Knowledge

ESCRT

Source πŸ“

445: 537:-like protein that associates with microtubules. Cep55 then recruits the Vps23 subunit of ESCRT-I and accessory protein ALIX, which form into rings on either side of the midbody. ESCRT-I and ALIX recruit ESCRT-III via its Snf7 subunit. ESCRT-III subunits Vps20, Snf7, Vps24, Vps2, and Did2 form into a spiral-shaped fibril adjacent to the rings formed by Vps23. The formation of this spiral-like structure deforms the membrane and the AAA-ATPase spastin is brought in by Did2 and Ist1 to cleave the microtubules formed at the midbody. Vps4 then 359:, then Vps2) for the machinery to function. Nonessential subunits include Vps60, Did2, and Ist1. Vps20 initiates assembly of ESCRT-III by acting as a nucleator of Snf7 polymer assembly. Vps24 then associates with Snf7 to cap the complex and recruit Vps2. Vps2 then brings Vps4 to the complex. All β€œfree” cytosolic forms of each subunit are considered closed. That is, the carboxy-terminal portion of each subunit folds up onto itself in an autoinhibitory manner stabilizing the 499: 1911: 333:(WH) motifs of Vps22 and Vps36 creating a Y-shaped complex with Vps22 and Vps36 as the base and Vps25 molecules as arms. Vps25 molecules also contain WH motifs that are responsible for the interaction of ESCRT-II with ESCRT-III. Vps36 contains a GLUE domain that binds phosphatidylinositol 3-phosphate and Vps28 of ESCRT-I. Two 551: 394:
The Vps4-Vta1 proteins are required for the stripping of other ESCRT components (usually ESCRT-III) from membranes once a particular process has been completed. There is some debate as to whether Vps4 cleaves the ESCRT-III complex away or remodels the complex so one component is shed at a particular
345:
The ESCRT-III complex is likely the most important of all the ESCRT machinery because it plays a role in all ESCRT mediated processes. During membrane abscission and viral budding, ESCRT-III forms long filaments that coil around the site of membrane constriction just prior to membrane cleavage. This
313:
The ESCRT-II complex functions primarily during the biogenesis of multivesicular bodies and delivery of ubiquitin tagged proteins to the endosome. Ubiquitin tagged proteins are passed from ESCRT-0 to ESCRT-I and then to ESCRT-II. ESCRT-II associates with ESCRT-III, which pinches the cargo containing
594:
of the ESCRT-I complex and the ALIX accessory protein. ESCRT-III subunits (only CHMP4 and CHMP2 being essential) are recruited to the site of viral budding to constrict and sever the neck of the bud in a manner similar to that described for membrane abscission during cytokinesis. Vps4 then recycles
428:
to the ESCRT-III complex. This results in the removal of ubiquitin tags from proteins targeted for degradation in the lysosome just prior to the generation of multivesicular bodies. It has also been speculated that Bro1 helps stabilize ESCRT-III while ubiquitin tags are cleaved from cargo proteins.
557:
A) Accumulation of viral proteins under the cell membrane causes the virus to protrude outward. B) A constriction is formed by the ESCRT complexes at the base of membrane protrusion causing formation of a virus containing vesicle. C) The bud pinches off leaving a free extracellular virion. (Photo
227:
The role of the ESCRT-I complex is to assist in the generation of multivesicular bodies by clustering ubiquitinated proteins and acting as a bridge between the ESCRT-0 and ESCRT-II complexes. It also plays a role in membrane recognition and remodeling during membrane abscission by forming rings on
459:
play a large role in the transport of ubiquitinated proteins and receptors to a lysosome. ESCRT complexes transport ubiquitinated cargo to cellular vesicles that bud directly into the cell’s endosomal compartment, forming multivesicular bodies. These multivesicular bodies eventually fuse with the
398:
Vps4 subunits have two functional domains, an amino-terminal MIT domain and a central AAA-ATPase domain. The MIT domain is responsible for the interaction of Vps4 with the MIM domain of Vps2. The AAA-ATPase domain hydrolyzes ATP to power disassembly of the ESCRT-III complex. This β€œstripping” of
232:
of dividing cells. ESCRT-I is also responsible for recruiting ESCRT-III, which forms the constriction zone just before the cells separate. Furthermore, ESCRT-I plays a role in viral budding by interacting with specific viral proteins, leading to recruitment of additional ESCRT machinery to the
122: 451:
Membrane bound proteins are taken into the cell via endocytosis. Ubiquitin tags on the protein are recognized by ESCRT machinery and recruited to the endosome. Multivesicular bodies are formed, which then fuse with the lysosome where these proteins are degraded. Adapted
350:
complex. These filamentous structures are also present during multivesicular body formation and function as a ring-like fence that plugs the budding vesicle to prevent cargo proteins from escaping into the cell's cytosol. ESCRT-III exists and functions as follows:
105:(HSP). Cellular abscission, the process by which the membrane connecting two daughter cells is cleaved, is also mediated by ESCRT machinery. Without the ESCRT complexes, daughter cells could not separate and abnormal cells containing twice the amount of 415:
IP5), which enables binding to Vps4, and a MIT domain for associating with ESCRT-III subunit Vps60. Though not essential, Vta1 has been shown to aid in Vps4 ring assembly, accelerate the ATPase activity of Vsp4, and encourage ESCRT-III disassembly.
