Knowledge

Conservation of energy

Source 📝

1688: 1245: 1491: 3298:
or from the macroscopic environment in the course of the measurement process, while others believe that the observable energy is only conserved "on average". No experiment has been confirmed as definitive evidence of violations of the conservation of energy principle in quantum mechanics, but that does not rule out that some newer experiments, as proposed, may find evidence of violations of the conservation of energy principle in quantum mechanics.
1262:
height from which the balls were dropped, equal to the initial potential energy. Some earlier workers, including Newton and Voltaire, had believed that "energy" was not distinct from momentum and therefore proportional to velocity. According to this understanding, the deformation of the clay should have been proportional to the square root of the height from which the balls were dropped. In classical physics, the correct formula is
1187: 965: 3361: 1821: 846: 3229:. However, since pseudotensors are not tensors, they do not transform cleanly between reference frames. If the metric under consideration is static (that is, does not change with time) or asymptotically flat (that is, at an infinite distance away spacetime looks empty), then energy conservation holds without major pitfalls. In practice, some metrics, notably the 1651: 3342:
claim that observed energy tends to increase when the Born rule is applied due to localization of the wave function. If true, objects could be expected to spontaneously heat up; thus, such models are constrained by observations of large, cool astronomical objects as well as the observation of (often supercooled) laboratory experiments.
3040: 3282:) of the system. If the Hamiltonian is a time-independent operator, emergence probability of the measurement result does not change in time over the evolution of the system. Thus the expectation value of energy is also time independent. The local energy conservation in quantum field theory is ensured by the quantum 790:, and science now takes the view that mass-energy as a whole is conserved. Theoretically, this implies that any object with mass can itself be converted to pure energy, and vice versa. However, this is believed to be possible only under the most extreme of physical conditions, such as likely existed in the universe 3318:: "Denying would undermine not just little bits of science - the whole edifice would be no more. All of the technology on which we built the modern world would lie in ruins". It is because of conservation of energy that "we know - without having to examine details of a particular device - that Orbo cannot work." 924: 350 BCE) on the other hand believed everything in the universe to be composed of indivisible units of matter—the ancient precursor to 'atoms'—and he too had some idea of the necessity of conservation, stating that "the sum total of things was always such as it is now, and such it will ever remain." 3091:
quantity to time) is conserved. Conversely, systems that are not invariant under shifts in time (e.g. systems with time-dependent potential energy) do not exhibit conservation of energy â€“ unless we consider them to exchange energy with another, external system so that the theory of the enlarged
3341:
models may argue for a breakdown in energy-momentum conservation for sufficiently energetic particles; such models are constrained by observations that cosmic rays appear to travel for billions of years without displaying anomalous non-conservation behavior. Some interpretations of quantum mechanics
3297:
with an energy that can be below or above the expectation value, if the system was not in an energy eigenstate. (For macroscopic systems, this effect is usually too small to measure.) The disposition of this energy gap is not well-understood; most physicists believe that the energy is transferred to
1941:
of the system will change. The produced electromagnetic radiant energy contributes just as much to the inertia (and to any weight) of the system as did the rest mass of the electron and positron before their demise. Likewise, non-material forms of energy can perish into matter, which has rest mass.
1179:. (During the 19th century, when conservation of energy was better understood, Leibniz's basic argument would gain widespread acceptance. Some modern scholars continue to champion specifically conservation-based attacks on dualism, while others subsume the argument into a more general argument about 961:, he gave a much clearer statement regarding the height of ascent of a moving body, and connected this idea with the impossibility of perpetual motion. Huygens's study of the dynamics of pendulum motion was based on a single principle: that the center of gravity of a heavy object cannot lift itself. 3218:
General relativity introduces new phenomena. In an expanding universe, photons spontaneously redshift and tethers spontaneously gain tension; if vacuum energy is positive, the total vacuum energy of the universe appears to spontaneously increase as the volume of space increases. Some scholars claim
2300:
means "that amount of energy lost as a result of work". Thus one can state the amount of internal energy possessed by a thermodynamic system that one knows is presently in a given state, but one cannot tell, just from knowledge of the given present state, how much energy has in the past flowed into
3205:
of the observer is unchanged. This applies to the total energy of systems, although different observers disagree as to the energy value. Also conserved, and invariant to all observers, is the invariant mass, which is the minimal system mass and energy that can be seen by any observer, and which is
1261:
in 1722 in which balls were dropped from different heights into a sheet of soft clay. Each ball's kinetic energy—as indicated by the quantity of material displaced—was shown to be proportional to the square of the velocity. The deformation of the clay was found to be directly proportional to the
942:
published his analysis of several situations—including the celebrated "interrupted pendulum"—which can be described (in modern language) as conservatively converting potential energy to kinetic energy and back again. Essentially, he pointed out that the height a moving body rises is equal to the
3070:
in 1915 and first published in 1918. In any physical theory that obeys the stationary-action principle, the theorem states that every continuous symmetry has an associated conserved quantity; if the theory's symmetry is time invariance, then the conserved quantity is called "energy". The energy
3245:
For asymptotically flat universes, Einstein and others salvage conservation of energy by introducing a specific global gravitational potential energy that cancels out mass-energy changes triggered by spacetime expansion or contraction. This global energy has no well-defined density and cannot
