 6278:
Taniyama and Shimura identified a 1-to-1 matching between certain modular forms and elliptic curves.
5835: 5817: 5290: 5172: 3814: 3561: 3548: 3431: 3408: 2891: 1642: 1412: 1408: 384: 7385: 6695: 5005: 4002:
at i∞. This condition is called "meromorphic at the cusp", meaning that only finitely many negative-
3496:. The crucial conceptual link between modular forms and number theory is furnished by the theory of 7263: 7228: 7185: 7165: 6923: 5849: 5821: 5348: 4749: 4324: 4241: 3235: 139: 6171:, a modular form of weight 1/2, may be encompassed by the theory by allowing automorphic factors. 7526: 7099: 6805: 6271: 5906: 5340: 5241:
The situation can be profitably compared to that which arises in the search for functions on the
5200: 4717: 3859: 3404: 3069:
has integer coordinates, either all even or all odd, and such that the sum of the coordinates of
2921: 1324:{\displaystyle X_{\Gamma }=\Gamma \backslash ({\mathcal {H}}\cup \mathbb {P} ^{1}(\mathbb {Q} ))} 166: 7306: 7286: 7258: 5820:. The holomorphic parts of certain weak Maass wave forms turn out to be essentially Ramanujan's 7415: 7362: 7233: 7048: 7043: 6888: 6865: 6793: 6771: 6599: 6560: 6516: 6283: 6250: 5806: 4301: 2421: 2303: 2228: 1831: 189: 101: 6340: 6286:, which has become one of the most far-reaching and consequential research programs in math. 5590: 1233: 1100: 345: 7405: 7291: 7268: 6935: 6617: 6302: 6298: 6279: 5882: 5853: 5491: 5242: 4292: 3552: 3482: 3092: 1605: 425: 337: 181: 158: 105: 6829: 6613: 3966: 3520:
that the only modular forms are constant functions. However, relaxing the requirement that
7531: 7336: 7278: 7180: 7003: 6982: 6896: 6825: 6813: 6789: 6767: 6691: 6621: 6609: 6595: 6337:
Some authors use different conventions, allowing an additional constant depending only on
5865: 4313: 4275: 4112: 1593: 6835:
Provides an introduction to modular forms from the point of view of representation theory
6670: 4890:
to obtain further information about modular forms and functions. For example, the spaces
3027:{\displaystyle \vartheta _{L}(z)=\sum _{\lambda \in L}e^{\pi i\Vert \lambda \Vert ^{2}z}} 766: 27:
Analytic function on the upper half-plane with a certain behavior under the modular group
7203: 6931: 6657:, Publications of the Mathematical Society of Japan, vol. 11, Tokyo: Iwanami Shoten 2372:
remains bounded above as long as the absolute value of the smallest non-zero element in
7505: 7028: 7013: 6990: 6760: 6755: 6110:{\displaystyle f\left({\frac {az+b}{cz+d}}\right)=\varepsilon (a,b,c,d)(cz+d)^{k}f(z).} 5896:
are meromorphic functions on the upper half plane of moderate growth at infinity which
5566: 5546: 5526: 5498: 5487: 5147: 5141: 4063: 4033: 4029: 3706: 3497: 3489: 3478: 3474: 3462: 2942: 2380:
The key idea in proving the equivalence of the two definitions is that such a function
2362: 2263: 2253: 2236: 1934: 1791: 1621: 1120: 365: 170: 3389:{\displaystyle \eta (z)=q^{1/24}\prod _{n=1}^{\infty }(1-q^{n}),\qquad q=e^{2\pi iz}.} 2384:
is determined, because of the second condition, by its values on lattices of the form
257:{\displaystyle \mathrm {SL} _{2}(\mathbb {Z} )\subset \mathrm {SL} _{2}(\mathbb {R} )} 30:"Modular function" redirects here. A distinct use of this term appears in relation to 7583: 7546: 7316: 7296: 7223: 7018: 6581: 5981:
which are used to generalise the modularity relation defining modular forms, so that
5809: 5352: 3617: 3427: 3232: 1433: 1251: 1048: 174: 162: 147: 17: 3048:. It is not so easy to construct even unimodular lattices, but here is one way: Let 7482: 7456: 7446: 7436: 7238: 6594:, Grundlehren der Mathematischen Wissenschaften , vol. 244, Berlin, New York: 6290: 5788: 4145: 3466: 3426:
is a modular form of weight 12. The presence of 24 is related to the fact that the
1411:
in the upper half-plane (among other requirements). Instead, modular functions are
333: 31: 6541: 3098:. Because there is only one modular form of weight 8 up to scalar multiplication, 6589: 7357: 7195: 6841: 6383: 6306: 6264: 6257: 6184: 5875: 5802: 5385: 4052: 3470: 3239: 3218: 3088: 2528:{\displaystyle G_{k}(\Lambda )=\sum _{0\neq \lambda \in \Lambda }\lambda ^{-k}.} 1044: 268: 93: 5335:
One might ask, since the homogeneous polynomials are not really functions on P(
267:
The term "modular form", as a systematic description, is usually attributed to
7352: 6909: 6902:
Chapter VII provides an elementary introduction to the theory of modular forms
6585: 5320:. On the one hand, these form a finite dimensional vector space for each  4044: 6950: 7213: 5886: 5813: 5776: 5770: 4103: 3435: 185: 5868:
in the same sense that classical modular forms (which are sometimes called
4918:
are finite-dimensional, and their dimensions can be computed thanks to the
5587:. These old forms can be constructed using the following observations: if 4792:. Again, modular forms that vanish at all cusps are called cusp forms for 2172:{\displaystyle f\left(-{\frac {1}{z}}\right)=z^{k}f(z),\qquad f(z+1)=f(z)} 1334:
The dimensions of these spaces of modular forms can be computed using the
1220:{\displaystyle f\in H^{0}(X_{\Gamma },\omega ^{\otimes k})=M_{k}(\Gamma )} 3243: 3182:{\displaystyle \vartheta _{L_{8}\times L_{8}}(z)=\vartheta _{L_{16}}(z),} 6879: 5355:
in this case). The situation with modular forms is precisely analogous.
5183:
is not identically 0, then it can be shown that the number of zeroes of
4149:
is a modular function whose poles and zeroes are confined to the cusps.
7536: 7521: 6939: 6270:
In the 1960s, as the needs of number theory and the formulation of the
7516: 6274:
in particular made it clear that modular forms are deeply implicated.
6167:
is called the nebentypus of the modular form. Functions such as the
5754:{\displaystyle M_{k}(\Gamma _{1}(M))\subseteq M_{k}(\Gamma _{1}(N))} 4856:), they are also referred to as modular/cusp forms and functions of 4216:
can be relaxed by requiring it only for matrices in smaller groups.
4028:
Another way to phrase the definition of modular functions is to use
4010:-expansion is bounded below, guaranteeing that it is meromorphic at 3500:, which also gives the link between the theory of modular forms and 180:
Modular form theory is a special case of the more general theory of
5856:
in the same way in which classical modular forms are associated to
3222: 2202:, the second condition above is equivalent to these two equations. 6359: 1767:{\displaystyle f\left({\frac {az+b}{cz+d}}\right)=(cz+d)^{k}f(z)} 6820:, Annals of Mathematics Studies, vol. 83, Princeton, N.J.: 5316:). The solutions are then the homogeneous polynomials of degree 4316:, which allows one to speak of holo- and meromorphic functions. 1043:
Modular forms can also be interpreted as sections of a specific
6954: 6946:
Behold Modular Forms, the ‘Fifth Fundamental Operation’ of Math
5543:
which cannot be constructed from modular forms of lower levels
1924:{\displaystyle \operatorname {Im} (z)>M\implies |f(z)|<D} 6655:
Introduction to the arithmetic theory of automorphic functions
6457:{\displaystyle {\begin{pmatrix}a&b\\c&d\end{pmatrix}}} 6178: 4304:±2) fixing the point. This yields a compact topological space 3609:{\displaystyle {\begin{pmatrix}a&b\\c&d\end{pmatrix}}} 36: 6912:(1988), "Jacobi forms and a certain space of modular forms", 5209:.It can be shown that the field of modular function of level 4780:
satisfying the above functional equation for all matrices in
3799:{\displaystyle f(z)=\sum _{n=-m}^{\infty }a_{n}e^{2i\pi nz}.} 6498:"Elliptic Curves Yield Their Secrets in a New Number System" 5468:{\displaystyle M(\Gamma )=\bigoplus _{k>0}M_{k}(\Gamma )} 3540:
is called modular if it satisfies the following properties:
3260:
Weierstrass's elliptic functions § Modular discriminant
1287: 1279: 1090:{\displaystyle \Gamma \subset {\text{SL}}_{2}(\mathbb {Z} )} 401: 325:{\displaystyle \Gamma \subset {\text{SL}}_{2}(\mathbb {Z} )} 188:
that transform nicely with respect to the action of certain
161:. The main importance of the theory is its connections with 118: 6245:
The theory of modular forms was developed in four periods:
5097: 1476: 6788:, Graduate Texts in Mathematics, vol. 228, New York: 4312:. What is more, it can be endowed with the structure of a 1817:, only the zero function can satisfy the second condition. 3037:
converges when Im(z) > 0, and as a consequence of the
2248:
A modular form can equivalently be defined as a function
6895:, Graduate Texts in Mathematics, vol. 7, New York: 6282:
built on this idea in the construction of his expansive
5872:
to emphasize the point) are related to elliptic curves.