541:
the disassembly of the ESCRT-III complex resulting in two newly separated daughter cells. The process of membrane abscission was described using metazoan proteins as the process has been studied to a greater extent in metazoans.
354:
The ESCRT-III complex differs from all other ESCRT machinery in that it exists only transiently and contains both essential and nonessential components. The essential subunits must assemble in the proper order (Vps20, Snf7,
210:
TAM proteins). These VHS domains bind the ubiquitin on proteins the cell aims to degrade. Ubiquitin can also associate with ubiquitin interacting motifs such as the one on Hse1 or the double sided domain found on Vps27. A
129:
Each of the ESCRT complexes and accessory proteins have unique structures that enable distinct biochemical functions. A number of synonyms exist for each protein component of the ESCRT machinery, both for yeast and
113:. Lastly, viral budding, or the process by which specific types of viruses exit cells, may not occur in the absence of ESCRT machinery. This would inevitably prevent viruses from spreading from cell to cell. 595:
the ESCRT-III components to the cytosol and the virus is released from the cell. The mechanism described here utilizes metazoan proteins, as viral budding has been studied more extensively in metazoans.
505:
Cep-55 binds MKLP1. Cep-55 recruits ESCRT-I and ALIX. ESCRT-I and ALIX recruit ESCRT-III. ESCRT-III forms spiral around membrane neck between daughter cells leading to constriction and cleavage. Adapted
215:(named after the four proteins in which it was initially identified: Fab1p, YOTB, Vac1, and EEA1) is found sandwiched between the VHS and ubiquitin interacting motif domains of Vps27. 337:
domains are looped into the GLUE domain of yeast Vps36. One of these zinc finger domains binds the carboxy-terminal domain of Vps28 and the other associates with ubiquitin.
395:
time. Vta1 is thought to act as an activator of Vps4, aiding its assembly and enhancing its AAA-ATPase activity. The manner in which these proteins function is as follows:
436:
domain of Doa4, an ubiquitin hydrolase (deubiquitinase), bringing it to the site of abscission. Doa4 removes ubiquitin from cargo proteins being targeted to the lysosome.
590:, require ESCRT machinery to exit the host cell. The process is initiated by viral Gag proteins, the major structural proteins of retroviral coats, which interact with 248:
of Vps23, Vps28, and Vps37. Vps23 contains one ubiquitin E2 variant domain, which is responsible for the binding of ubiquitin, the ESCRT-0 complex, and to the PTAP (
42:
protein complexes, known as ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III. Together with a number of accessory proteins, these ESCRT complexes enable a unique mode of
432:
Bro1 contains a Bro1 amino-terminal domain that binds to Snf7 of ESCRT-III. This binding brings Bro1 to the site of membrane abscission. Bro1 also binds the
244:, Vps37, and Mvb12. The assembled heterotetramer appears as a rod-shaped stalk composed of Vps23, Vps37, and Mvb12 with a fanned cap composed of single 161:
where they are degraded. This process is essential as it is the major pathway for the degradation of damaged proteins that have passed through the
97:. This process is essential for cells to destroy misfolded and damaged proteins. Without ESCRT machinery, these proteins can build up and lead to 1856:"Recruitment of MKLP1 to the spindle midzone/midbody by INCENP is essential for midbody formation and completion of cytokinesis in human cells" 839: 489:
rings upon which Vta1 binds. This Vps4-Vta1 complex triggers the disassembly of ESCRT-III and marks the end of multivesicular body formation.
460:
lysosome causing degradation of the cargo. A more in-depth description of the process, including associated machinery, exists as follows:
145:
The ESCRT-0 complex plays a vital role in the generation of multivesicular bodies by binding and clustering ubiquitinated proteins and/or
1111:"Comparative genomics reveals selective distribution and domain organization of FYVE and PX domain proteins across eukaryotic lineages" 157:, these proteins are then taken into the endosome via vesicles, forming multivesicular bodies, and are eventually delivered to the 216: 94: 467:
Vps27 binds to phosphatidylinositol 3-phosphate, an endosomal lipid, which then recruits the entire complex to an endosome.