1168:. It was organized around the concept of force and momentum. However, the researchers were quick to recognize that the principles set out in the book, while fine for point masses, were not sufficient to tackle the motions of rigid and fluid bodies. Some other principles were also required. 3233:
that appears to govern the universe, do not satisfy these constraints and energy conservation is not well defined. Besides being dependent on the coordinate system, pseudotensor energy is dependent on the type of pseudotensor in use; for example, the energy exterior to a
716:
the principle says that the total amount of energy within the system can only be changed through energy entering or leaving the system. Energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another. For instance,
954:
as well as the sum of their kinetic energies. However, the difference between elastic and inelastic collision was not understood at the time. This led to the dispute among later researchers as to which of these conserved quantities was the more fundamental. In his
1640:, a Russian scientist, postulated his corpusculo-kinetic theory of heat, which rejected the idea of a caloric. Through the results of empirical studies, Lomonosov came to the conclusion that heat was not transferred through the particles of the caloric fluid. 908: 550 BCE had inklings of the conservation of some underlying substance of which everything is made. However, there is no particular reason to identify their theories with what we know today as "mass-energy" (for example, Thales thought it was water). 3333:), in order to be successful, will have to explain why energy has appeared to always be exactly conserved in terrestrial experiments. In some speculative theories, corrections to quantum mechanics are too small to be detected at anywhere near the current 1474:
added more weight to the view that mechanical motion could be converted into heat and (that it was important) that the conversion was quantitative and could be predicted (allowing for a universal conversion constant between kinetic energy and heat).
1983:
have a continuous rather than a discrete spectrum appeared to contradict conservation of energy, under the then-current assumption that beta decay is the simple emission of an electron from a nucleus. This problem was eventually resolved in 1933 by
943:
height from which it falls, and used this observation to infer the idea of inertia. The remarkable aspect of this observation is that the height to which a moving body ascends on a frictionless surface does not depend on the shape of the surface.
1702:
independently discovered the mechanical equivalent in a series of experiments. In one of them, now called the "Joule apparatus", a descending weight attached to a string caused a paddle immersed in water to rotate. He showed that the
1647:) performed measurements of the frictional heat generated in boring cannons and developed the idea that heat is a form of kinetic energy; his measurements refuted caloric theory, but were imprecise enough to leave room for doubt. 3348:
wrote that the law of conservation of energy has been verified by nuclear physics experiments to an accuracy of one part in a thousand million million (10). He then defines its precision as "perfect for all practical purposes".
827:
cannot exist; that is to say, no system without an external energy supply can deliver an unlimited amount of energy to its surroundings. Depending on the definition of energy, conservation of energy can arguably be violated by
1257:(1706–1749) proposed and tested the hypothesis of the conservation of total energy, as distinct from momentum. Inspired by the theories of Gottfried Leibniz, she repeated and publicized an experiment originally devised by 2511:
If an open system (in which mass may be exchanged with the environment) has several walls such that the mass transfer is through rigid walls separate from the heat and work transfers, then the first law may be written as
2596: 2938: 2797: 1932:
which have electromagnetic radiant energy but no rest mass. If this occurs within an isolated system that does not release the photons or their energy into the external surroundings, then neither the total
4459:
Carlesso, Matteo; Donadi, Sandro; Ferialdi, Luca; Paternostro, Mauro; Ulbricht, Hendrik; Bassi, Angelo (March 2022). "Present status and future challenges of non-interferometric tests of collapse models".
1615:. It may appear, according to circumstances, as motion, chemical affinity, cohesion, electricity, light and magnetism; and from any one of these forms it can be transformed into any of the others." 1611:
gave one of the earliest general statements of the doctrine of the conservation of energy: "besides the 54 known chemical elements there is in the physical world one agent only, and this is called
1386:. On this basis, du ChĂątelet proposed that energy must always have the same dimensions in any form, which is necessary to be able to consider it in different forms (kinetic, potential, heat, ...). 1567: 3321:
Energy conservation has been a foundational physical principle for about two hundred years. From the point of view of modern general relativity, the lab environment can be well approximated by
3230: 2110: 2064: 132: 2454: 2352: 1313: 1055: 3511: 1138: 3639: 2716: 3246:
technically be applied to a non-asymptotically flat universe; however, for practical purposes this can be finessed, and so by this view, energy is conserved in our universe.
1633:
maintained that heat could neither be created nor destroyed, whereas conservation of energy entails the contrary principle that heat and mechanical work are interchangeable.
2506: 2228: 2196: 3023: 1423:
recognized that conservation of momentum alone was not adequate for practical calculation and made use of Leibniz's principle. The principle was also championed by some
3250:
stated that the universe might be "the ultimate free lunch", and theorized that, when accounting for gravitational potential energy, the net energy of the Universe is
3189: 2968: 2298: 2275: 2167: 2136: 783: 3092:
system becomes time-invariant again. Conservation of energy for finite systems is valid in physical theories such as special relativity and quantum theory (including
3079:
do not change with time itself. Philosophically this can be stated as "nothing depends on time per se". In other words, if the physical system is invariant under the
3120:. Each of the four components (one of energy and three of momentum) of this vector is separately conserved across time, in any closed system, as seen from any given 2629: 2412:, and regarded as reversible, the heat being transferred from a source with temperature infinitesimally above the system temperature, the heat energy may be written 4297: 2824: 2676: 1340: 1160: 3983:
Hanc, J., Tuleja, S., & Hancova, M. (2004). Symmetries and conservation laws: Consequences of Noether’s theorem. American Journal of Physics, 72(4), 428-435.