3709:. The third condition is that this series is of the form 2354:
is a constant (typically a positive integer) called the
919:{\displaystyle \gamma \in {\text{SL}}_{2}(\mathbb {Z} )} 577:{\displaystyle \gamma \in {\text{SL}}_{2}(\mathbb {Z} )} 6762:
Modular functions and Dirichlet Series in Number Theory
3691:{\displaystyle f\left({\frac {az+b}{cz+d}}\right)=f(z)} 3446:
is expanded as a power series in q, the coefficient of
2324:
is the lattice obtained by multiplying each element of
57: 6423: 5664:{\displaystyle \Gamma _{1}(N)\subseteq \Gamma _{1}(M)} 4498: 4376: 3939:{\displaystyle f(z)=\sum _{n=-m}^{\infty }a_{n}q^{n}.} 3575: 3052:
be an integer divisible by 8 and consider all vectors
2420:
The simplest examples from this point of view are the
2027: 1978: 1483: 801: 789: 769: 696: 6698: 6417: 6343: 6126: 5990: 5915: 5677: 5619: 5593: 5569: 5549: 5529: 5414: 5249:): in that setting, one would ideally like functions 5150: 5120: 4939: 4832:, respectively. Similarly, a meromorphic function on 4335: 4167: 4021:
be meromorphic in the open upper half-plane and that
3969: 3873: 3817: 3721: 3629: 3569: 3277: 3107: 2953: 2731: 2572: 2464: 2080: 1966: 1937: 1866: 1834: 1680: 1444: 1377:{\displaystyle \Gamma ={\text{SL}}_{2}(\mathbb {Z} )} 1344: 1262: 1236: 1146: 1123: 1103: 1057: 1004: 932: 886: 656: 590: 544: 464: 438: 392: 368: 348: 292: 198: 114: 3485:, which were shown to imply Ramanujan's conjecture. 3087:, this is the lattice generated by the roots in the 7545: 7496: 7465: 7429: 7378: 7371: 7345: 7277: 7194: 7158: 7133: 7067: 7036: 7027: 6989: 4874:, this gives back the afore-mentioned definitions. 4800:-vector spaces of modular and cusp forms of weight 4066:of isomorphism classes of complex elliptic curves. 3231:by these two lattices are consequently examples of 1820:The third condition is also phrased by saying that 52:
may be too technical for most readers to understand
6759: 6720: 6456: 6349: 6159: 6109: 5973: 5753: 5663: 5605: 5575: 5555: 5535: 5478:Rings of modular forms of congruence subgroups of 5467: 5171:of the Riemann surface, and hence form a field of 5156: 5132: 5103: 4620: 4208: 3982: 3938: 3850: 3798: 3690: 3608: 3388: 3181: 3026: 2872: 2711: 2527: 2244:Definition in terms of lattices or elliptic curves 2171: 2060: 1943: 1923: 1852: 1766: 1581: 1376: 1323: 1242: 1219: 1129: 1109: 1089: 1027: 990: 918: 864: 775: 755: 679: 642: 576: 528: 450: 416: 374: 354: 324: 256: 126: 5523:are a subspace of modular forms of a fixed level 4882:The theory of Riemann surfaces can be applied to 4319:Important examples are, for any positive integer 157:The theory of modular forms therefore belongs to 5879:analogous to the usual theory of modular forms. 4296:∪{∞}, such that there is a parabolic element of 876:if it satisfies the following growth condition: 417:{\displaystyle f:{\mathcal {H}}\to \mathbb {C} } 192:, generalizing the example of the modular group 6638:, Annals of Mathematics Studies, vol. 48, 5974:{\displaystyle \varepsilon (a,b,c,d)(cz+d)^{k}} 5400:is the vector space of modular forms of weight 4157:The functional equation, i.e., the behavior of 2916:II. Theta functions of even unimodular lattices 165:. Modular forms appear in other areas, such as 6784:Diamond, Fred; Shurman, Jerry Michael (2005), 5885:extend the notion of modular forms to general 5339:), what are they, geometrically speaking? The 6966: 6881:Lectures on Modular Forms and Hecke Operators 4209:{\displaystyle z\mapsto {\frac {az+b}{cz+d}}} 991:{\displaystyle (cz+d)^{-k}f(\gamma (z))\to 0} 8: 6804:Leads up to an overview of the proof of the 5671:giving a reverse inclusion of modular forms 5127: 5121: 3041:can be shown to be a modular form of weight 3010: 3003: 2912:, so that such series are identically zero. 1630:satisfying the following three conditions: 529:{\displaystyle f(\gamma (z))=(cz+d)^{k}f(z)} 6213:. Unsourced material may be challenged and 5257:which are polynomial in the coordinates of 4282:by adding a finite number of points called 7375: 7033: 6973: 6959: 6951: 5486:are finitely generated due to a result of 4744:exactly once and such that the closure of 4278:. Typically it is not compact, but can be 1892: 1888: 6703: 6697: 6418: 6416: 6342: 6233:Learn how and when to remove this message 6125: 6086: 5998: 5989: 5965: 5914: 5733: 5720: 5695: 5682: 5676: 5646: 5624: 5618: 5592: 5568: 5548: 5528: 5450: 5434: 5413: 5149: 5119: 5089: 5068: 5040: 5016: 5000: 4984: 4970: 4959: 4945: 4944: 4938: 4590: 4546: 4532: 4493: 4444: 4424: 4410: 4371: 4344: 4336: 4334: 4174: 4166: 3990:are known as the Fourier coefficients of 3974: 3968: 3927: 3917: 3907: 3893: 3872: 3816: 3775: 3765: 3755: 3741: 3720: 3637: 3628: 3570: 3568: 3368: 3345: 3326: 3315: 3301: 3297: 3276: 3159: 3154: 3130: 3117: 3112: 3106: 3073:is an even integer. We call this lattice 3013: 2996: 2980: 2958: 2952: 2848: 2816: 2790: 2780: 2754: 2740: 2732: 2730: 2697: 2672: 2664: 2659: 2621: 2599: 2577: 2571: 2513: 2491: 2469: 2463: 2114: 2092: 2079: 2022: 1973: 1965: 1936: 1910: 1893: 1865: 1833: 1746: 1688: 1679: 1542: 1478: 1459: 1445: 1443: 1367: 1366: 1357: 1352: 1343: 1311: 1310: 1301: 1297: 1296: 1286: 1285: 1267: 1261: 1235: 1202: 1183: 1170: 1157: 1145: 1122: 1102: 1080: 1079: 1070: 1065: 1056: 1028:{\displaystyle {\text{im}}(z)\to \infty } 1005: 1003: 952: 931: 909: 908: 899: 894: 885: 861: 851: 850: 841: 836: 796: 788: 768: 730: 695: 680:{\displaystyle {\text{im}}(z)\to \infty } 657: 655: 610: 589: 567: 566: 557: 552: 543: 508: 463: 437: 410: 409: 400: 399: 391: 367: 347: 315: 314: 305: 300: 291: 247: 246: 237: 229: 218: 217: 208: 200: 197: 123: 117: 116: 115: 113: 80:Learn how and when to remove this message 64:, without removing the technical details. 643:{\displaystyle (cz+d)^{-k}f(\gamma (z))} 428:such that two conditions are satisfied: 6485: 6330: 7396:Clifford's theorem on special divisors 6319:Wiles's proof of Fermat's Last Theorem 5864:; in other words, they are related to 5799:determined by the conjugation action. 5133:{\displaystyle \lfloor \cdot \rfloor } 4286:. These are points at the boundary of 3524:be holomorphic leads to the notion of 3481:as a result of Deligne's proof of the 1951:is bounded above some horizontal line. 6542:"Modular Functions and Modular Forms" 6160:{\displaystyle \varepsilon (a,b,c,d)} 5167:The modular functions constitute the 4153:Modular forms for more general groups 1384:are sections of a line bundle on the 756:{\textstyle \gamma (z)=(az+b)/(cz+d)} 62:make it understandable to non-experts 7: 6491: 6489: 6211:adding citations to reliable sources 5824:. Groups which are not subgroups of 5404:, then the ring of modular forms of 3461:. This was confirmed by the work of 2266:which satisfies certain conditions: 6672:Modular Functions and Modular Forms 6529:from the original on 1 August 2020. 6517:"Cohomology of Automorphic Bundles" 5384:, the ring of modular forms is the 5217:≥ 1) is generated by the functions 5048: 5041: 4748:meets all orbits. For example, the 4598: 4452: 3998:is called the order of the pole of 274:Each modular form is attached to a 7565:Vector bundles on algebraic curves 7488:Weber's theorem (Algebraic curves) 7085:Hasse's theorem on elliptic curves 7075:Counting points on elliptic curves 6740:from the original on 31 July 2020. 6700: 5730: 5692: 5643: 5621: 5459: 5421: 5388:generated by the modular forms of 4469: 4341: 4006:coefficients are non-zero, so the 3908: 3756: 3701:The second condition implies that 3327: 2941:is an even integer. The so-called 2586: 2504: 2478: 1345: 1338:. The classical modular forms for 1276: 1268: 1250:is a canonical line bundle on the 1211: 1171: 1104: 1058: 1022: 674: 451:{\displaystyle \gamma \in \Gamma } 445: 349: 293: 233: 230: 204: 201: 127:{\displaystyle \,{\mathcal {H}}\,} 25: 6818:Automorphic Forms on Adèle Groups 6253:, in the early nineteenth century 6249:In connection with the theory of 4840:is called a modular function for 3705:is periodic, and therefore has a 3221:observed that the 16-dimensional 2317:is a non-zero complex number and 184:, which are functions defined on 6659:, Theorem 2.33, Proposition 2.26 6183: 4985: 4946: 4922:in terms of the geometry of the 4547: 4425: 4032:: every lattice Λ determines an 3951:This is also referred to as the 3811:It is often written in terms of 2660: 1810:is typically a positive integer. 