102: 822:
Samson, RY; Dobro, MJ; Jensen, GJ; Bell, SD (2017). "The Structure, Function and Roles of the Archaeal ESCRT Apparatus".
470:
Vps27 binds the Vps23 subunit of ESCRT-I, bringing ESCRT-I to the endosome. ESCRT-I can also bind ubiquitinated proteins.
55: 1480:"ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation" 185: 281:
Y) is present that directs ESCRT-I to the midbody during membrane abscission. Mvb12 can also bind ubiquitin via its
1901: 579: 17: 219:, a common endosomal lipid, binds to this FYVE domain resulting in the recruitment of ESCRT-0 to the endosome. 173: 154: 444: 525:, membrane abscission is considered to be the earliest role for ESCRT machinery. The process begins when the 425: 146: 363:
subunits. The carboxy-terminus of most ESCRT-III subunits, both essential and nonessential, contain MIMs (
274: 229: 1931: 285:. Vps28 is responsible for the interaction of ESCRT-I and ESCRT-II by associating with the GLUE domain ( 558:
provided by Dr. Matthew Gonda (Wikimedia Commons: Nov. 1998), National Cancer Institute Image ID: 2382)
498: 101:
disease. For example, abnormalities in ESCRT-III components can lead to neurological disorders such as
1540: 1450: 1016: 1936: 473:
Vps36 associates with ESCRT-I subunit Vps28, resulting in the recruitment of the ESCRT-II complex.
195: 153:
on the endosomal membrane, which recruits these tagged proteins to the endosome. Once properly
1885: 1836: 1787: 1727: 1675: 1617: 1568: 1527:
Scott A, Gaspar J, Stuchell-Brereton MD, Alam SL, Skalicky JJ, Sundquist WI (September 2005).
1509: 1432: 1376: 1322: 1258: 1194: 1142: 1091: 1042: 985: 897: 845: 835: 804: 732: 680: 181: 98: 1773: 883: 403:
is a dimeric protein containing one VSL domain (so named because it is found in the proteins
1875: 1867: 1826: 1818: 1777: 1769: 1717: 1709: 1665: 1657: 1607: 1599: 1558: 1548: 1499: 1491: 1422: 1414: 1366: 1358: 1312: 1304: 1248: 1240: 1184: 1176: 1163:
Morita E, Sandrin V, McCullough J, Katsuyama A, Baci Hamilton I, Sundquist WI (March 2011).
1132: 1122: 1081: 1073: 1032: 1024: 975: 967: 887: 879: 827: 794: 786: 722: 714: 670: 662: 538: 433: 330: 1588:"Recycling of ESCRTs by the AAA-ATPase Vps4 is regulated by a conserved VSL region in Vta1" 121: 50:. These ESCRT components have been isolated and studied in a number of organisms including 1455: 347: 162: 109:
would be generated. These cells would inevitably be destroyed through a process known as
1544: 1020: 233:
potential site of viral release. Details of the ESCRT-I machinery are described below.
1915: 1880: 1855: 1831: 1806: 1782: 1757: 1722: 1697: 1670: 1645: 1612: 1587: 1563: 1528: 1504: 1479: 1427: 1402: 1371: 1346: 1317: 1292: 1253: 1228: 1189: 1164: 1137: 1110: 1086: 1061: 1037: 1004: 980: 955: 892: 867: 799: 774: 727: 702: 675: 650: 583: 237: 1586:
Azmi I, Davies B, Dimaano C, Payne J, Eckert D, Babst M, Katzmann DJ (February 2006).
1925: 1661: 1398: 1062:"VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo" 703:"MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between" 518: 517:
is the process by which the membrane connecting two daughter cells is cleaved during
78: 43: 380: 302: 191:
GAT (so named after proteins GGA and Tom1) domains. Both Vps27 and Hse1 contain an
69:
The ESCRT machinery plays a vital role in a number of cellular processes including
1244: 971: 831: 1758:"The ESCRT complexes: structure and mechanism of a membrane-trafficking network" 587: 514: 476:
Vps25 subunit of ESCRT-II binds to and activates Vps20 of the ESCRT-III complex.
368: 334: 245: 212: 188: 169: 1910: 1529:"Structure and ESCRT-III protein interactions of the MIT domain of human VPS4A" 1180: 570:
are released from within cells via the hijacking of host cell ESCRT machinery.
1698:"Bro1 binding to Snf7 regulates ESCRT-III membrane scission activity in yeast" 1308: 718: 666: 571: 526: 282: 192: 74: 59: 449:
Trafficking of membrane bound proteins to the lysosome using ESCRT machinery.