2402: 1684:
were both forms of energy, and in 1845, after improving his knowledge of physics, he published a monograph that stated a quantitative relationship between them.
2988: 2844: 2649: 2477: 2375: 2252: 2011: 1380: 1360: 681: 2205:
The ÎŽ's before the heat and work terms are used to indicate that they describe an increment of energy which is to be interpreted somewhat differently than the
4055:
Duerr, Patrick M. (February 2019). "Fantastic Beasts and where (not) to find them: Local gravitational energy and energy conservation in general relativity".
3226: 3518:. This passage comes from a letter quoted in full by Diogenes, and purportedly written by Epicurus himself in which he lays out the tenets of his philosophy. 1799: 3225:'s view is that energy–momentum conservation is not well-defined except in certain special cases. Energy-momentum is typically expressed with the aid of a 3143:
particle contains a term related to its rest mass in addition to its kinetic energy of motion. In the limit of zero kinetic energy (or equivalently in the
3155:
of a particle or object (including internal kinetic energy in systems) is proportional to the rest mass or invariant mass, as described by the equation
950:
published his laws of collision. Among the quantities he listed as being invariant before and after the collision of bodies were both the sum of their
4337:
Maudlin, Tim; Okon, Elias; Sudarsky, Daniel (February 2020). "On the status of conservation laws in physics: Implications for semiclassical gravity".
4151: 2277:
means "that amount of energy added as a result of heating" rather than referring to a particular form of energy. Likewise, the term "work energy" for
1902:
can be converted to or from equivalent amounts of (non-material) forms of energy, for example, kinetic energy, potential energy, and electromagnetic
1229:
This focus on the vis viva by the continental physicists eventually led to the discovery of stationarity principles governing mechanics, such as the
1890:. In the limited range of recognized experience of the nineteenth century, it was found that such rest mass is conserved. Einstein's 1905 theory of 1694:'s apparatus for measuring the mechanical equivalent of heat. A descending weight attached to a string causes a paddle immersed in water to rotate. 1838: 1729: 1214:, published in 1738, on this single vis viva conservation principle. Daniel's study of loss of vis viva of flowing water led him to formulate the 863: 3062:
The conservation of energy is a common feature in many physical theories. From a mathematical point of view it is understood as a consequence of
2408:
of the system, each of which are system variables. In the fictive case in which the process is idealized and infinitely slow, so as to be called
4029: 1410: 3947:"On the Relation between the Fundamental Equation of Thermodynamics and the Energy Balance Equation in the Context of Closed and Open Systems" 4848: 4810: 4749: 4730: 4721: 4709: 4654: 4632: 4606: 4556: 3929: 3828: 3797: 3609: 3585: 3426: 2518: 3880: 2855: 2721: 2847: 2304: 2254:
is a property of a particular state of the system when it is in unchanging thermodynamic equilibrium. Thus the term "heat energy" for
4176: 1860: 885: 674: 1725:
Both Joule's and Mayer's work suffered from resistance and neglect but it was Joule's that eventually drew the wider recognition.
3294: 1226:
machines; and he gave a kinetic theory of gases, and linked the kinetic energy of gas molecules with the temperature of the gas.
737:
of the pieces, as well as heat and sound, one will get the exact decrease of chemical energy in the combustion of the dynamite.
4904: 3271: 2301:
or out of the system as a result of its being heated or cooled, nor as a result of work being performed on or by the system.
1842: 867: 647: 1760: 348: 185: 1510: 4099: 1797:
claimed that the principle originated with Sir Isaac Newton, based on a creative reading of propositions 40 and 41 of the
1625: 3445:, third English edition translated by A. Ogg from the seventh German edition, Longmans, Green & Co., London, page 40. 3207: 1218:, which asserts the loss to be proportional to the change in hydrodynamic pressure. Daniel also formulated the notion of 1436: 1435:
were quick to point out that kinetic energy is clearly not conserved. This is obvious to a modern analysis based on the
667: 388: 274: 3599: 3286:
for the energy-momentum tensor operator. Thus energy is conserved by the normal unitary evolution of a quantum system.
2234:). Work and heat refer to kinds of process which add or subtract energy to or from a system, while the internal energy 1874: 1230: 787: 343: 3885: 2307:
is a function of the state of a system which tells of limitations of the possibility of conversion of heat into work.
2069: 2005: 916:(earth, air, water, fire), "nothing comes to be or perishes"; instead, these elements suffer continual rearrangement. 806: 252: 3235: 2026: 135: 4124: 4894: 3195: 1907: 1165: 1442:
Gradually it came to be suspected that the heat inevitably generated by motion under friction was another form of
1147:. It was later shown that both quantities are conserved simultaneously given the proper conditions, such as in an 4899: 3338: 1602: 982:(kinetic energy). Using Huygens's work on collision, Leibniz noticed that in many mechanical systems (of several 817: 733:
explodes. If one adds up all forms of energy that were released in the explosion, such as the kinetic energy and
259: 88: 38: 2508:
is a small change in the entropy of the system. Temperature and entropy are variables of the state of a system.