1543: 1460: 41: 7176:Hurwitz's automorphisms theorem 6786:A First Course in Modular Forms 4591: 4445: 3851:{\displaystyle q=\exp(2\pi iz)} 3516:is zero, it can be shown using 3357: 2135: 2015: 1386:moduli stack of elliptic curves 1137:can be defined as an element of 7401:Gonality of an algebraic curve 7312:Differential of the first kind 6721:{\displaystyle \Gamma _{1}(N)} 6715: 6709: 6496:Van Wyk, Gerhard (July 2023). 6154: 6130: 6101: 6095: 6083: 6067: 6064: 6040: 5962: 5946: 5943: 5919: 5748: 5745: 5739: 5726: 5710: 5707: 5701: 5688: 5658: 5652: 5636: 5630: 5462: 5456: 5424: 5418: 5324:, and on the other, if we let 5052: 5042: 4989: 4975: 4716:can be understood by studying 4602: 4592: 4551: 4537: 4478: 4472: 4456: 4446: 4429: 4415: 4356: 4350: 4171: 3883: 3877: 3845: 3830: 3731: 3725: 3685: 3679: 3351: 3332: 3287: 3281: 3173: 3167: 3144: 3138: 2970: 2964: 2898:there is cancellation between 2860: 2854: 2834: 2822: 2802: 2796: 2694: 2678: 2652: 2640: 2634: 2622: 2611: 2605: 2589: 2583: 2481: 2475: 2166: 2160: 2151: 2139: 2129: 2123: 1911: 1907: 1901: 1894: 1889: 1879: 1873: 1761: 1755: 1743: 1727: 1464: 1450: 1371: 1363: 1318: 1315: 1307: 1282: 1214: 1208: 1192: 1163: 1084: 1076: 1019: 1016: 1010: 982: 979: 976: 970: 964: 949: 933: 913: 905: 855: 847: 783:is identified with the matrix 750: 735: 727: 712: 706: 700: 671: 668: 662: 637: 634: 628: 622: 607: 591: 571: 563: 523: 517: 505: 489: 483: 480: 474: 468: 432:Automorphy condition: For any 406: 319: 311: 251: 243: 222: 214: 1: 7555:Birkhoff–Grothendieck theorem 7254:Nagata's conjecture on curves 7125:Schoof–Elkies–Atkin algorithm 6999:Five points determine a conic 5898:fail to be modular of weight 5583:. The other forms are called 4736:intersects each orbit of the 3254:III. The modular discriminant 1785:is required to be bounded as 286:In general, given a subgroup 7115:Supersingular elliptic curve 6555:Chandrasekharan, K. (1985). 6293:used modular forms to prove 5892:Modular integrals of weight 4129:is the order of the zero of 2545:is a modular form of weight 1039:As sections of a line bundle 880:Cuspidal condition: For any 7322:Riemann's existence theorem 7249:Hilbert's sixteenth problem 7141:Elliptic curve cryptography 7054:Fundamental pair of periods 6858:Modular forms and functions 6634:Gunning, Robert C. (1962), 3248:Hearing the shape of a drum 2270:If we consider the lattice 7616: 7452:Moduli of algebraic curves 6862:Cambridge University Press 6856:Rankin, Robert A. (1977), 6850:Vandenhoeck & Ruprecht 6822:Princeton University Press 6640:Princeton University Press 5909:are functions of the form 5768: 5513: 5365: 5187:is equal to the number of 4265:quotient topological space 3257: 2933:is a lattice generated by 2447:over all non-zero vectors 1419:Modular forms for SL(2, Z) 538:Growth condition: For any 29: 6636:Lectures on modular forms 5852:are associated to larger 5844:totally real number field 5265:and satisfy the equation 5179:). If a modular function 4784:, that is holomorphic on 4043:; two lattices determine 3192:even though the lattices 3039:Poisson summation formula 1428:A modular form of weight 7219:Cayley–Bacharach theorem 7146:Elliptic curve primality 6915:Inventiones Mathematicae 6692:"Atkin-Lehner Theory of 6309:of integers down to −5. 5903:by a rational function. 5343:answer is that they are 2424:. For each even integer 2287:generated by a constant 1954:The second condition for 1853:{\displaystyle M,D>0} 1097:a modular form of level 7478:Riemann–Hurwitz formula 7442:Gromov–Witten invariant 7302:Compact Riemann surface 7090:Mazur's torsion theorem 6394: = 0, not an 6350:{\displaystyle \gamma } 5606:{\displaystyle M\mid N} 3432:A celebrated conjecture 2922:even unimodular lattice 2376:is bounded away from 0. 1243:{\displaystyle \omega } 1110:{\displaystyle \Gamma } 355:{\displaystyle \Gamma } 153:and a growth condition. 7595:Analytic number theory 7095:Modular elliptic curve 6893:A Course in Arithmetic 6878:Ribet, K.; Stein, W., 6722: 6653:Shimura, Goro (1971), 6458: 6351: 6161: 6111: 5975: 5870:elliptic modular forms 5755: 5665: 5607: 5577: 5557: 5537: 5469: 5362:Rings of modular forms 5351:(one could also say a 5158: 5134: 5105: 4622: 4210: 4090:, also paraphrased as 4014: = 0.  3984: 3940: 3912: 3852: 3800: 3760: 3692: 3610: 3390: 3331: 3183: 3028: 2874: 2713: 2529: 2173: 2062: 1945: 1925: 1854: 1768: 1583: 1378: 1332: 1325: 1244: 1228: 1221: 1131: 1111: 1091: 1029: 992: 920: 866: 777: 757: 681: 644: 578: 530: 452: 418: 376: 356: 342:modular form of level 326: 258: 128: 7009:Rational normal curve 6723: 6669:Milne, James (2010), 6459: 6396:essential singularity 6352: 6295:Fermat’s Last Theorem 6169:Dedekind eta function 6162: 6112: 5976: 5836:Hilbert modular forms 5756: 5666: 5608: 5578: 5558: 5538: 5470: 5392:. In other words, if 5368:Ring of modular forms 5159: 5135: 5106: 4623: 4274:can be shown to be a 4211: 3985: 3983:{\displaystyle a_{n}} 3961:q-expansion principle 3941: 3889: 3853: 3801: 3737: 3693: 3611: 3502:representation theory 3403:is the square of the 3391: 3311: 3266:Dedekind eta function 3258:Further information: 3225:obtained by dividing 3184: 3029: 2875: 2714: 2530: 2174: 2063: 1946: 1926: 1855: 1769: 1584: 1379: 1326: 1255: 1245: 1222: 1139: 1132: 1112: 1092: 1030: 993: 921: 867: 778: 758: 682: 645: 579: 531: 458:there is the equality 453: 419: 377: 357: 327: 276:Galois representation 259: 129: 18:Elliptic modular form 7560:Stable vector bundle 7421:Weil reciprocity law 7411:Riemann–Roch theorem 7391:Brill–Noether theory 7327:Riemann–Roch theorem 7244:Genus–degree formula 7105:Mordell–Weil theorem 7080:Division polynomials 6696: 6415: 6341: 6207:improve this section 6124: 5988: 5913: 5850:Siegel modular forms 5822:mock theta functions 5675: 5617: 5591: 5567: 5547: 5527: 5412: 5289:be the ratio of two 5253:on the vector space 5173:transcendence degree 5148: 5118: 4937: 4920:Riemann–Roch theorem 4788:and at all cusps of 4333: 4325:congruence subgroups 4323:, either one of the 4220:The Riemann surface 4165: 3967: 3963:). The coefficients 3871: 3815: 3719: 3627: 3567: 3409:modular discriminant 3275: 3236:Riemannian manifolds 3105: 2951: 2729: 2570: 2462: 2416:I. Eisenstein series 2227:, modular forms are 2183:respectively. Since 2078: 1964: 1935: 1864: 1832: 1678: 1643:holomorphic function 1442: 1342: 1336:Riemann–Roch theorem 1260: 1234: 1144: 1121: 1101: 1055: 1002: 930: 884: 787: 776:{\textstyle \gamma } 767: 694: 654: 588: 542: 462: 436: 390: 385:holomorphic function 366: 346: 290: 196: 142:with respect to the 112: 7372:Structure of curves 7264:Quartic plane curve 7186:Hyperelliptic curve 7166:De Franchis theorem 7110:Nagell–Lutz theorem 6932:1988InMat..94..113S 6846:Mathematische Werke 6814:Gelbart, Stephen S. 6559:. Springer-Verlag. 5907:Automorphic factors 5832:can be considered. 5791:, it is a function 5516:Atkin–Lehner theory 5408:is the graded ring 5281:) for all non-zero 4768:A modular form for 4718:fundamental domains 4255:in the same way as 3858:(the square of the 3518:Liouville's theorem 3454:has absolute value 3438:asserted that when 3430:has 24 dimensions. 1672:as above, we have: 1424:Standard definition 140:functional equation 7379:Divisors on curves 7171:Faltings's theorem 7120:Schoof's algorithm 7100:Modularity theorem 6940:10.1007/BF01394347 6889:Serre, Jean-Pierre 6806:modularity theorem 6718: 6557:Elliptic functions 6454: 6448: 6347: 6272:modularity theorem 6251:elliptic functions 6157: 6107: 5971: 5751: 5661: 5603: 5573: 5553: 5533: 5465: 5445: 5261: ≠ 0 in 5201:fundamental region 5169:field of functions 5154: 5130: 5101: 5096: 4618: 4616: 4523: 4401: 4240:that is of finite 4206: 3980: 3936: 3848: 3796: 3688: 3606: 3600: 3560:For every integer 3494:partition function 3386: 3179: 3024: 2991: 2870: 2868: 2709: 2671: 2525: 2508: 2235:, and thus have a 2229:periodic functions 2194:the modular group 2169: 2058: 2052: 2006: 1941: 1921: 1850: 1764: 1664:and any matrix in 1579: 1508: 1374: 1321: 1240: 1217: 1127: 1107: 1087: 1025: 988: 916: 862: 826: 773: 753: 677: 640: 574: 526: 448: 414: 372: 352: 322: 254: 190:discrete subgroups 167:algebraic topology 134:, that satisfies: 124: 7600:Special functions 7577: 7576: 7573: 7572: 7473:Hasse–Witt matrix 7416:Weierstrass point 7363:Smooth completion 7332:Teichmüller space 7234:Cubic plane curve 7154: 7153: 7068:Arithmetic theory 7049:Elliptic integral 7044:Elliptic function 6908:Skoruppa, N. P.; 6690:Mocanu, Andreea. 