1553: 1127: 775:"Membrane budding and scission by the ESCRT machinery: it's all in the neck" 479:
Vps20 nucleates the formation of Snf7 strands that are then capped by Vps24.
360: 256: 110: 86: 82: 47: 1889: 1840: 1791: 1731: 1696:
Wemmer M, Azmi I, West M, Davies B, Katzmann D, Odorizzi G (January 2011).
1679: 1621: 1572: 1513: 1495: 1436: 1380: 1347:"No strings attached: the ESCRT machinery in viral budding and cytokinesis" 1326: 1262: 1198: 1146: 1095: 1046: 989: 901: 849: 808: 736: 684: 533:
is recruited to the midbody of dividing cells in association with MKLP1, a
149:
on the surface of a cell. The complex is then responsible for binding to a
1713: 1603: 1005:"Molecular mechanism of multivesicular body biogenesis by ESCRT complexes" 277:. Just after this ubiquitin E2 variant domain, a proline rich motif (GPPX 1077: 399:
ESCRT-III allows all associated subunits to be recycled for further use.
158: 90: 70: 1822: 1028: 1871: 1362: 534: 522: 486: 383: 263: 249: 137:
In yeast, the following complexes/accessory proteins exist as follows:
63: 39: 1229:"Assembly and disassembly of the ESCRT-III membrane scission complex" 591: 131: 1418: 790: 379:
otif) motifs. These motifs are responsible for binding Vps4 and the
464:
ESCRT-0 components Vps27 and Hse1 each bind to ubiquitinated cargo.
46:
remodeling that results in membranes bending/budding away from the
1807:"Abscission checkpoint control: stuck in the middle with Aurora B" 1403:"Dynamics of ESCRT protein recruitment during retroviral assembly" 567: 549: 530: 497: 443: 356: 326: 322: 318: 241: 150: 51: 314:
vesicle closed. The specific aspects of ESCRT-II are as follows:
550: 400: 177: 1451:"Cytokinesis: Centralspindlin Moonlights as a Membrane Anchor" 575: 134:. A summary table of all of these proteins is provided below. 106: 346:
mediation of abscission occurs through interactions with the
81:. Multivesicular body (MVB) biogenesis is a process in which 826:. Subcellular Biochemistry. Vol. 84. pp. 357–377. 329:
subunit. Vps25 molecules contain PPXY motifs, which bind to
165:. The components of the ESCRT-0 complex exist as follows: 1646:"Regulation of Vps4 during MVB sorting and cytokinesis" 1293:"Membrane abscission: first glimpse at dynamic ESCRTs" 482:
Vps24 recruits Vps2, which brings Vps4 to the complex.
1899: 317:
ESCRT-II is a heterotetramer (2:1:1) composed of two
1478:Teis D, Saksena S, Judson BL, Emr SD (March 2010). 1165:"ESCRT-III protein requirements for HIV-1 budding" 868:"Biogenesis and function of multivesicular bodies" 440:Multivesicular body biogenesis and cargo shuttling 125:Summary of ESCRT machinery and accessory proteins. 32:endosomal sorting complexes required for transport 18:Endosomal sorting complexes required for transport 1644:Babst M, Davies BA, Katzmann DJ (October 2011). 562:The release of viral particles, also known as 503:Recruitment of ESCRT Complexes to the Midbody. 8: 1854:Zhu C, Bossy-Wetzel E, Jiang W (July 2005). 1751: 1749: 1747: 1745: 1743: 1741: 301:AP45) of Vps36 through its carboxy-terminal 1392: 1390: 1340: 1338: 1336: 1291:Mueller M, Adell MA, Teis D (August 2012). 1345:McDonald B, Martin-Serrano J (July 2009). 