2418: 2316: 1265: 4874: 3776:
is already known—viz. that the sum of all the energies of the universe, actual and potential, is unchangeable."
3485: 3148: 3121: 1577: 1494: 1484: 1083: 957: 554: 549: 164: 1254: 1215: 338: 331: 4003: 1008: 3093: 1831: 1665: 1258: 856: 791: 617: 612: 281: 4671:
Brown, T.M. (1965). "Resource letter EEC-1 on the evolution of energy concepts from Galileo to Helmholtz".
3136:
for systems of particles (where momenta and energy are separately summed before the length is calculated).
1906:. When this happens, as recognized in twentieth-century experience, rest mass is not conserved, unlike the 1687: 3390: 1989: 1676:, and therefore less energy, to maintain their body temperature in the hotter climate. He discovered that 1467: 1428: 1176: 62:
This article is about the law of conservation of energy in physics. For sustainable energy resources, see
1096: 4339:
Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics
4291: 4057:
Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics
3789:
On the shoulders of merchants: exchange and the mathematical conception of nature in early modern Europe
3458: 3380: 3329:, where again energy is exactly conserved. Given all the experimental evidence, any new theory (such as 3267: 3239: 2170: 1768: 1661: 1573: 1238: 592: 210: 2681: 1244: 3769: 4772:
Sarton, G.; Joule, J. P.; Carnot, Sadi (1929). "The discovery of the law of conservation of energy".
4680: 4479: 4413: 4356: 4226: 4064: 4033: 3958: 3894: 3853: 3818: 3395: 3385: 3326: 3283: 3251: 3063: 3034: 2231: 1954: 1736: 1704: 1699: 1691: 1654: 1581: 1451: 1416: 1234: 810: 741: 430: 247: 227: 215: 159: 1965:) are one (equivalent) law. In the 18th century, these had appeared as two seemingly-distinct laws. 1401: 3992:
Harrison, E. R. (1995). Mining energy in an expanding universe. The Astrophysical Journal, 446, 63.
3088: 3080: 3055: 2486: 2208: 2176: 1608: 814: 632: 480: 373: 79: 63: 2993: 4789: 4625:
Physics for Scientists and Engineers: Mechanics, Oscillations and Waves, Thermodynamics (5th ed.)
4495: 4469: 4403: 4372: 4346: 4269: 4242: 4216: 4080: 3659: 3202: 3072: 1891: 1794: 1623:
A key stage in the development of the modern conservation principle was the demonstration of the
1248: 1070:
of the system. The principle represents an accurate statement of the approximate conservation of
947: 898: 829: 745: 652: 286: 242: 237: 4207:
Carroll, Sean M.; Lodman, Jackie (August 2021). "Energy Non-conservation in Quantum Mechanics".
3238:
is twice as large when calculated from MĂžller's pseudotensor as it is when calculated using the
1764: 3702:
Die organische Bewegung in ihrem Zusammenhange mit dem Stoffwechsel. Ein Beitrag zur Naturkunde
4844: 4834: 4806: 4745: 4726: 4705: 4650: 4628: 4602: 4552: 4441: 4260:
Aharonov, Yakir (October 2023). "Conservation laws and the foundations of quantum mechanics".
3925: 3824: 3793: 3761: 3605: 3581: 3559: 3530:"Conservation of Energy: Missing Features in Its Nature and Justification and Why They Matter" 3422: 3345: 3263: 3158: 3109: 2946: 2280: 2257: 2149: 2118: 1719: 1669: 1644: 1637: 1490: 1463: 1447: 1148: 975: 968: 913: 902: 799: 752: 722: 269: 220: 3805: 17: 4781: 4688: 4487: 4431: 4421: 4364: 4279: 4234: 4072: 3966: 3902: 3861: 3651: 3549: 3541: 3084: 3051: 2604: 1672:, where he found that his patients' blood was a deeper red because they were consuming less 1201: 1197: 1190: 932: 824: 734: 707: 607: 582: 495: 470: 465: 420: 3752:
William John Macquorn Rankine (1853) "On the General Law of the Transformation of Energy,"
2802: 2654: 1928:
each have rest mass. They can perish together, converting their combined rest energy into
1318: 964: 4761:(1957) "Energy conservation as an example of simultaneous discovery", in M. Clagett (ed.) 4181: 3330: 3322: 3125: 3113: 3076: 2199: 1783: 1708: 1681: 951: 939: 718: 703: 597: 521: 435: 366: 300: 202: 4838: 3601:
Seduced by logic : Émilie du ChĂątelet, Mary Somerville, and the Newtonian revolution
978:
first attempted a mathematical formulation of the kind of energy that is associated with
485: 355: 4824: 4684: 4483: 4417: 4360: 4230: 4068: 3962: 3898: 3857: 3715: 2384: 4436: 4391: 3554: 3529: 3375: 3133: 2973: 2829: 2634: 2462: 2360: 2237: 1903: 1630: 1459: 1365: 1345: 1219: 1180: 1071: 726: 602: 460: 425: 326: 232: 4865: 3325:, where energy is exactly conserved. The entire Earth can be well approximated by the 4888: 4793: 4595: 4499: 4376: 4246: 4084: 3366: 3279: 3275: 3117: 3047: 2017: 1779:, 1847). The general modern acceptance of the principle stems from this publication. 1439:, but in the 18th and 19th centuries, the fate of the lost energy was still unknown. 1432: 1406: 1210: 713: 642: 475: 4311: 1186: 3152: 3067: 3043: 2310:
For a simple compressible system, the work performed by the system may be written:
1993: 1985: 1804: 1393: 1205: 1175:
and conservation of momentum undermined the then-popular philosophical doctrine of
1155: 1079: 928: 627: 622: 587: 319: 3946: 1060:
was conserved so long as the masses did not interact. He called this quantity the
3787: 1771:
arrived at conclusions similar to Grove's and published his theories in his book
4758: 4368: 4283: 4076: 3416: 2480: 1820: 1744: 1420: 1397: 845: 637: 540: 4513:
Rothman, Milton (1989). "Myths About Science... And Belief in the Paranormal".