6605:978-0-387-90517-4 6582:Kubert, Daniel S. 6284:Langlands program 6243: 6242: 6235: 6028: 5883:Automorphic forms 5866:abelian varieties 5854:symplectic groups 5838:are functions in 5576:{\displaystyle N} 5556:{\displaystyle M} 5536:{\displaystyle N} 5430: 5341:algebro-geometric 5157:{\displaystyle k} 5092: 4973: 4776:is a function on 4760:can be computed. 4705:), respectively. 4535: 4413: 4232:be a subgroup of 4204: 4073:that vanishes at 3994:, and the number 3667: 3526:modular functions 3508:Modular functions 3217:are not similar. 2976: 2762: 2704: 2617: 2487: 2441:to be the sum of 2422:Eisenstein series 2304:analytic function 2100: 1944:{\displaystyle f} 1718: 1552: 1448: 1355: 1130:{\displaystyle k} 1068: 1049:modular varieties 1008: 897: 839: 763:and the function 660: 555: 375:{\displaystyle k} 303: 182:automorphic forms 102:analytic function 90: 89: 82: 16:(Redirected from 7607: 7406:Jacobian variety 7376: 7279:Riemann surfaces 7269:Real plane curve 7229:Cramer's paradox 7209:Bézout's theorem 7034: 6983:algebraic curves 6975: 6968: 6961: 6952: 6942: 6899: 6884: 6874: 6852: 6832: 6802: 6780: 6765: 6742: 6741: 6739: 6732: 6727: 6725: 6724: 6719: 6708: 6707: 6687: 6681: 6679: 6677: 6666: 6660: 6658: 6650: 6644: 6642: 6631: 6625: 6624: 6578: 6572: 6570: 6552: 6546: 6545: 6537: 6531: 6530: 6528: 6521: 6512: 6506: 6505: 6493: 6473: 6463: 6461: 6460: 6455: 6453: 6452: 6409: 6403: 6380: 6374: 6373: 6371: 6370: 6356: 6354: 6353: 6348: 6335: 6303:rational numbers 6299:quadratic fields 6280:Robert Langlands 6238: 6231: 6227: 6224: 6218: 6187: 6179: 6166: 6164: 6163: 6158: 6116: 6114: 6113: 6108: 6091: 6090: 6033: 6029: 6027: 6013: 5999: 5980: 5978: 5977: 5972: 5970: 5969: 5901: 5895: 5863: 5831: 5816:but need not be 5798: 5760: 5758: 5757: 5752: 5738: 5737: 5725: 5724: 5700: 5699: 5687: 5686: 5670: 5668: 5667: 5662: 5651: 5650: 5629: 5628: 5612: 5610: 5609: 5604: 5582: 5580: 5579: 5574: 5562: 5560: 5559: 5554: 5542: 5540: 5539: 5534: 5492:Michael Rapoport 5485: 5474: 5472: 5471: 5466: 5455: 5454: 5444: 5407: 5403: 5399: 5391: 5383: 5375: 5319: 5243:projective space 5163: 5161: 5160: 5155: 5139: 5137: 5136: 5131: 5110: 5108: 5107: 5102: 5100: 5099: 5093: 5090: 5080: 5076: 5072: 5055: 5028: 5024: 5020: 4996: 4992: 4988: 4974: 4971: 4964: 4963: 4951: 4950: 4949: 4925: 4917: 4903: 4873: 4843: 4831: 4817: 4795: 4791: 4783: 4771: 4739: 4708:The geometry of 4650: 4627: 4625: 4624: 4619: 4617: 4610: 4606: 4605: 4550: 4536: 4533: 4528: 4527: 4464: 4460: 4459: 4428: 4414: 4411: 4406: 4405: 4349: 4348: 4299: 4262: 4247: 4239: 4231: 4215: 4213: 4212: 4207: 4205: 4203: 4189: 4175: 4161:with respect to 4139: 4128: 4115:). The smallest 4100: 4089: 4079: 4050: 3989: 3987: 3986: 3981: 3979: 3978: 3945: 3943: 3942: 3937: 3932: 3931: 3922: 3921: 3911: 3906: 3857: 3855: 3854: 3849: 3805: 3803: 3802: 3797: 3792: 3791: 3770: 3769: 3759: 3754: 3697: 3695: 3694: 3689: 3672: 3668: 3666: 3652: 3638: 3621: 3615: 3613: 3612: 3607: 3605: 3604: 3553:upper half-plane 3512:When the weight 3483:Weil conjectures 3460: 3453: 3449: 3445: 3425: 3395: 3393: 3392: 3387: 3382: 3381: 3350: 3349: 3330: 3325: 3310: 3309: 3305: 3230: 3216: 3207: 3188: 3186: 3185: 3180: 3166: 3165: 3164: 3163: 3137: 3136: 3135: 3134: 3122: 3121: 3086: 3079: 3072: 3068: 3061: 3055: 3051: 3047: 3033: 3031: 3030: 3025: 3023: 3022: 3018: 3017: 2990: 2963: 2962: 2940: 2936: 2932: 2926: 2911: 2903: 2897: 2889: 2879: 2877: 2876: 2871: 2869: 2853: 2852: 2821: 2820: 2795: 2794: 2785: 2784: 2768: 2764: 2763: 2755: 2745: 2744: 2718: 2716: 2715: 2710: 2705: 2703: 2702: 2701: 2673: 2670: 2669: 2668: 2663: 2604: 2603: 2582: 2581: 2562: 2548: 2544: 2534: 2532: 2531: 2526: 2521: 2520: 2507: 2474: 2473: 2454: 2450: 2446: 2440: 2430: 2406: 2396: 2383: 2375: 2371: 2353: 2349: 2331: 2327: 2323: 2316: 2309: 2301: 2294: 2290: 2286: 2261: 2252:from the set of 2234: 2226: 2201: 2190: 2186: 2178: 2176: 2175: 2170: 2119: 2118: 2106: 2102: 2101: 2093: 2067: 2065: 2064: 2059: 2057: 2056: 2011: 2010: 1950: 1948: 1947: 1942: 1930: 1928: 1927: 1922: 1914: 1897: 1859: 1857: 1856: 1851: 1827: 1816: 1809: 1797: 1784: 1773: 1771: 1770: 1765: 1751: 1750: 1723: 1719: 1717: 1703: 1689: 1671: 1663: 1650: 1640: 1629: 1606:upper half-plane 1603: 1588: 1586: 1585: 1580: 1578: 1574: 1550: 1546: 1517: 1513: 1512: 1463: 1449: 1446: 1431: 1406: 1392:Modular function 1383: 1381: 1380: 1375: 1370: 1362: 1361: 1356: 1353: 1330: 1328: 1327: 1322: 1314: 1306: 1305: 1300: 1291: 1290: 1272: 1271: 1249: 1247: 1246: 1241: 1226: 1224: 1223: 1218: 1207: 1206: 1191: 1190: 1175: 1174: 1162: 1161: 1136: 1134: 1133: 1128: 1116: 1114: 1113: 1108: 1096: 1094: 1093: 1088: 1083: 1075: 1074: 1069: 1066: 1034: 1032: 1031: 1026: 1009: 1006: 997: 995: 994: 989: 960: 959: 925: 923: 922: 917: 912: 904: 903: 898: 895: 871: 869: 868: 863: 854: 846: 845: 840: 837: 831: 830: 782: 780: 779: 774: 762: 760: 759: 754: 734: 686: 684: 683: 678: 661: 658: 649: 647: 646: 641: 618: 617: 583: 581: 580: 575: 570: 562: 561: 556: 553: 535: 533: 532: 527: 513: 512: 457: 455: 454: 449: 426:upper half-plane 423: 421: 420: 415: 413: 405: 404: 381: 379: 378: 373: 361: 359: 358: 353: 338:arithmetic group 331: 329: 328: 323: 318: 310: 309: 304: 301: 263: 261: 260: 255: 250: 242: 241: 236: 221: 213: 212: 207: 159:complex analysis 133: 131: 130: 125: 122: 121: 106:upper half-plane 85: 78: 74: 71: 65: 45: 44: 37: 21: 7615: 7614: 7610: 7609: 7608: 7606: 7605: 7604: 7580: 7579: 7578: 7569: 7541: 7532:Delta invariant 7510: 7492: 7461: 7425: 7386:Abel–Jacobi map 7367: 7341: 7337:Torelli theorem 7307:Dessin d'enfant 7287:Belyi's theorem 7273: 7259:Plücker formula 7190: 7181:Hurwitz surface 7150: 7129: 7063: 7037:Analytic theory 7029:Elliptic curves 7023: 7004:Projective line 6991:Rational curves 6985: 6979: 6907: 6897:Springer-Verlag 6887: 6877: 6872: 6855: 6840: 6812: 6800: 6790:Springer-Verlag 6783: 6778: 6768:Springer-Verlag 6756:Apostol, Tom M. 6754: 6751: 6746: 6745: 6737: 6730: 6728:-Modular Forms" 6699: 6694: 6693: 6689: 6688: 6684: 6675: 6668: 6667: 6663: 6652: 6651: 6647: 6633: 6632: 6628: 6606: 6596:Springer-Verlag 6580: 6579: 6575: 6567: 6554: 6553: 6549: 6539: 6538: 6534: 6526: 6519: 6514: 6513: 6509: 6495: 6494: 6487: 6482: 6477: 6476: 6447: 6446: 6441: 6435: 6434: 6429: 6419: 6413: 6412: 6411:Here, a matrix 6410: 6406: 6381: 6377: 6368: 6366: 6358: 6339: 6338: 6336: 6332: 6327: 6315: 6267:from about 1925 6239: 6228: 6222: 6219: 6204: 6188: 6177: 6122: 6121: 6082: 6014: 6000: 5994: 5986: 5985: 5961: 5911: 5910: 5899: 5893: 5857: 5825: 5792: 5785: 5783:Generalizations 5773: 5767: 5729: 5716: 5691: 5678: 5673: 5672: 5642: 5620: 5615: 5614: 5589: 5588: 5565: 5564: 5545: 5544: 5525: 5524: 5518: 5512: 5507: 5499:Fuchsian groups 5479: 5446: 5410: 5409: 5405: 5401: 5397: 5393: 5389: 5377: 5373: 5372:For a subgroup 5370: 5364: 5317: 5239: 5208: 5146: 5145: 5116: 5115: 5095: 5094: 5087: 5064: 5060: 5057: 5056: 5029: 5012: 5008: 5001: 4969: 4965: 4955: 4940: 4935: 4934: 4930:. For example, 4923: 4910: 4905: 4896: 4891: 4880: 4868:= Γ(1) = SL(2, 4864: 4851: 4841: 4824: 4819: 4810: 4805: 4793: 4789: 4781: 4769: 4766: 4737: 4724:, i.e. subsets 4684: 4673: 4644: 4638: 4615: 4614: 4522: 4521: 4516: 4510: 4509: 4504: 4494: 4492: 4488: 4481: 4466: 4465: 4400: 4399: 4394: 4388: 4387: 4382: 4372: 4370: 4366: 4359: 4340: 4331: 4330: 4314:Riemann surface 4300:(a matrix with 4297: 4276:Hausdorff space 4256: 4245: 4244:. Such a group 4233: 4229: 4226: 4190: 4176: 4163: 4162: 4155: 4134: 4125: 4120: 4091: 4087: 4081: 4080:(equivalently, 4074: 4069:A modular form 4048: 4030:elliptic curves 3970: 3965: 3964: 3923: 3913: 3869: 3868: 3813: 3812: 3771: 3761: 3717: 3716: 3653: 3639: 3633: 3625: 3624: 3619: 3599: 3598: 3593: 3587: 3586: 3581: 3571: 3565: 3564: 3510: 3498:Hecke operators 3490:quadratic forms 3455: 3451: 3447: 3439: 3411: 3364: 3341: 3293: 