1286: 1284: 1282: 1280: 1278: 1276: 1274: 1272: 768: 766: 644: 642: 640: 638: 636: 634: 632: 630: 628: 1879: 1830: 1781: 1721: 1691: 1689: 1669: 1639: 1637: 1635: 1633: 1631: 1611: 1562: 1552: 1503: 1426: 1370: 1316: 1252: 1188: 1158: 1156: 1136: 1126: 1085: 1036: 979: 949: 947: 945: 943: 941: 939: 937: 935: 933: 931: 891: 798: 764: 762: 760: 758: 756: 754: 752: 750: 748: 746: 726: 674: 626: 624: 622: 620: 618: 616: 614: 612: 610: 608: 1774:10.1146/annurev.biophys.35.040405.102126 1222: 1220: 1218: 1216: 1214: 1212: 1210: 1208: 929: 927: 925: 923: 921: 919: 917: 915: 913: 911: 884:10.1146/annurev.cellbio.23.090506.123319 424:The main function of Bro1 is to recruit 120: 1906: 1473: 1471: 1469: 1467: 1465: 861: 859: 696: 694: 604: 521:. Since it is conserved in a number of 117:ESCRT complexes and accessory proteins 1109:Banerjee S, Basu S, Sarkar S (2010). 198:(so named because it is contained in 7: 773:Hurley JH, Hanson PI (August 2010). 1003:Wollert T, Hurley JH (April 2010). 649:Schmidt O, Teis D (February 2012). 371:interacting and transport domain) 25: 1227:Adell MA, Teis D (October 2011). 27:Protein complexes in cell biology 1909: 1662:10.1111/j.1600-0854.2011.01230.x 217:Phosphatidylinositol 3-phosphate 58:, the machinery is found in all 1060:Ren X, Hurley JH (March 2010). 1762:Annu Rev Biophys Biomol Struct 866:Piper RC, Katzmann DJ (2007). 485:Vps4 forms a pore made of two 1: 1245:10.1016/j.febslet.2011.09.001 960:Crit. Rev. Biochem. Mol. Biol 566:, is a process by which free 103:hereditary spastic paraplegia 1533:Proc. Natl. Acad. Sci. U.S.A 972:10.3109/10409238.2010.502516 832:10.1007/978-3-319-53047-5_12 56:eukaryotic signature protein 954:Hurley JH (December 2010). 73:(MVB) biogenesis, cellular 1953: 1756:Hurley JH, Emr SD (2006). 1181:10.1016/j.chom.2011.02.004 580:human T-lymphotropic virus 555:Retroviral budding of HIV. 38:) machinery is made up of 1401:, Simon SM (April 2011). 1309:10.1016/j.cub.2012.06.063 872:Annu. Rev. Cell Dev. Biol 824:Prokaryotic Cytoskeletons 719:10.1016/j.ceb.2011.04.008 667:10.1016/j.cub.2012.01.028 582:, as well as a number of 236:The ESCRT-I complex is a 779:Nat. Rev. Mol. Cell Biol 174:vacuolar protein sorting 1805:Carmena M (July 2012). 1554:10.1073/pnas.0502165102 1397:Jouvenet N, Zhadina M, 1128:10.1186/1471-2164-11-83 701:Babst M (August 2011). 273:roline) motif of viral 85:-tagged proteins enter 1496:10.1038/emboj.2009.408 559: 507: 453: 126: 1714:10.1083/jcb.201007018 1604:10.1083/jcb.200508166 956:"The ESCRT complexes" 707:Curr. Opin. Cell Biol 651:"The ESCRT machinery" 553: 501: 457:Multivesicular bodies 447: 168:The complex is a 1:1 124: 93:via the formation of 1078:10.1038/emboj.2010.6 297:biquitin-binding in 240:(1:1:1:1) of Vps23, 228:either side of the 1823:10.1098/rsob.120095 1545:2005PNAS..10213813S 1029:10.1038/nature08849 1021:2010Natur.464..864W 511:Membrane abscission 494:Membrane abscission 71:multivesicular body 1872:10.1042/BJ20050097 1459:, 18 February 2013 1449:Glotzer, Michael. 1363:10.1242/jcs.028308 1357:(Pt 13): 2167–77. 560: 508: 454: 127: 1169:Cell Host Microbe 841:978-3-319-53045-1 584:enveloped viruses 303:four-helix bundle 180:. Vps27 and Hse1 99:neurodegenerative 16:(Redirected from 1944: 1914: 1913: 1905: 1894: 1893: 1883: 1866:(Pt 2): 373–81. 1851: 1845: 1844: 1834: 1802: 1796: 1795: 1785: 1753: 1736: 1735: 1725: 1693: 1684: 1683: 1673: 1656:(10): 1298–305. 