4491: 4238: 3545: 4820: 4803:
The Science of Energy: Cultural History of Energy Physics in Victorian Britain
3356: 3144: 3097: 1980: 1974: 1208:
as used in statics in its full generality in 1715, while the latter based his
1196:
The law of conservation of vis viva was championed by the father and son duo,
931:
was able to solve a number of problems in statics based on the principle that
909: 795: 559: 455: 4702:
From Watt to Clausius: The Rise of Thermodynamics in the Early Industrial Age
3360: 3290: 3247: 3222: 3129: 1880: 1748: 1592:(mechanical work), and both championed its use in engineering calculations. 1223: 1075: 531: 526: 360: 4445: 3563: 1917:
energy. All forms of energy contribute to the total mass and total energy.
820:; that is, from the fact that the laws of physics do not change over time. 3640:"Chemistry as a Branch of Physics: Laplace's Collaboration with Lavoisier" 3219:
that energy is no longer meaningfully conserved in any identifiable form.
3311: 2378: 1925: 1921: 1712: 1389: 1087: 1062: 993: 917: 730: 510: 415: 395: 381: 4426: 3945:
Knuiman, Jan T.; Barneveld, Peter A.; Besseling, Nicolaas A. M. (2012).
3663: 4642: 3075:
of time; energy conservation is implied by the empirical fact that the
2591:{\displaystyle \mathrm {d} U=\delta Q-\delta W+\sum _{i}h_{i}\,dM_{i},} 1845: in this section. Unsourced material may be challenged and removed. 1424: 870: in this section. Unsourced material may be challenged and removed. 264: 4692: 3970: 3906: 3865: 3731: 3683:
von Mayer, J.R. (1842) "Remarks on the forces of inorganic nature" in
4202: 4200: 3655: 2405: 2139: 1929: 1673: 1471: 699: 405: 1755:
in modern terms). In 1846, Grove published his theories in his book
1718:
Over the period 1840–1843, similar work was carried out by engineer
1650: 4785: 4474: 4351: 4274: 4221: 3039: 2933:{\displaystyle \mathrm {d} U=T\,dS-P\,dV+\sum _{i}\mu _{i}\,dN_{i}} 4408: 4125:"Confronting the Multiverse: What 'Infinite Universes' Would Mean" 1740: 1686: 1649: 1383: 1243: 1185: 309: 3768:, ... (London, England: Charles Griffin and Co., 1881), part II, 2792:{\displaystyle dS=\delta Q/T+\textstyle {\sum _{i}}s_{i}\,dM_{i}} 2678:
is the corresponding enthalpy per unit mass. Note that generally
4826:
History and Root of the Principles of the Conservation of Energy
3307: 3140: 2143: 1879:
Matter is composed of atoms and what makes up atoms. Matter has
1677: 983: 4152:"Energy Conservation and Non-Conservation in Quantum Mechanics" 4100:"Fact or Fiction?: Energy Can Neither Be Created Nor Destroyed" 1086:, which holds even in systems with friction, as defined by the 3334: 3315: 1814: 912:(490–430 BCE) wrote that in his universal system, composed of 839: 445: 3624:
Lavoisier, A.L. & Laplace, P.S. (1780) "Memoir on Heat",
1894:
showed that rest mass corresponds to an equivalent amount of
823:
A consequence of the law of conservation of energy is that a
1751:
by treating them all as manifestations of a single "force" (
4742:
Historical Roots of the Principle of Conservation of Energy
1728:
For the dispute between Joule and Mayer over priority, see
1722:, although it was little known outside his native Denmark. 4177:"Puzzling Quantum Scenario Appears Not to Conserve Energy" 3766:
Miscellaneous Scientific Papers: by W. J. Macquorn Rankine
2718:
in this case, as matter carries its own entropy. Instead,
1664:
was first stated in its modern form by the German surgeon
1599:(German "On the Nature of Heat/Warmth"), published in the 1584:
over the period 1819–1839. The former called the quantity
4878: 3453: 3451: 1668:
in 1842. Mayer reached his conclusion on a voyage to the
4843:. Walter Scott Publishing Co. Ltd; Dover reprint, 1952. 3306:
In the context of perpetual motion machines such as the
3151:
for objects or systems which retain kinetic energy, the
1572:
which can be understood as converting kinetic energy to
3820:
Controversy and Consensus: Nuclear Beta Decay 1911-1934
1171:
By the 1690s, Leibniz was arguing that conservation of
750: 748:
shows that mass is related to energy and vice versa by
42: 4619:. Prometheus Books. Especially chpt. 12. Nontechnical. 2751: 740:
Classically, conservation of energy was distinct from
3844:
Brown, Laurie M. (1978). "The idea of the neutrino".