3273: 3272: 3262: 3226: 3215: 3209: 3206: 3199: 3193: 3155: 3150: 3126: 3113: 3108: 3103: 3102: 3096: 3081: 3078: 3074: 3070: 3063: 3057: 3053: 3049: 3042: 3009: 2992: 2954: 2949: 2948: 2938: 2934: 2928: 2924: 2905: 2899: 2895: 2884: 2867: 2866: 2844: 2837: 2812: 2809: 2808: 2786: 2776: 2769: 2750: 2746: 2736: 2727: 2726: 2693: 2677: 2658: 2595: 2573: 2568: 2567: 2550: 2546: 2543: 2539: 2509: 2465: 2460: 2459: 2452: 2448: 2442: 2437: 2432: 2425: 2413: 2398: 2385: 2381: 2373: 2366: 2351: 2333: 2329: 2325: 2318: 2314: 2307: 2296: 2292: 2291:and a variable 2288: 2271: 2264:complex numbers 2257: 2246: 2232: 2208: 2195: 2188: 2184: 2110: 2088: 2084: 2076: 2075: 2051: 2050: 2045: 2039: 2038: 2033: 2023: 2005: 2004: 1999: 1993: 1992: 1984: 1974: 1962: 1961: 1933: 1932: 1862: 1861: 1830: 1829: 1821: 1814: 1807: 1786: 1778: 1742: 1704: 1690: 1684: 1676: 1675: 1665: 1655: 1646: 1634: 1608: 1597: 1507: 1506: 1501: 1495: 1494: 1489: 1479: 1475: 1474: 1470: 1440: 1439: 1429: 1426: 1421: 1397: 1394: 1351: 1340: 1339: 1295: 1263: 1258: 1257: 1232: 1231: 1198: 1179: 1166: 1153: 1142: 1141: 1119: 1118: 1099: 1098: 1064: 1053: 1052: 1041: 1000: 999: 948: 928: 927: 893: 882: 881: 835: 825: 824: 819: 813: 812: 807: 797: 785: 784: 765: 764: 692: 691: 652: 651: 650:is bounded for 606: 586: 585: 551: 540: 539: 504: 460: 459: 434: 433: 388: 387: 364: 363: 344: 343: 299: 288: 287: 284: 228: 199: 194: 193: 110: 109: 100:is a (complex) 86: 75: 69: 66: 58:help improve it 55: 46: 42: 35: 28: 23: 22: 15: 12: 11: 5: 7613: 7611: 7603: 7602: 7597: 7592: 7582: 7581: 7575: 7574: 7571: 7570: 7568: 7567: 7562: 7557: 7551: 7549: 7547:Vector bundles 7543: 7542: 7540: 7539: 7534: 7529: 7524: 7519: 7514: 7508: 7502: 7500: 7494: 7493: 7491: 7490: 7485: 7480: 7475: 7469: 7467: 7463: 7462: 7460: 7459: 7454: 7449: 7444: 7439: 7433: 7431: 7427: 7426: 7424: 7423: 7418: 7413: 7408: 7403: 7398: 7393: 7388: 7382: 7380: 7373: 7369: 7368: 7366: 7365: 7360: 7355: 7349: 7347: 7343: 7342: 7340: 7339: 7334: 7329: 7324: 7319: 7314: 7309: 7304: 7299: 7294: 7289: 7283: 7281: 7275: 7274: 7272: 7271: 7266: 7261: 7256: 7251: 7246: 7241: 7236: 7231: 7226: 7221: 7216: 7211: 7206: 7200: 7198: 7192: 7191: 7189: 7188: 7183: 7178: 7173: 7168: 7162: 7160: 7156: 7155: 7152: 7151: 7149: 7148: 7143: 7137: 7135: 7131: 7130: 7128: 7127: 7122: 7117: 7112: 7107: 7102: 7097: 7092: 7087: 7082: 7077: 7071: 7069: 7065: 7064: 7062: 7061: 7056: 7051: 7046: 7040: 7038: 7031: 7025: 7024: 7022: 7021: 7016: 7014:Riemann sphere 7011: 7006: 7001: 6995: 6993: 6987: 6986: 6980: 6978: 6977: 6970: 6963: 6955: 6949: 6948: 6943: 6905: 6885: 6875: 6870: 6853: 6838: 6810: 6799:978-0387232294 6798: 6781: 6776: 6750: 6747: 6744: 6743: 6717: 6714: 6711: 6706: 6702: 6682: 6680:, Theorem 6.1. 6661: 6645: 6626: 6604: 6598:, p. 24, 6573: 6565: 6547: 6532: 6515:Lan, Kai-Wen. 6507: 6484: 6483: 6481: 6478: 6475: 6474: 6451: 6445: 6442: 6440: 6437: 6436: 6433: 6430: 6428: 6425: 6424: 6422: 6404: 6375: 6346: 6329: 6328: 6326: 6323: 6322: 6321: 6314: 6311: 6276: 6275: 6268: 6261: 6254: 6241: 6240: 6191: 6189: 6182: 6176: 6173: 6156: 6153: 6150: 6147: 6144: 6141: 6138: 6135: 6132: 6129: 6118: 6117: 6106: 6103: 6100: 6097: 6094: 6089: 6085: 6081: 6078: 6075: 6072: 6069: 6066: 6063: 6060: 6057: 6054: 6051: 6048: 6045: 6042: 6039: 6036: 6032: 6026: 6023: 6020: 6017: 6012: 6009: 6006: 6003: 5997: 5993: 5968: 5964: 5960: 5957: 5954: 5951: 5948: 5945: 5942: 5939: 5936: 5933: 5930: 5927: 5924: 5921: 5918: 5810:eigenfunctions 5784: 5781: 5769:Main article: 5766: 5763: 5750: 5747: 5744: 5741: 5736: 5732: 5728: 5723: 5719: 5715: 5712: 5709: 5706: 5703: 5698: 5694: 5690: 5685: 5681: 5660: 5657: 5654: 5649: 5645: 5641: 5638: 5635: 5632: 5627: 5623: 5602: 5599: 5596: 5572: 5552: 5532: 5514:Main article: 5511: 5508: 5506: 5503: 5488:Pierre Deligne 5464: 5461: 5458: 5453: 5449: 5443: 5440: 5437: 5433: 5429: 5426: 5423: 5420: 5417: 5395: 5366:Main article: 5363: 5360: 5305:) =  5273:) =  5238: 5235: 5206: 5153: 5142:floor function 5129: 5126: 5123: 5112: 5111: 5098: 5088: 5086: 5083: 5079: 5075: 5071: 5067: 5063: 5059: 5058: 5054: 5051: 5047: 5044: 5039: 5036: 5033: 5030: 5027: 5023: 5019: 5015: 5011: 5007: 5006: 5004: 4999: 4995: 4991: 4987: 4983: 4980: 4977: 4968: 4962: 4958: 4954: 4948: 4943: 4908: 4894: 4879: 4876: 4849: 4822: 4808: 4765: 4762: 4682: 4671: 4636: 4629: 4628: 4613: 4609: 4604: 4601: 4597: 4594: 4589: 4586: 4583: 4580: 4577: 4574: 4571: 4568: 4565: 4562: 4559: 4556: 4553: 4549: 4545: 4542: 4539: 4531: 4526: 4520: 4517: 4515: 4512: 4511: 4508: 4505: 4503: 4500: 4499: 4497: 4491: 4487: 4484: 4482: 4480: 4477: 4474: 4471: 4468: 4467: 4463: 4458: 4455: 4451: 4448: 4443: 4440: 4437: 4434: 4431: 4427: 4423: 4420: 4417: 4409: 4404: 4398: 4395: 4393: 4390: 4389: 4386: 4383: 4381: 4378: 4377: 4375: 4369: 4365: 4362: 4360: 4358: 4355: 4352: 4347: 4343: 4339: 4338: 4225: 4218: 4202: 4199: 4196: 4193: 4188: 4185: 4182: 4179: 4173: 4170: 4154: 4151: 4123: 4101:) is called a 4085: 4034:elliptic curve 3977: 3973: 3955:-expansion of 3949: 3948: 3947: 3946: 3935: 3930: 3926: 3920: 3916: 3910: 3905: 3902: 3899: 3896: 3892: 3888: 3885: 3882: 3879: 3876: 3847: 3844: 3841: 3838: 3835: 3832: 3829: 3826: 3823: 3820: 3809: 3808: 3807: 3806: 3795: 3790: 3787: 3784: 3781: 3778: 3774: 3768: 3764: 3758: 3753: 3750: 3747: 3744: 3740: 3736: 3733: 3730: 3727: 3724: 3711: 3710: 3707:Fourier series 3699: 3687: 3684: 3681: 3678: 3675: 3671: 3665: 3662: 3659: 3656: 3651: 3648: 3645: 3642: 3636: 3632: 3618:modular group 3603: 3597: 3594: 3592: 3589: 3588: 3585: 3582: 3580: 3577: 3576: 3574: 3558: 3509: 3506: 3479:Pierre Deligne 3450:for any prime 3397: 3396: 3385: 3380: 3377: 3374: 3371: 3367: 3363: 3360: 3356: 3353: 3348: 3344: 3340: 3337: 3334: 3329: 3324: 3321: 3318: 3314: 3308: 3304: 3300: 3296: 3292: 3289: 3286: 3283: 3280: 3268:is defined as 3213: 3204: 3197: 3190: 3189: 3178: 3175: 3172: 3169: 3162: 3158: 3153: 3149: 3146: 3143: 3140: 3133: 3129: 3125: 3120: 3116: 3111: 3094: 3076: 3035: 3034: 3021: 3016: 3012: 3008: 3005: 3002: 2999: 2995: 2989: 2986: 2983: 2979: 2975: 2972: 2969: 2966: 2961: 2957: 2943:theta function 2890:is needed for 2883:The condition 2881: 2880: 2865: 2862: 2859: 2856: 2851: 2847: 2843: 2840: 2838: 2836: 2833: 2830: 2827: 2824: 2819: 2815: 2811: 2810: 2807: 2804: 2801: 2798: 2793: 2789: 2783: 2779: 2775: 2772: 2770: 2767: 2761: 2758: 2753: 2749: 2743: 2739: 2735: 2734: 2720: 2719: 2708: 2700: 2696: 2692: 2689: 2686: 2683: 2680: 2676: 2667: 2662: 2657: 2654: 2651: 2648: 2645: 2642: 2639: 2636: 2633: 2630: 2627: 2624: 2620: 2616: 2613: 2610: 2607: 2602: 2598: 2594: 2591: 2588: 2585: 2580: 2576: 2541: 2536: 2535: 2524: 2519: 2516: 2512: 2506: 2503: 2500: 2497: 2494: 2490: 2486: 2483: 2480: 2477: 2472: 2468: 2435: 2412: 2409: 2378: 2377: 2363:absolute value 2359: 2311: 2262:to the set of 2245: 2242: 2241: 2240: 2237:Fourier series 2231:, with period 2217:+ 1) =   2204: 2203: 2181: 2180: 2179: 2168: 2165: 2162: 2159: 2156: 2153: 2150: 2147: 2144: 2141: 2138: 2134: 2131: 2128: 2125: 2122: 2117: 2113: 2109: 2105: 2099: 2096: 2091: 2087: 2083: 2070: 2069: 2068: 2055: 2049: 2046: 2044: 2041: 2040: 2037: 2034: 2032: 2029: 2028: 2026: 2021: 2018: 2014: 2009: 2003: 2000: 1998: 1995: 1994: 1991: 1988: 1985: 1983: 1980: 1979: 1977: 1972: 1969: 1956: 1955: 1952: 1940: 1920: 1917: 1913: 1909: 1906: 1903: 1900: 1896: 1891: 1887: 1884: 1881: 1878: 1875: 1872: 1869: 1849: 1846: 1843: 1840: 1837: 1818: 1811: 1800: 1799: 1776: 1775: 1774: 1763: 1760: 1757: 1754: 1749: 1745: 1741: 1738: 1735: 1732: 1729: 1726: 1722: 1716: 1713: 1710: 1707: 1702: 1699: 1696: 1693: 1687: 1683: 1652: 1594:complex-valued 1590: 1589: 1577: 1573: 1570: 1567: 1564: 1561: 1558: 1555: 1549: 1545: 1541: 1538: 1535: 1532: 1529: 1526: 1523: 1520: 1516: 1511: 1505: 1502: 1500: 1497: 1496: 1493: 1490: 1488: 1485: 1484: 1482: 1477: 1473: 1469: 1466: 1462: 1458: 1455: 1452: 1425: 1422: 1420: 1417: 1393: 1390: 1373: 1369: 1365: 1360: 1350: 1347: 1320: 1317: 1313: 1309: 1304: 1299: 1294: 1289: 1284: 1281: 1278: 1275: 1270: 1266: 1239: 1216: 1213: 1210: 1205: 1201: 1197: 1194: 1189: 1186: 1182: 1178: 1173: 1169: 1165: 1160: 1156: 1152: 1149: 1126: 1106: 1086: 1082: 1078: 1073: 1063: 1060: 1040: 1037: 