1641: 1626: 1625: 1615: 1583: 1577: 1576: 1566: 1556: 1524: 1518: 1517: 1507: 1475: 1460: 1447: 1441: 1440: 1430: 1394: 1385: 1384: 1374: 1342: 1331: 1330: 1320: 1288: 1267: 1266: 1256: 1224: 1203: 1202: 1192: 1160: 1151: 1150: 1140: 1130: 1106: 1100: 1099: 1089: 1057: 1051: 1050: 1040: 1000: 994: 993: 983: 951: 906: 905: 895: 863: 854: 853: 819: 813: 812: 802: 770: 741: 740: 730: 698: 689: 688: 678: 646: 586:, including the 283:carboxy-terminus 176:protein 27) and 21: 1952: 1951: 1947: 1946: 1945: 1943: 1942: 1941: 1922: 1921: 1920: 1908: 1900: 1898: 1897: 1853: 1852: 1848: 1804: 1803: 1799: 1755: 1754: 1739: 1695: 1694: 1687: 1643: 1642: 1629: 1585: 1584: 1580: 1539:(39): 13813–8. 1526: 1525: 1521: 1477: 1476: 1463: 1456:Current Biology 1448: 1444: 1419:10.1038/ncb2207 1396: 1395: 1388: 1344: 1343: 1334: 1290: 1289: 1270: 1226: 1225: 1206: 1162: 1161: 1154: 1108: 1107: 1103: 1059: 1058: 1054: 1015:(7290): 864–9. 1002: 1001: 997: 953: 952: 909: 865: 864: 857: 842: 821: 820: 816: 791:10.1038/nrm2937 772: 771: 744: 700: 699: 692: 648: 647: 606: 601: 548: 535:mitotic kinesin 496: 442: 426:deubiquitinases 422: 392: 348:centralspindlin 343: 311: 280: 225: 143: 119: 28: 23: 22: 15: 12: 11: 5: 1950: 1948: 1940: 1939: 1934: 1924: 1923: 1919: 1918: 1896: 1895: 1846: 1797: 1737: 1708:(2): 295–306. 1685: 1627: 1578: 1519: 1461: 1442: 1413:(4): 394–401. 1407:Nat. Cell Biol 1386: 1332: 1303:(15): R603–5. 1268: 1239:(20): 3191–6. 1204: 1152: 1101: 1072:(6): 1045–54. 1052: 995: 907: 855: 840: 814: 742: 690: 661:(4): R116–20. 603: 602: 600: 597: 547: 544: 495: 492: 491: 490: 483: 480: 477: 474: 471: 468: 465: 441: 438: 421: 418: 391: 388: 342: 339: 321:subunits, one 310: 307: 278: 238:heterotetramer 224: 221: 193:amino-terminal 142: 139: 118: 115: 54:and humans. A 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1949: 1938: 1935: 1933: 1930: 1929: 1927: 1917: 1912: 1907: 1903: 1891: 1887: 1882: 1877: 1873: 1869: 1865: 1861: 1857: 1850: 1847: 1842: 1838: 1833: 1828: 1824: 1820: 1817:(7): 120095. 1816: 1812: 1808: 1801: 1798: 1793: 1789: 1784: 1779: 1775: 1771: 1767: 1763: 1759: 1752: 1750: 1748: 1746: 1744: 1742: 1738: 1733: 1729: 1724: 1719: 1715: 1711: 1707: 1703: 1699: 1692: 1690: 1686: 1681: 1677: 1672: 1667: 1663: 1659: 1655: 1651: 1647: 1640: 1638: 1636: 1634: 1632: 1628: 1623: 1619: 1614: 1609: 1605: 1601: 1598:(5): 705–17. 1597: 1593: 1589: 1582: 1579: 1574: 1570: 1565: 1560: 1555: 1550: 1546: 1542: 1538: 1534: 1530: 1523: 1520: 1515: 1511: 1506: 1501: 1497: 1493: 1490:(5): 871–83. 1489: 1485: 1481: 1474: 1472: 1470: 1468: 1466: 1462: 1458: 1457: 1452: 1446: 1443: 1438: 1434: 1429: 1424: 1420: 1416: 1412: 1408: 1404: 1400: 1393: 1391: 1387: 1382: 1378: 1373: 1368: 1364: 1360: 1356: 1352: 1348: 1341: 1339: 1337: 1333: 1328: 1324: 1319: 1314: 1310: 1306: 1302: 1298: 1294: 1287: 1285: 1283: 1281: 1279: 1277: 1275: 1273: 1269: 1264: 1260: 1255: 1250: 1246: 1242: 1238: 1234: 1230: 1223: 1221: 1219: 1217: 1215: 1213: 1211: 1209: 1205: 1200: 1196: 1191: 1186: 1182: 1178: 1175:(3): 235–42. 1174: 1170: 1166: 1159: 1157: 1153: 1148: 1144: 1139: 1134: 1129: 1124: 1120: 1116: 1112: 1105: 1102: 1097: 1093: 1088: 1083: 1079: 1075: 1071: 1067: 1063: 1056: 1053: 1048: 1044: 1039: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 999: 996: 991: 987: 982: 977: 973: 969: 966:(6): 463–87. 