3161: 2996: 2976: 2949: 2858: 2832: 2805: 2724: 2684: 2657: 2637: 2607: 2521: 2489: 2465: 2421: 2387: 2363: 2319: 2283: 2260: 2240: 2211: 2179: 2152: 2121: 2072: 2029: 1562:{\displaystyle {\frac {1}{2}}\sum _{i}m_{i}v_{i}^{2}} 1513: 1368: 1348: 1321: 1268: 1099: 1011: 809:, conservation of energy can be rigorously proven by 755: 91: 2169:
is the quantity of energy lost by the system due to
2020:, the first law of thermodynamics may be stated as: 1996:, which carries away the apparently missing energy. 3754:
Proceedings of the Philosophical Society of Glasgow
3266:, the energy of a quantum system is described by a 1739:postulated a relationship between mechanics, heat, 1466:'s 1798 observations of heat generation during the 4594: 3756:, vol. 3, no. 5, pages 276-280; reprinted in: (1) 3604:(US ed.). New York: Oxford University Press. 3183: 3116:, the energy was proposed to be a component of an 3017: 2982: 2970:is the partial molar Gibbs free energy of species 2962: 2932: 2838: 2818: 2791: 2710: 2670: 2643: 2623: 2590: 2500: 2471: 2448: 2396: 2369: 2346: 2292: 2269: 2246: 2222: 2190: 2161: 2130: 2104: 2058: 1707:lost by the weight in descending was equal to the 1561: 1374: 1354: 1334: 1307: 1132: 1049: 777: 126: 1759:. In 1847, drawing on the earlier work of Joule, 1483:, after the term was first used in that sense by 3337:level accessible through particle accelerators. 2105:{\displaystyle \mathrm {d} U=\delta Q-\delta W,} 1979:The discovery in 1911 that electrons emitted in 4262:Proceedings of the National Academy of Sciences 3071:conservation law is a consequence of the shift 2059:{\displaystyle \delta Q=\mathrm {d} U+\delta W} 1074:in situations where there is no friction. Many 4597:Physics for Scientists and Engineers (6th ed.) 3050:known for her groundbreaking contributions to 4543:. Harvard Univ. Press. A gentle introduction. 3578:Émilie du Chatelet between Leibniz and Newton 2012:First law of thermodynamics (fluid mechanics) 675: 8: 4593:Serway, Raymond A.; Jewett, John W. (2004). 4030:"Is Energy Conserved in General Relativity?" 3764:(February 1853); and (2) W. J. Millar, ed., 3108:With the discovery of special relativity by 2173:done by the system on its surroundings, and 1800:Philosophiae Naturalis Principia Mathematica 1600: 4763:Critical Problems in the History of Science 4296:: CS1 maint: DOI inactive as of May 2024 ( 3650:. University of California Press: 193–276. 3644:Historical Studies in the Physical Sciences 1992:as the emission of both an electron and an 127:{\displaystyle J=-D{\frac {d\varphi }{dx}}} 26: 4547:Kroemer, Herbert; Kittel, Charles (1980). 4390:Amelino-Camelia, Giovanni (12 June 2013). 3493:Zeitschrift fĂŒr Papyrologie und Epigraphik 3231:Friedmann–LemaĂźtre–Robertson–Walker metric 2449:{\displaystyle \delta Q=T\,\mathrm {d} S,} 2347:{\displaystyle \delta W=P\,\mathrm {d} V,} 1308:{\displaystyle E_{k}={\frac {1}{2}}mv^{2}} 825:perpetual motion machine of the first kind 682: 668: 515: 305: 148: 70: 4855:, Chapter 8, "Energy and Thermo-dynamics" 4473: 4435: 4425: 4407: 4350: 4273: 4220: 3553: 3175: 3160: 2995: 2975: 2954: 2948: 2924: 2916: 2910: 2900: 2886: 2873: 2859: 2857: 2831: 2810: 2804: 2782: 2774: 2768: 2757: 2752: 2740: 2723: 2700: 2683: 2662: 2656: 2636: 2615: 2606: 2579: 2571: 2565: 2555: 2522: 2520: 2490: 2488: 2464: 2435: 2434: 2420: 2386: 2362: 2333: 2332: 2318: 2282: 2259: 2239: 2212: 2210: 2180: 2178: 2151: 2120: 2073: 2071: 2039: 2028: 1861:Learn how and when to remove this message 1636:In the middle of the eighteenth century, 1553: 1548: 1538: 1528: 1514: 1512: 1367: 1347: 1326: 1320: 1299: 1282: 1273: 1267: 1204:. The former enunciated the principle of 1124: 1114: 1104: 1098: 1041: 1036: 1026: 1016: 1010: 886:Learn how and when to remove this message 769: 754: 104: 90: 4649:. Toronto: University of Toronto Press. 4539:Goldstein, Martin, and Inge F., (1993). 3720:(6th ed.). London: Longmans, Green. 