1036: 1035: 1024: 1021: 1018: 1015: 1012: 987: 984: 981: 978: 975: 972: 969: 966: 963: 958: 955: 951: 947: 944: 941: 938: 935: 915: 911: 907: 902: 892: 889: 860: 857: 853: 849: 844: 834: 829: 823: 820: 818: 815: 814: 811: 808: 806: 803: 802: 800: 795: 792: 772: 752: 749: 746: 743: 740: 737: 733: 729: 726: 723: 720: 717: 714: 711: 708: 705: 702: 699: 688: 687: 676: 673: 670: 667: 664: 639: 636: 633: 630: 627: 624: 621: 616: 613: 609: 605: 602: 599: 596: 593: 573: 569: 565: 560: 550: 547: 536: 525: 522: 519: 516: 511: 507: 503: 500: 497: 494: 491: 488: 485: 482: 479: 476: 473: 470: 467: 447: 444: 441: 412: 408: 403: 398: 395: 371: 351: 321: 317: 313: 308: 298: 295: 283: 280: 253: 249: 245: 240: 235: 232: 227: 224: 220: 216: 211: 206: 203: 171:sphere packing 155: 154: 151: 120: 88: 87: 49: 47: 40: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 7612: 7601: 7598: 7596: 7593: 7591: 7590:Modular forms 7588: 7587: 7585: 7566: 7563: 7561: 7558: 7556: 7553: 7552: 7550: 7548: 7544: 7538: 7535: 7533: 7530: 7528: 7525: 7523: 7520: 7518: 7515: 7513: 7511: 7504: 7503: 7501: 7499: 7498:Singularities 7495: 7489: 7486: 7484: 7481: 7479: 7476: 7474: 7471: 7470: 7468: 7464: 7458: 7455: 7453: 7450: 7448: 7445: 7443: 7440: 7438: 7435: 7434: 7432: 7428: 7422: 7419: 7417: 7414: 7412: 7409: 7407: 7404: 7402: 7399: 7397: 7394: 7392: 7389: 7387: 7384: 7383: 7381: 7377: 7374: 7370: 7364: 7361: 7359: 7356: 7354: 7351: 7350: 7348: 7346:Constructions 7344: 7338: 7335: 7333: 7330: 7328: 7325: 7323: 7320: 7318: 7317:Klein quartic 7315: 7313: 7310: 7308: 7305: 7303: 7300: 7298: 7297:Bolza surface 7295: 7293: 7292:Bring's curve 7290: 7288: 7285: 7284: 7282: 7280: 7276: 7270: 7267: 7265: 7262: 7260: 7257: 7255: 7252: 7250: 7247: 7245: 7242: 7240: 7237: 7235: 7232: 7230: 7227: 7225: 7224:Conic section 7222: 7220: 7217: 7215: 7212: 7210: 7207: 7205: 7204:AF+BG theorem 7202: 7201: 7199: 7197: 7193: 7187: 7184: 7182: 7179: 7177: 7174: 7172: 7169: 7167: 7164: 7163: 7161: 7157: 7147: 7144: 7142: 7139: 7138: 7136: 7132: 7126: 7123: 7121: 7118: 7116: 7113: 7111: 7108: 7106: 7103: 7101: 7098: 7096: 7093: 7091: 7088: 7086: 7083: 7081: 7078: 7076: 7073: 7072: 7070: 7066: 7060: 7057: 7055: 7052: 7050: 7047: 7045: 7042: 7041: 7039: 7035: 7032: 7030: 7026: 7020: 7019:Twisted cubic 7017: 7015: 7012: 7010: 7007: 7005: 7002: 7000: 6997: 6996: 6994: 6992: 6988: 6984: 6976: 6971: 6969: 6964: 6962: 6957: 6956: 6953: 6947: 6944: 6941: 6937: 6933: 6929: 6925: 6921: 6917: 6916: 6911: 6906: 6903: 6898: 6894: 6890: 6886: 6883: 6882: 6876: 6873: 6871:0-521-21212-X 6867: 6863: 6860:, Cambridge: 6859: 6854: 6851: 6848:, Göttingen: 6847: 6843: 6839: 6836: 6831: 6827: 6823: 6819: 6815: 6811: 6808: 6807: 6801: 6795: 6791: 6787: 6782: 6779: 6777:0-387-97127-0 6773: 6769: 6764: 6763: 6757: 6753: 6752: 6748: 6736: 6729: 6712: 6704: 6686: 6683: 6674: 6673: 6665: 6662: 6656: 6649: 6646: 6641: 6637: 6630: 6627: 6623: 6619: 6615: 6611: 6607: 6601: 6597: 6593: 6592: 6591:Modular units 6587: 6583: 6577: 6574: 6568: 6566:3-540-15295-4 6562: 6558: 6551: 6548: 6544:. p. 51. 6543: 6536: 6533: 6525: 6518: 6511: 6508: 6503: 6499: 6492: 6490: 6486: 6479: 6471: 6467: 6449: 6443: 6438: 6431: 6426: 6420: 6408: 6405: 6401: 6397: 6393: 6389: 6385: 6379: 6376: 6365: 6364:dlmf.nist.gov 6361: 6344: 6334: 6331: 6324: 6320: 6317: 6316: 6312: 6310: 6308: 6304: 6300: 6296: 6292: 6287: 6285: 6281: 6273: 6269: 6266: 6262: 6259: 6255: 6252: 6248: 6247: 6246: 6237: 6234: 6226: 6216: 6212: 6208: 6202: 6201: 6197: 6192:This section 6190: 6186: 6181: 6180: 6174: 6172: 6170: 6151: 6148: 6145: 6142: 6139: 6136: 6133: 6127: 6120:The function 6104: 6098: 6092: 6087: 6079: 6076: 6073: 6070: 6061: 6058: 6055: 6052: 6049: 6046: 6043: 6037: 6034: 6030: 6024: 6021: 6018: 6015: 6010: 6007: 6004: 6001: 5995: 5991: 5984: 5983: 5982: 5966: 5958: 5955: 5952: 5949: 5940: 5937: 5934: 5931: 5928: 5925: 5922: 5916: 5908: 5904: 5902: 5890: 5888: 5884: 5880: 5877: 5873: 5871: 5867: 5861: 5855: 5851: 5847: 5845: 5841: 5837: 5833: 5829: 5823: 5819: 5815: 5811: 5808: 5807:real-analytic 5804: 5800: 5796: 5790: 5789:Haar measures 5782: 5780: 5778: 5772: 5764: 5762: 5742: 5734: 5721: 5717: 5713: 5704: 5696: 5683: 5679: 5655: 5647: 5639: 5633: 5625: 5600: 5597: 5594: 5586: 5570: 5550: 5530: 5522: 5517: 5509: 5504: 5502: 5500: 5495: 5493: 5489: 5483: 5476: 5451: 5447: 5441: 5438: 5435: 5431: 5427: 5415: 5387: 5381: 5369: 5361: 5359: 5356: 5354: 5350: 5346: 5342: 5338: 5333: 5331: 5327: 5323: 5315: 5311: 5308: 5304: 5300: 5296: 5292: 5288: 5284: 5280: 5276: 5272: 5268: 5264: 5260: 5256: 5252: 5248: 5244: 5236: 5234: 5232: 5228: 5224: 5220: 5216: 5212: 5205: 5202: 5198: 5194: 5190: 5186: 5182: 5178: 5174: 5170: 5165: 5151: 5143: 5124: 5084: 5081: 5077: 5073: 5069: 5065: 5061: 5049: 5045: 5037: 5034: 5031: 5025: 5021: 5017: 5013: 5009: 5002: 4997: 4993: 4981: 4978: 4966: 4960: 4956: 4952: 4941: 4933: 4932: 4931: 4929: 4921: 4915: 4911: 4901: 4897: 4889: 4885: 4877: 4875: 4871: 4867: 4862: 4859: 4855: 4847: 4839: 4835: 4829: 4825: 4815: 4811: 4803: 4799: 4787: 4779: 4775: 4763: 4761: 4759: 4755: 4751: 4747: 4743: 4735: 4731: 4727: 4723: 4719: 4715: 4711: 4706: 4704: 4700: 4696: 4692: 4688: 4681: 4677: 4670: 4666: 4662: 4658: 4654: 4651:, the spaces 4648: 4642: 4634: 4611: 4607: 4599: 4595: 4587: 4584: 4581: 4578: 4575: 4572: 4569: 4566: 4563: 4560: 4557: 4554: 4543: 4540: 4529: 4524: 4518: 4513: 4506: 4501: 4495: 4489: 4485: 4483: 4475: 4461: 4453: 4449: 4441: 4438: 4435: 4432: 4421: 4418: 4407: 4402: 4396: 4391: 4384: 4379: 4373: 4367: 4363: 4361: 4353: 4345: 4329: 4328: 4327: 4326: 4322: 4317: 4315: 4311: 4307: 4303: 4295: 4294: 4289: 4285: 4281: 4277: 4273: 4269: 4266: 4260: 4254: 4250: 4243: 4237: 4223: 4219: 4217: 4200: 4197: 4194: 4191: 4186: 4183: 4180: 4177: 4168: 4160: 4152: 4150: 4148: 4147: 4141: 4137: 4132: 4126: 4118: 4114: 4110: 4106: 4105: 4098: 4094: 4084: 4077: 4072: 4067: 4065: 4061: 4057: 4054: 4046: 4042: 4038: 4035: 4031: 4026: 4024: 4020: 4015: 4013: 4009: 4005: 4001: 3997: 3993: 3975: 3971: 3962: 3958: 3954: 3933: 3928: 3924: 3918: 3914: 3903: 3900: 3897: 3894: 3890: 3886: 3880: 3874: 3867: 3866: 3865: 3864: 3863: 3861: 3842: 3839: 3836: 3833: 3827: 3824: 3821: 3818: 3793: 3788: 3785: 3782: 3779: 3776: 3772: 3766: 3762: 3751: 3748: 3745: 3742: 3738: 3734: 3728: 3722: 3715: 3714: 3713: 3712: 3708: 3704: 3700: 3682: 3676: 3673: 3669: 3663: 3660: 3657: 3654: 3649: 3646: 3643: 3640: 3634: 3630: 3622: 3601: 3595: 3590: 3583: 3578: 3572: 3563: 3559: 3557: 3554: 3550: 3546: 3543: 3542: 3541: 3539: 3535: 3531: 3528:. A function 3527: 3523: 3519: 3515: 3507: 3505: 3503: 3499: 3495: 3491: 3486: 3484: 3480: 3476: 3472: 3468: 3464: 3459: 3443: 3437: 3433: 3429: 3428:Leech lattice 3423: 3419: 3415: 3410: 3406: 3402: 3383: 3378: 3375: 3372: 3369: 3365: 3361: 3358: 3354: 3346: 3342: 3338: 3335: 3322: 3319: 3316: 3312: 3306: 3302: 3298: 3294: 3290: 3284: 3278: 3271: 3270: 3269: 3267: 3261: 3256: 3255: 3251: 3249: 3245: 3241: 3237: 3234: 3229: 3224: 3220: 3212: 3203: 3196: 3176: 3170: 3160: 3156: 3151: 3147: 3141: 3131: 3127: 3123: 3118: 3114: 3109: 3101: 3100: 3099: 3097: 3090: 3084: 3067: 3060: 3045: 3040: 3019: 3014: 3006: 3000: 2997: 2993: 2987: 2984: 2981: 2977: 2973: 2967: 2959: 2955: 2947: 2946: 2945: 2944: 2931: 2923: 2918: 2917: 2913: 2909: 2902: 2893: 2887: 2863: 2857: 2849: 2845: 2841: 2839: 2831: 2828: 2825: 2817: 2813: 2805: 2799: 2791: 2787: 2781: 2777: 2773: 2771: 2765: 2759: 2756: 2751: 2747: 2741: 2737: 2725: 2724: 2723: 2706: 2698: 2690: 2687: 2684: 2681: 2674: 2665: 2655: 2649: 2646: 2643: 2637: 2631: 2628: 2625: 2618: 2614: 2608: 2600: 2596: 2592: 2578: 2574: 2566: 2565: 2564: 2561: 2558: 2554: 2522: 2517: 2514: 2510: 2501: 2498: 2495: 2492: 2488: 2484: 2470: 2466: 2458: 2457: 2456: 2445: 2438: 2428: 2423: 2418: 2417: 2410: 2408: 2405: 2401: 2395: 2392: 2388: 2369: 2364: 2360: 2357: 2347: 2344: 2340: 2336: 2321: 2312: 2305: 2299: 2285: 2282: 2278: 2275: 2269: 2268: 2267: 2265: 2260: 2255: 2251: 2243: 2238: 2230: 2224: 2220: 2216: 2212: 2206: 2205: 2199: 2193: 2182: 2163: 2157: 2154: 2148: 2145: 2142: 2136: 2132: 2126: 2120: 2115: 2111: 2107: 2103: 2097: 2094: 2089: 2085: 2081: 2074: 2073: 2071: 2053: 2047: 2042: 2035: 2030: 2024: 