965: 961: 957: 950: 948: 946: 944: 942: 940: 938: 936: 934: 932: 930: 928: 926: 924: 922: 920: 918: 916: 914: 912: 908: 903: 899: 894: 889: 885: 881: 877: 873: 869: 862: 860: 856: 851: 847: 843: 837: 833: 829: 825: 818: 815: 810: 806: 801: 796: 792: 788: 785:(8): 556–66. 784: 780: 776: 769: 767: 765: 763: 761: 759: 757: 755: 753: 751: 749: 747: 743: 738: 734: 729: 724: 720: 716: 712: 708: 704: 697: 695: 691: 686: 682: 677: 672: 668: 664: 660: 656: 652: 645: 643: 641: 639: 637: 635: 633: 631: 629: 627: 625: 623: 621: 619: 617: 615: 613: 611: 609: 605: 598: 596: 593: 589: 585: 581: 577: 573: 569: 565: 564:viral budding 556: 552: 546:Viral budding 545: 543: 540: 536: 532: 528: 524: 520: 519:cell division 516: 512: 504: 500: 493: 488: 484: 481: 478: 475: 472: 469: 466: 463: 462: 461: 458: 450: 446: 439: 437: 435: 430: 427: 419: 417: 414: 410: 406: 402: 396: 389: 387: 385: 382: 378: 374: 370: 366: 362: 358: 352: 349: 340: 338: 336: 332: 328: 324: 320: 315: 308: 306: 304: 300: 296: 292: 288: 284: 276: 272: 268: 266: 261: 259: 254: 252: 247: 243: 239: 234: 231: 222: 220: 218: 214: 209: 205: 201: 197: 194: 190: 187: 183: 179: 175: 171: 166: 164: 160: 156: 152: 148: 140: 138: 135: 133: 123: 116: 114: 112: 108: 104: 100: 96: 92: 88: 84: 80: 79:viral budding 76: 72: 67: 65: 61: 57: 53: 49: 45: 41: 37: 33: 19: 1932:Cell anatomy 1863: 1859: 1849: 1814: 1810: 1800: 1765: 1761: 1705: 1702:J. Cell Biol 1701: 1653: 1649: 1595: 1592:J. Cell Biol 1591: 1581: 1536: 1532: 1522: 1487: 1483: 1454: 1445: 1410: 1406: 1354: 1350: 1300: 1296: 1236: 1232: 1172: 1168: 1118: 1115:BMC Genomics 1114: 1104: 1069: 1065: 1055: 1012: 1008: 998: 963: 959: 875: 871: 823: 817: 782: 778: 713:(4): 452–7. 710: 706: 658: 654: 572:Retroviruses 563: 561: 554: 510: 509: 502: 456: 455: 448: 431: 423: 412: 408: 404: 397: 393: 376: 372: 364: 353: 344: 331:winged-helix 316: 312: 298: 294: 290: 286: 275:Gag proteins 270: 264: 257: 250: 235: 226: 207: 203: 199: 186:antiparallel 167: 144: 136: 128: 68: 35: 31: 29: 1399:Bieniasz PD 1351:J. Cell Sci 588:Ebola virus 527:centrosomal 515:cytokinesis 375:nteracting 369:microtubule 335:zinc finger 213:FYVE domain 189:coiled-coil 170:heterodimer 1937:Organelles 1926:Categories 1860:Biochem. J 1768:: 277–98. 1297:Curr. Biol 878:: 519–47. 655:Curr. Biol 599:References 574:, such as 381:AAA-ATPase 325:, and one 196:VHS domain 172:of Vps27 ( 87:organelles 75:abscission 60:eukaryotes 1811:Open Biol 1233:FEBS Lett 539:catalyzes 487:hexameric 434:catalytic 411:BP1, and 390:Vps4-Vta1 361:monomeric 341:ESCRT-III 155:localized 147:receptors 132:metazoans 111:apoptosis 91:endosomes 83:ubiquitin 62:and some 48:cytoplasm 40:cytosolic 1890:15796717 1841:22870391 1792:16689637 1732:21263029 1680:21658171 1622:16505166 1573:16174732 1514:20134403 1437:21394083 1381:19535732 1327:22877781 1263:21924267 1199:21396898 1147:20122178 1096:20150893 1047:20305637 990:20653365 902:17506697 850:28500532 809:20588296 737:21570275 685:22361144 529:protein 309:ESCRT-II 305:domain. 