3147:) of a massive particle, or else in the 3038: 1803:. This is now regarded as an example of 1489: 963: 32:This is an accepted version of this page 4647:The Variational Principles of Mechanics 4568:Fundamentals of College Physics, 2nd ed 3513:Lives of Eminent Philosophers: Epicurus 3407: 3124:. Also conserved is the vector length ( 1730:Mechanical equivalent of heat: Priority 1454:reviewed the two competing theories of 1050:{\displaystyle \sum _{i}m_{i}v_{i}^{2}} 539: 494: 444: 404: 308: 177: 151: 78: 28: 4577:Principles of Modern Chemistry, 3rd ed 4289: 4722:Five Equations That Changed the World 3418:The Feynman Lectures on Physics Vol I 2826:is the entropy per unit mass of type 1788:the law of the conservation of energy 7: 3922:Introduction to Elementary Particles 3139:The relativistic energy of a single 1969:Conservation of energy in beta decay 1843:adding citations to reliable sources 1782:In 1850, the Scottish mathematician 1342:is the kinetic energy of an object, 868:adding citations to reliable sources 4312:"The perpetual myth of free energy" 3293:is applied, the system's energy is 3270:(or Hermitian) operator called the 3227:stress–energy–momentum pseudotensor 1588:(quantity of work) and the latter, 1133:{\displaystyle \sum _{i}m_{i}v_{i}} 706:remains constant; it is said to be 4588:. Oxford: Oxford University Press. 3924:(2nd ed.). pp. 314–315. 3717:The Correlation of Physical Forces 3528:Pitts, J. Brian (September 2021). 3201:continues to hold, so long as the 2860: 2848:fundamental thermodynamic relation 2523: 2491: 2436: 2334: 2230:increment of internal energy (see 2213: 2181: 2074: 2040: 1757:The Correlation of Physical Forces 57: 4541:The Refrigerator and the Universe 4392:"Quantum-Spacetime Phenomenology" 4150:Carroll, Sean (28 January 2021). 4004:"Is the Universe Leaking Energy?" 3576:Hagengruber, Ruth, editor (2011) 2711:{\displaystyle dS\neq \delta Q/T} 4829:. Open Court Pub. Co., Illinois. 3685:Annalen der Chemie und Pharmacie 3359: 3087:, then its energy (which is the 1819: 844: 4870:The First Law of Thermodynamics 4575:Oxtoby & Nachtrieb (1996). 3199:over time in special relativity 3046:(1882-1935) was an influential 2943:because the chemical potential 1830:needs additional citations for 927:In 1605, the Flemish scientist 855:needs additional citations for 792:very shortly after the Big Bang 4744:. Madison, Wis.: Ayer Co Pub. 4579:. Saunders College Publishing. 4570:. William C. Brown Publishers. 3881:"Fermi's Theory of Beta Decay" 3732:"On the Conservation of Force" 3289:However, when the non-unitary 3132:for single particles, and the 1945:Thus, conservation of energy ( 1705:gravitational potential energy 1: 3951:Journal of Chemical Education 2631:is the added mass of species 2501:{\displaystyle \mathrm {d} S} 2223:{\displaystyle \mathrm {d} U} 2191:{\displaystyle \mathrm {d} U} 1735:In 1844, the Welsh scientist 1626:mechanical equivalent of heat 1619:Mechanical equivalent of heat 921: 905: 696:law of conservation of energy 18:Energy conservation (physics) 4586:Thinking about Consciousness 4396:Living Reviews in Relativity 3760:, series 4, vol. 5, no. 30, 3626:AcadĂ©mie Royale des Sciences 3018:{\displaystyle G\equiv H-TS} 2846:, from which we recover the 1777:On the Conservation of Force 1773:Über die Erhaltung der Kraft 1711:gained by the water through 1576:, was largely the result of 1479:then started to be known as 1437:second law of thermodynamics 786:, the equation representing 712:over time. In the case of a 59:Law of physics and chemistry 4673:American Journal of Physics 4615:Stenger, Victor J. (2000). 4369:10.1016/j.shpsb.2019.10.004 4284:10.1073/pnas.22208101201of9 4077:10.1016/j.shpsb.2018.07.002 3886:American Journal of Physics 3786:Hadden, Richard W. (1994). 2018:closed thermodynamic system 2006:First law of thermodynamics 2000:First law of thermodynamics 1975:Beta decay § Neutrinos 1241:formulations of mechanics. 832:on the cosmological scale. 807:stationary-action principle 4921: 4877:) by Jerzy Borysowicz for 4492:10.1038/s41567-021-01489-5 4239:10.1007/s10701-021-00490-5 4028:Michael Weiss; John Baez. 3806:Chapter 1, p. 13 3792:. SUNY Press. p. 13. 