2019: 2016: 2012: 2007: 2001: 1996: 1989: 1986: 1981: 1975: 1970: 1967: 1960: 1959: 1958: 1957: 1953: 1938: 1918: 1915: 1904: 1898: 1885: 1882: 1876: 1870: 1867: 1847: 1844: 1841: 1838: 1835: 1825: 1819: 1812: 1805: 1804: 1803: 1795: 1794: 1789: 1782: 1777: 1758: 1752: 1747: 1739: 1736: 1733: 1730: 1724: 1720: 1714: 1711: 1708: 1705: 1700: 1697: 1694: 1691: 1685: 1681: 1674: 1673: 1669: 1662: 1658: 1653: 1649: 1644: 1638: 1633: 1632: 1631: 1627: 1623: 1619: 1615: 1611: 1607: 1601: 1595: 1575: 1571: 1568: 1565: 1562: 1559: 1556: 1553: 1547: 1539: 1536: 1533: 1530: 1527: 1524: 1521: 1518: 1514: 1509: 1503: 1498: 1491: 1486: 1480: 1471: 1467: 1456: 1453: 1438: 1437: 1436: 1435: 1434:modular group 1423: 1418: 1416: 1414: 1410: 1404: 1400: 1391: 1389: 1387: 1358: 1348: 1337: 1331: 1302: 1292: 1273: 1264: 1254: 1253: 1252:modular curve 1237: 1227: 1203: 1199: 1195: 1187: 1184: 1180: 1176: 1167: 1158: 1154: 1150: 1147: 1138: 1124: 1071: 1061: 1050: 1046: 1038: 1013: 985: 973: 967: 961: 956: 953: 945: 942: 939: 936: 926:the function 900: 890: 887: 879: 878: 877: 875: 858: 842: 832: 827: 821: 816: 809: 804: 798: 793: 790: 770: 747: 744: 741: 738: 731: 724: 721: 718: 715: 709: 703: 697: 665: 631: 625: 619: 614: 611: 603: 600: 597: 594: 584:the function 558: 548: 545: 537: 520: 514: 509: 501: 498: 495: 492: 486: 477: 471: 465: 442: 439: 431: 430: 429: 427: 396: 393: 386: 382: 369: 339: 335: 306: 296: 281: 279: 277: 272: 270: 265: 238: 225: 209: 191: 187: 183: 178: 176: 175:string theory 172: 168: 164: 163:number theory 160: 152: 149: 148:modular group 145: 141: 137: 136: 135: 107: 103: 99: 95: 84: 81: 73: 70:February 2024 63: 59: 53: 50:This article 48: 39: 38: 33: 19: 7506: 7483:Prym variety 7457:Stable curve 7447:Hodge bundle 7437:ELSV formula 7239:Fermat curve 7196:Plane curves 7159:Higher genus 7134:Applications 7059:Modular form 7058: 6919: 6913: 6901: 6892: 6880: 6857: 6845: 6842:Hecke, Erich 6834: 6817: 6803: 6785: 6766:, New York: 6761: 6685: 6678:, p. 88 6671: 6664: 6654: 6648: 6635: 6629: 6590: 6576: 6556: 6550: 6535: 6510: 6501: 6469: 6465: 6407: 6399: 6391: 6378: 6367:. Retrieved 6363: 6333: 6291:Andrew Wiles 6288: 6277: 6244: 6229: 6223:October 2019 6220: 6205:Please help 6193: 6119: 5905: 5897: 5891: 5881: 5876:Jacobi forms 5874: 5869: 5859: 5848: 5839: 5834: 5827: 5801: 5794: 5786: 5774: 5584: 5519: 5496: 5481: 5477: 5379: 5371: 5357: 5344: 5336: 5334: 5329: 5325: 5321: 5313: 5309: 5306: 5302: 5298: 5294: 5286: 5282: 5278: 5274: 5270: 5266: 5262: 5258: 5254: 5250: 5246: 5240: 5237:Line bundles 5230: 5226: 5222: 5218: 5214: 5210: 5203: 5192: 5184: 5180: 5176: 5166: 5140:denotes the 5113: 4927: 4913: 4906: 4899: 4892: 4887: 4883: 4881: 4878:Consequences 4869: 4865: 4860: 4857: 4853: 4845: 4837: 4833: 4827: 4820: 4813: 4806: 4804:are denoted 4801: 4797: 4785: 4777: 4773: 4767: 4757: 4753: 4745: 4741: 4733: 4729: 4725: 4721: 4713: 4709: 4707: 4702: 4698: 4694: 4690: 4686: 4679: 4675: 4668: 4667:are denoted 4664: 4660: 4656: 4652: 4646: 4640: 4632: 4630: 4320: 4318: 4309: 4305: 4291: 4287: 4283: 4280:compactified 4271: 4267: 4258: 4252: 4235: 4227: 4221: 4158: 4156: 4146:modular unit 4144: 4142: 4135: 4130: 4121: 4116: 4108: 4102: 4096: 4092: 4082: 4075: 4070: 4068: 4064:moduli space 4059: 4055: 4040: 4036: 4027: 4022: 4018: 4016: 4011: 4007: 4003: 3999: 3995: 3991: 3956: 3952: 3950: 3810: 3702: 3555: 3551:in the open 3544: 3537: 3533: 3529: 3525: 3521: 3513: 3511: 3487: 3457: 3441: 3421: 3417: 3413: 3400: 3398: 3263: 3253: 3252: 3227: 3210: 3201: 3194: 3191: 3082: 3065: 3058: 3043: 3036: 2929: 2919: 2915: 2914: 2907: 2900: 2885: 2882: 2721: 2559: 2556: 2552: 2537: 2443: 2433: 2431:, we define 2426: 2419: 2415: 2414: 2403: 2399: 2393: 2390: 2386: 2379: 2367: 2358:of the form. 2355: 2345: 2342: 2338: 2334: 2319: 2297: 2283: 2280: 2276: 2273: 2258: 2249: 2247: 2222: 2218: 2214: 2210: 2197: 1823: 1801: 1792: 1787: 1780: 1667: 1660: 1656: 1647: 1636: 1625: 1617: 1613: 1609: 1599: 1591: 1427: 1402: 1398: 1395: 1333: 1256: 1229: 1140: 1042: 873: 689: 341: 336:, called an 334:finite index 285: 273: 266: 179: 156: 144:group action 98:modular form 97: 91: 76: 67: 51: 32:Haar measure 7512:singularity 7358:Polar curve 6586:Lang, Serge 6464:sends ∞ to 6384:meromorphic 6357:, see e.g. 6307:square root 6265:Erich Hecke 6258:Felix Klein 5818:holomorphic 5803:Maass forms 5386:graded ring 5353:line bundle 5291:homogeneous 4926:-action on 4740:-action on 4109:Spitzenform 4053:j-invariant 3549:meromorphic 3407:. Then the 3240:isospectral 3219:John Milnor 3089:root system 2892:convergence 1806:The weight 1413:meromorphic 1409:holomorphic 1117:and weight 1045:line bundle 362:and weight 269:Erich Hecke 94:mathematics 7584:Categories 7353:Dual curve 6981:Topics in 6910:Zagier, D. 6749:References 6622:0492.12002 6369:2023-07-07 5887:Lie groups 5765:Cusp forms 5297:, letting 5175:one (over 4844:. In case 4772:of weight 4764:Definition 4732:such that 4290:, i.e. in 4119:such that 4045:isomorphic 3238:which are 3062:such that 2894:; for odd 1931:, meaning 1860:such that 1802:Remarks: 1628:) > 0}, 282:Definition 186:Lie groups 138:a kind of 7466:Morphisms 7214:Bitangent 6701:Γ 6480:Citations 6398:as exp(1/ 6345:γ 6305:with the 6194:does not 6128:ε 6038:ε 5917:ε 5814:Laplacian 5777:cusp form 5771:Cusp form 5731:Γ 5714:⊆ 5693:Γ 5644:Γ 5640:⊆ 5622:Γ 5598:∣ 5585:old forms 5563:dividing 5521:New forms 5510:New forms 5460:Γ 5432:⨁ 5422:Γ 5164:is even. 5128:⌋ 5125:⋅ 5122:⌊ 5091:otherwise 5035:≡ 4953:⁡ 4585:≡ 4579:≡ 4567:≡ 4561:≡ 4530:∈ 4470:Γ 4439:≡ 4408:∈ 4342:Γ 4172:↦ 4104:cusp form 3909:∞ 3901:− 3891:∑ 3837:π 3828:⁡ 3783:π 3757:∞ 3749:− 3739:∑ 3436:Ramanujan 3416:) = (2π) 3373:π 3339:− 3328:∞ 3313:∏ 3279:η 3244:isometric 3152:ϑ 3124:× 3110:ϑ 3011:‖ 3007:λ 3004:‖ 2998:π 2985:∈ 2982:λ 2978:∑ 2956:ϑ 2858:τ 2826:τ 2800:τ 2778:τ 2760:τ 2752:− 2691:τ 2656:∈ 2638:≠ 2619:∑ 2609:τ 2587:Λ 2515:− 2511:λ 2505:Λ 2502:∈ 2499:λ 2496:≠ 2489:∑ 2479:Λ 2090:− 1987:− 1890:⟹ 1871:⁡ 1596:function 1560:− 1540:∈ 1346:Γ 1293:∪ 1280:∖ 1277:Γ 1269:Γ 1238:ω 1212:Γ 1185:⊗ 1181:ω 1172:Γ 1151:∈ 1105:Γ 1062:⊂ 1059:Γ 1023:∞ 1020:→ 983:→ 968:γ 954:− 891:∈ 888:γ 874:cusp form 833:∈ 791:γ 771:γ 698:γ 675:∞ 672:→ 626:γ 612:− 549:∈ 546:γ 472:γ 446:Γ 443:∈ 440:γ 424:from the 407:→ 350:Γ 297:⊂ 294:Γ 226:⊂ 6924:Springer 6891:(1973), 6844:(1970), 6816:(1975), 6758:(1990), 6735:Archived 6588:(1981), 6524:Archived 6313:See also 6289:In 1994 5345:sections 5078:⌋ 5062:⌊ 5026:⌋ 5010:⌊ 4039:/Λ over 3532: : 3492:and the 3242:but not 2563:we have 2411:Examples 2397:, where 2254:lattices 2221: ( 2213: ( 2192:generate 1813:For odd 1654:For any 1432:for the 1401: ( 7537:Tacnode 7522:Crunode 6928:Bibcode 6926:: 113, 6830:0379375 6643:, p. 13 6614:0648603 6540:Milne. 6215:removed 6200:sources 6175:History 5812:of the 5376:of the 5199:of the 5197:closure 5195:in the 3862:), as: 3616:in the 3467:Shimura 3463:Eichler 3233:compact 3091:called 3080:. When 2332:, then 2295:, then 2209:  1826:  1822:  1783:  1779:  1639:  1635:  1604:on the 1602:  1598:  146:of the 104:on the 56:Please 7517:Acnode 7430:Moduli 6868:  6828:  6796:  6774:  6620:  6612:  6602:  6563:  6502:Quanta 6402:) has. 5858:SL(2, 5826:SL(2, 5480:SL(2, 5378:SL(2, 5225:) and 5114:where 4863:. For 4796:. The 4689:) and 4678:) and 4263:. The 4257:SL(2, 4234:SL(2, 4113:German 3562:matrix 3477:, and 3399:where 2888:> 2 2549:. For 2429:> 2 2356:weight 2350:where 2302:is an 2207:Since 2196:SL(2, 2072:reads 1666:SL(2, 1551:  1230:where 1051:. For 690:where 173:, and 6738:(PDF) 6731:(PDF) 6676:(PDF) 6571:p. 15 6527:(PDF) 6520:(PDF) 6325:Notes 5613:then 5505:Types 5349:sheaf 5347:of a 5189:poles 4858:level 4750:genus 4643:) or 4302:trace 4284:cusps 4242:index 3475:Ihara 3246:(see 2538:Then 2341:Λ) = 1641:is a 1592:is a 383:is a 7527:Cusp 6866:ISBN 6794:ISBN 6772:ISBN 6600:ISBN 6561:ISBN 6388:pole 6198:any 6196:cite 5805:are 5490:and 5439:> 5144:and 4904:and 4818:and 4720:for 4659:and 4631:For 4249:acts 4228:Let 3860:nome 3471:Kuga 3405:nome 3264:The 3223:tori 3208:and 2904:and 2722:and 2551:Λ = 2361:The 2272:Λ = 2187:and 1916:< 1883:> 1845:> 340:, a 96:, a 6936:doi 6618:Zbl 6390:at 6263:By 6256:By 6209:by 5398:(Γ) 5332:). 5233:). 