260:hreonine 206:RS, and 184:through 182:dimerize 159:lysosome 95:vesicles 44:membrane 1916:Biology 1881:1175114 1832:3411112 1783:1648078 1723:3172170 1671:3171586 1650:Traffic 1613:2063703 1564:1236530 1541:Bibcode 1505:2837172 1428:3245320 1372:2723143 1318:3414845 1254:3192940 1190:3070458 1138:2837644 1087:2845278 1038:2851844 1017:Bibcode 981:2988974 893:2911632 800:2922035 728:3148405 676:3314914 568:virions 523:archaea 513:during 384:spastin 246:helices 230:midbody 223:ESCRT-I 141:ESCRT-0 89:called 64:archaea 1902:Portal 1888:  1878:  1839:  1829:  1790:  1780:  1730:  1720:  1678:  1668:  1620:  1610:  1571:  1561:  1512:  1502:  1484:EMBO J 1435:  1425:  1379:  1369:  1325:  1315:  1261:  1251:  1197:  1187:  1145:  1135:  1121:: 83. 1094:  1084:  1066:EMBO J 1045:  1035:  1009:Nature 988:  978:  900:  890:  848:  838:  807:  797:  735:  725:  683:  673:  592:TSG101 267:lanine 253:roline 202:ps27, 77:, and 576:HIV-1 531:Cep55 506:from. 452:from. 407:ps4, 357:Vps24 327:Vps36 323:Vps22 319:Vps25 242:Vps28 163:Golgi 151:lipid 52:yeast 36:ESCRT 1886:PMID 1837:PMID 1788:PMID 1728:PMID 1676:PMID 1618:PMID 1569:PMID 1510:PMID 1433:PMID 1377:PMID 1323:PMID 1259:PMID 1195:PMID 1143:PMID 1092:PMID 1043:PMID 986:PMID 898:PMID 846:PMID 836:ISBN 805:PMID 733:PMID 681:PMID 578:and 420:Bro1 401:Vta1 367:IT ( 293:ike 289:RAM- 178:Hse1 30:The 1876:PMC 1868:doi 1864:389 1827:PMC 1819:doi 1778:PMC 1770:doi 1718:PMC 1710:doi 1706:192 1666:PMC 1658:doi 1608:PMC 1600:doi 1596:172 1559:PMC 1549:doi 1537:102 1500:PMC 1492:doi 1423:PMC 1415:doi 1367:PMC 1359:doi 1355:122 1313:PMC 1305:doi 1249:PMC 1241:doi 1237:585 1185:PMC 1177:doi 1133:PMC 1123:doi 1082:PMC 1074:doi 1033:PMC 1025:doi 1013:464 976:PMC 968:doi 888:PMC 880:doi 828:doi 795:PMC 787:doi 723:PMC 715:doi 671:PMC 663:doi 107:DNA 1928:: 1884:. 1874:. 1862:. 1858:. 1835:. 1825:. 1813:. 1809:. 1786:. 1776:. 1766:35 1764:. 1760:. 1740:^ 1726:. 1716:. 1704:. 1700:. 1688:^ 1674:. 1664:. 1654:12 1652:. 1648:. 1630:^ 1616:. 1606:. 1594:. 1590:. 1567:. 1557:. 1547:. 1535:. 1531:. 1508:. 1498:. 1488:29 1486:. 1482:. 1464:^ 1453:, 1431:. 1421:. 1411:13 1409:. 1405:. 1389:^ 1375:. 1365:. 1353:. 1349:. 1335:^ 1321:. 1311:. 1301:22 1299:. 1295:. 1271:^ 1257:. 1247:. 1235:. 1231:. 1207:^ 1193:. 1183:. 1171:. 1167:. 1155:^ 1141:. 1131:. 1119:11 1117:. 1113:. 1090:. 1080:. 1070:29 1068:. 1064:. 1041:. 1031:. 1023:. 1011:. 1007:. 984:. 974:. 964:45 962:. 958:. 910:^ 896:. 886:. 876:23 874:. 870:. 858:^ 844:. 834:. 803:. 793:. 783:11 781:. 777:. 745:^ 731:. 721:. 711:23 709:. 705:. 693:^ 679:. 669:. 659:22 657:. 653:. 607:^ 386:. 269:, 262:, 255:, 66:. 1904:: 1892:. 1870:: 1843:. 1821:: 1815:2 1794:. 1772:: 1734:. 1712:: 1682:. 1660:: 1624:. 1602:: 1575:. 1551:: 1543:: 1516:. 1494:: 1439:. 1417:: 1383:. 1361:: 1329:. 1307:: 1265:. 1243:: 1201:. 1179:: 1173:9 1149:. 1125:: 1098:. 1076:: 1049:. 1027:: 1019:: 992:. 970:: 904:. 882:: 852:. 830:: 811:. 789:: 739:. 717:: 687:. 665:: 413:L 409:S 405:V 377:m 373:i 365:M 299:E 295:U 291:L 287:G 279:3 271:p 265:a 258:t 251:p 208:S 204:H 200:V 34:( 20:)

Index

Endosomal sorting complexes required for transport
cytosolic
membrane
cytoplasm
yeast
eukaryotic signature protein
eukaryotes
archaea
multivesicular body
abscission
viral budding
ubiquitin
organelles
endosomes
vesicles
neurodegenerative
hereditary spastic paraplegia
DNA
apoptosis

metazoans
receptors
lipid
localized
lysosome
Golgi
heterodimer
vacuolar protein sorting
Hse1
dimerize

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