5191:of 5046:mod 4942:dim 4848:= Γ 4752:of 4697:), 4635:= Γ 4596:mod 4450:mod 4251:on 4133:at 4127:≠ 0 4111:in 4088:= 0 4078:= 0 3825:exp 3547:is 3456:≤ 2 3434:of 3250:.) 3085:= 8 3056:in 2927:in 2920:An 2451:of 2439:(Λ) 2370:(Λ) 2365:of 2348:(Λ) 2328:by 2313:If 2306:of 2300:(Λ) 2256:in 1645:on 1612:= { 1407:be 1047:on 998:as 332:of 92:In 60:to 7586:: 6934:, 6922:, 6920:94 6918:, 6900:. 6864:, 6833:. 6826:MR 6824:, 6792:, 6770:, 6733:. 6616:, 6610:MR 6608:, 6584:; 6522:. 6500:. 6488:^ 6382:A 6362:. 5889:. 5846:. 5793:Δ( 5775:A 5761:. 5501:. 5475:. 5303:cv 5271:cv 5245:P( 5231:Nz 5074:12 5050:12 5022:12 4972:SL 4728:⊂ 4645:Γ( 4534:SL 4412:SL 4224:\H 4143:A 4140:. 4095:= 3623:, 3536:→ 3504:. 3473:, 3469:, 3465:, 3440:Δ( 3412:Δ( 3307:24 3214:16 3200:× 3161:16 3046:/2 2906:(− 2555:+ 2455:: 2407:. 2402:∈ 2389:+ 2279:+ 1868:Im 1790:→ 1659:∈ 1622:Im 1620:, 1616:∈ 1447:SL 1388:. 1354:SL 1067:SL 1007:im 896:SL 838:SL 659:im 554:SL 302:SL 278:. 271:. 264:. 177:. 169:, 108:, 7509:k 7507:A 6974:e 6967:t 6960:v 6938:: 6930:: 6904:. 6837:. 6809:. 6716:) 6713:N 6710:( 6705:1 6569:. 6504:. 6472:. 6470:c 6468:/ 6466:a 6450:) 6444:d 6439:c 6432:b 6427:a 6421:( 6400:q 6392:q 6372:. 6236:) 6230:( 6225:) 6221:( 6217:. 6203:. 6155:) 6152:d 6149:, 6146:c 6143:, 6140:b 6137:, 6134:a 6131:( 6105:. 6102:) 6099:z 6096:( 6093:f 6088:k 6084:) 6080:d 6077:+ 6074:z 6071:c 6068:( 6065:) 6062:d 6059:, 6056:c 6053:, 6050:b 6047:, 6044:a 6041:( 6035:= 6031:) 6025:d 6022:+ 6019:z 6016:c 6011:b 6008:+ 6005:z 6002:a 5996:( 5992:f 5967:k 5963:) 5959:d 5956:+ 5953:z 5950:c 5947:( 5944:) 5941:d 5938:, 5935:c 5932:, 5929:b 5926:, 5923:a 5920:( 5900:k 5894:k 5862:) 5860:R 5840:n 5830:) 5828:Z 5797:) 5795:g 5749:) 5746:) 5743:N 5740:( 5735:1 5727:( 5722:k 5718:M 5711:) 5708:) 5705:M 5702:( 5697:1 5689:( 5684:k 5680:M 5659:) 5656:M 5653:( 5648:1 5637:) 5634:N 5631:( 5626:1 5601:N 5595:M 5571:N 5551:M 5531:N 5484:) 5482:Z 5463:) 5457:( 5452:k 5448:M 5442:0 5436:k 5428:= 5425:) 5419:( 5416:M 5406:Γ 5402:k 5396:k 5394:M 5390:Γ 5382:) 5380:Z 5374:Γ 5337:V 5330:V 5326:k 5322:k 5318:k 5314:v 5312:( 5310:F 5307:c 5301:( 5299:F 5295:c 5287:F 5283:c 5279:v 5277:( 5275:F 5269:( 5267:F 5263:V 5259:v 5255:V 5251:F 5247:V 5229:( 5227:j 5223:z 5221:( 5219:j 5215:N 5213:( 5211:N 5207:Γ 5204:R 5193:f 5185:f 5181:f 5177:C 5152:k 5085:1 5082:+ 5070:/ 5066:k 5053:) 5043:( 5038:2 5032:k 5018:/ 5014:k 5003:{ 4998:= 4994:) 4990:) 4986:Z 4982:, 4979:2 4976:( 4967:( 4961:k 4957:M 4947:C 4928:H 4924:G 4916:) 4914:G 4912:( 4909:k 4907:S 4902:) 4900:G 4898:( 4895:k 4893:M 4888:H 4886:\ 4884:G 4872:) 4870:Z 4866:G 4861:N 4854:N 4852:( 4850:0 4846:G 4842:G 4838:H 4836:\ 4834:G 4830:) 4828:G 4826:( 4823:k 4821:S 4816:) 4814:G 4812:( 4809:k 4807:M 4802:k 4798:C 4794:G 4790:G 4786:H 4782:G 4778:H 4774:k 4770:G 4758:H 4756:\ 4754:G 4746:D 4742:H 4738:G 4734:D 4730:H 4726:D 4722:G 4714:H 4712:\ 4710:G 4703:N 4701:( 4699:X 4695:N 4693:( 4691:Y 4687:N 4685:( 4683:0 4680:X 4676:N 4674:( 4672:0 4669:Y 4665:H 4663:\ 4661:G 4657:H 4655:\ 4653:G 4649:) 4647:N 4641:N 4639:( 4637:0 4633:G 4612:. 4608:} 4603:) 4600:N 4593:( 4588:1 4582:d 4576:a 4573:, 4570:0 4564:b 4558:c 4555:: 4552:) 4548:Z 4544:, 4541:2 4538:( 4525:) 4519:d 4514:c 4507:b 4502:a 4496:( 4490:{ 4486:= 4479:) 4476:N 4473:( 4462:} 4457:) 4454:N 4447:( 4442:0 4436:c 4433:: 4430:) 4426:Z 4422:, 4419:2 4416:( 4403:) 4397:d 4392:c 4385:b 4380:a 4374:( 4368:{ 4364:= 4357:) 4354:N 4351:( 4346:0 4321:N 4310:H 4308:\ 4306:G 4298:G 4293:Q 4288:H 4272:H 4270:\ 4268:G 4261:) 4259:Z 4253:H 4246:G 4238:) 4236:Z 4230:G 4222:G 4201:d 4198:+ 4195:z 4192:c 4187:b 4184:+ 4181:z 4178:a 4169:z 4159:f 4138:∞ 4136:i 4131:f 4124:n 4122:a 4117:n 4107:( 4099:∞ 4097:i 4093:z 4086:0 4083:a 4076:q 4071:f 4060:z 4058:( 4056:j 4049:α 4041:C 4037:C 4023:f 4019:f 4012:q 4008:q 4004:n 4000:f 3996:m 3992:f 3976:n 3972:a 3959:( 3957:f 3953:q 3934:. 3929:n 3925:q 3919:n 3915:a 3904:m 3898:= 3895:n 3887:= 3884:) 3881:z 3878:( 3875:f 3846:) 3843:z 3840:i 3834:2 3831:( 3822:= 3819:q 3794:. 3789:z 3786:n 3780:i 3777:2 3773:e 3767:n 3763:a 3752:m 3746:= 3743:n 3735:= 3732:) 3729:z 3726:( 3723:f 3703:f 3698:. 3686:) 3683:z 3680:( 3677:f 3674:= 3670:) 3664:d 3661:+ 3658:z 3655:c 3650:b 3647:+ 3644:z 3641:a 3635:( 3631:f 3620:Γ 3602:) 3596:d 3591:c 3584:b 3579:a 3573:( 3556:H 3545:f 3538:C 3534:H 3530:f 3522:f 3514:k 3458:p 3452:p 3448:q 3444:) 3442:z 3424:) 3422:z 3420:( 3418:η 3414:z 3401:q 3384:. 3379:z 3376:i 3370:2 3366:e 3362:= 3359:q 3355:, 3352:) 3347:n 3343:q 3336:1 3333:( 3323:1 3320:= 3317:n 3303:/ 3299:1 3295:q 3291:= 3288:) 3285:z 3282:( 3228:R 3211:L 3205:8 3202:L 3198:8 3195:L 3177:, 3174:) 3171:z 3168:( 3157:L 3148:= 3145:) 3142:z 3139:( 3132:8 3128:L 3119:8 3115:L 3095:8 3093:E 3083:n 3077:n 3075:L 3071:v 3066:v 3064:2 3059:R 3054:v 3050:n 3044:n 3020:z 3015:2 3001:i 2994:e 2988:L 2974:= 2971:) 2968:z 2965:( 2960:L 2939:L 2935:n 2930:R 2925:L 2910:) 2908:λ 2901:λ 2896:k 2886:k 2864:. 2861:) 2855:( 2850:k 2846:G 2842:= 2835:) 2832:1 2829:+ 2823:( 2818:k 2814:G 2806:, 2803:) 2797:( 2792:k 2788:G 2782:k 2774:= 2766:) 2757:1 2748:( 2742:k 2738:G 2707:, 2699:k 2695:) 2688:n 2685:+ 2682:m 2679:( 2675:1 2666:2 2661:Z 2653:) 2650:n 2647:, 2644:m 2641:( 2635:) 2632:0 2629:, 2626:0 2623:( 2615:= 2612:) 2606:( 2601:k 2597:G 2593:= 2590:) 2584:( 2579:k 2575:G 2560:τ 2557:Z 2553:Z 2547:k 2542:k 2540:G 2523:. 2518:k 2493:0 2485:= 2482:) 2476:( 2471:k 2467:G 2453:Λ 2449:λ 2444:λ 2436:k 2434:G 2427:k 2404:H 2400:τ 2394:τ 2391:Z 2387:Z 2382:F 2374:Λ 2368:F 2352:k 2346:F 2343:α 2339:α 2337:( 2335:F 2330:α 2326:Λ 2322:Λ 2320:α 2315:α 2310:. 2308:z 2298:F 2293:z 2289:α 2284:z 2281:Z 2277:α 2274:Z 2259:C 2250:F 2239:. 2233:1 2225:) 2223:z 2219:f 2215:z 2211:f 2200:) 2198:Z 2189:T 2185:S 2167:) 2164:z 2161:( 2158:f 2155:= 2152:) 2149:1 2146:+ 2143:z 2140:( 2137:f 2133:, 2130:) 2127:z 2124:( 2121:f 2116:k 2112:z 2108:= 2104:) 2098:z 2095:1 2086:( 2082:f 2054:) 2048:1 2043:0 2036:1 2031:1 2025:( 2020:= 2017:T 2013:, 2008:) 2002:0 1997:1 1990:1 1982:0 1976:( 1971:= 1968:S 1939:f 1919:D 1912:| 1908:) 1905:z 1902:( 1899:f 1895:| 1886:M 1880:) 1877:z 1874:( 1848:0 1842:D 1839:, 1836:M 1824:f 1815:k 1808:k 1798:. 1796:∞ 1793:i 1788:z 1781:f 1762:) 1759:z 1756:( 1753:f 1748:k 1744:) 1740:d 1737:+ 1734:z 1731:c 1728:( 1725:= 1721:) 1715:d 1712:+ 1709:z 1706:c 1701:b 1698:+ 1695:z 1692:a 1686:( 1682:f 1670:) 1668:Z 1661:H 1657:z 1651:. 1648:H 1637:f 1626:z 1624:( 1618:C 1614:z 1610:H 1600:f 1576:} 1572:1 1569:= 1566:c 1563:b 1557:d 1554:a 1548:, 1544:Z 1537:d 1534:, 1531:c 1528:, 1525:b 1522:, 1519:a 1515:| 1510:) 1504:d 1499:c 1492:b 1487:a 1481:( 1472:{ 1468:= 1465:) 1461:Z 1457:, 1454:2 1451:( 1430:k 1405:) 1403:z 1399:f 1372:) 1368:Z 1364:( 1359:2 1349:= 1319:) 1316:) 1312:Q 1308:( 1303:1 1298:P 1288:H 1283:( 1274:= 1265:X 1215:) 1209:( 1204:k 1200:M 1196:= 1193:) 1188:k 1177:, 1168:X 1164:( 1159:0 1155:H 1148:f 1125:k 1085:) 1081:Z 1077:( 1072:2 1017:) 1014:z 1011:( 986:0 980:) 977:) 974:z 971:( 965:( 962:f 957:k 950:) 946:d 943:+ 940:z 937:c 934:( 914:) 910:Z 906:( 901:2 859:. 856:) 852:Z 848:( 843:2 828:) 822:d 817:c 810:b 805:a 799:( 794:= 751:) 748:d 745:+ 742:z 739:c 736:( 732:/ 728:) 725:b 722:+ 719:z 716:a 713:( 710:= 707:) 704:z 701:( 669:) 666:z 663:( 638:) 635:) 632:z 629:( 623:( 620:f 615:k 608:) 604:d 601:+ 598:z 595:c 592:( 572:) 568:Z 564:( 559:2 524:) 521:z 518:( 515:f 510:k 506:) 502:d 499:+ 496:z 493:c 490:( 487:= 484:) 481:) 478:z 475:( 469:( 466:f 411:C 402:H 397:: 394:f 370:k 320:) 316:Z 312:( 307:2 252:) 248:R 244:( 239:2 234:L 231:S 223:) 219:Z 215:( 210:2 205:L 202:S 150:, 119:H 83:) 77:( 72:) 68:( 54:. 34:. 20:)

Index

Elliptic modular form
Haar measure
help improve it
make it understandable to non-experts
Learn how and when to remove this message
mathematics
analytic function
upper half-plane
functional equation
group action
modular group
complex analysis
number theory
algebraic topology
sphere packing
string theory
automorphic forms
Lie groups
discrete subgroups
Erich Hecke
Galois representation
finite index
arithmetic group
holomorphic function
upper half-plane
line bundle
modular varieties
modular curve
Riemann–Roch theorem
moduli stack of elliptic curves

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.