3546:10.1007/s10699-020-09657-1 3443:Treatise on Thermodynamics 3032: 2990:and the Gibbs free energy 2009: 2003: 1972: 1872: 1727: 61: 4700:Cardwell, D.S.L. (1971). 4551:. W. H. Freeman Company. 4549:Thermal Physics (2nd ed.) 4098:Moskowitz, Clara (2014). 3598:Arianrhod, Robyn (2012). 3486:"Empedocles, "On Nature"" 3459:"Energy Is Not Conserved" 3339:Doubly special relativity 2404:is a small change in the 2142:added to the system by a 1990:description of beta-decay 1988:who proposed the correct 818:time translation symmetry 4566:Nolan, Peter J. (1996). 4002:Tamara M. Davis (2010). 3817:Jensen, Carsten (2000). 3441:Planck, M. (1923/1927). 3415:Richard Feynman (1970). 3208:energy–momentum relation 3184:{\displaystyle E=mc^{2}} 3149:center of momentum frame 3122:inertial reference frame 3118:energy-momentum 4-vector 2963:{\displaystyle \mu _{i}} 2293:{\displaystyle \delta W} 2270:{\displaystyle \delta Q} 2162:{\displaystyle \delta W} 2131:{\displaystyle \delta Q} 1949:, including material or 1643:In 1798, Count Rumford ( 1597:Über die Natur der WĂ€rme 1578:Gaspard-Gustave Coriolis 1495:Gaspard-Gustave Coriolis 1084:conservation of momentum 1078:at that time, including 958:Horologium Oscillatorium 778:{\displaystyle E=mc^{2}} 186:Clausius–Duhem (entropy) 136:Fick's laws of diffusion 39:latest accepted revision 4286:(inactive 27 May 2024). 3638:Guerlac, Henry (1976). 3484:Janko, Richard (2004). 3028: 1875:Mass–energy equivalence 1811:Mass–energy equivalence 1666:Julius Robert von Mayer 974:Between 1676 and 1689, 788:mass–energy equivalence 344:Navier–Stokes equations 282:Material failure theory 4905:Laws of thermodynamics 4840:Science and Hypothesis 4740:Hiebert, E.N. (1981). 4515:The Skeptical Inquirer 4209:Foundations of Physics 3920:Griffiths, D. (2009). 3879:Wilson, F. L. (1968). 3774:Conservation of Energy 3758:Philosophical Magazine 3704:, Dechsler, Heilbronn. 3534:Foundations of Science 3391:Laws of thermodynamics 3236:Kerr–Newman black hole 3197:conservation of energy 3185: 3059: 3019: 2984: 2964: 2934: 2840: 2820: 2793: 2712: 2672: 2645: 2625: 2624:{\displaystyle dM_{i}} 2592: 2502: 2473: 2450: 2398: 2371: 2348: 2294: 2271: 2248: 2224: 2192: 2163: 2132: 2106: 2060: 1786:first used the phrase 1695: 1657: 1603:Zeitschrift fĂŒr Physik 1601: 1563: 1497: 1429:William Hyde Wollaston 1376: 1356: 1336: 1309: 1251: 1231:D'Alembert's principle 1193: 1177:interactionist dualism 1134: 1051: 971: 779: 698:states that the total 128: 4805:. London: Heinemann. 4704:. London: Heinemann. 4623:Tipler, Paul (2004). 4584:Papineau, D. (2002). 3823:. BirkhĂ€user Verlag. 3714:Grove, W. R. (1874). 3381:Energy transformation 3240:Einstein pseudotensor 3186: 3042: 3020: 2985: 2965: 2935: 2841: 2821: 2819:{\displaystyle s_{i}} 2794: 2713: 2673: 2671:{\displaystyle h_{i}} 2646: 2626: 2593: 2503: 2474: 2451: 2399: 2372: 2349: 2295: 2272: 2249: 2225: 2198:is the change in the 2193: 2164: 2133: 2107: 2061: 1769:Hermann von Helmholtz 1690: 1662:equivalence principle 1653: 1564: 1500:The recalibration of 1493: 1377: 1357: 1337: 1335:{\displaystyle E_{k}} 1310: 1247: 1216:Bernoulli's principle 1189: 1135: 1052: 967: 780: 339:Bernoulli's principle 332:Archimedes' principle 129: 4725:. New York: Abacus. 4719:Guillen, M. (1999). 4645:, Cornelius (1970). 4156:Preposterousuniverse 3700:Mayer, J.R. (1845). 3510:Laertius, Diogenes. 3396:Zero-energy universe 3386:Lagrangian mechanics 3327:Schwarzschild metric 3274:, which acts on the 3159: 2994: 2974: 2947: 2856: 2830: 2803: 2722: 2682: 2655: 2635: 2605: 2519: 2487: 2463: 2419: 2385: 2361: 2317: 2281: 2258: 2238: 2232:Inexact differential 2209: 2177: 2150: 2119: 2070: 2027: 1955:conservation of mass 1839:improve this article 1737:William Robert Grove 1700:James Prescott Joule 1698:Meanwhile, in 1843, 1655:James Prescott Joule 1582:Jean-Victor Poncelet 1511: 1452:Pierre-Simon Laplace 1431:. Academics such as 1417:Gustave-Adolphe Hirn 1366: 1346: 1319: 1266: 1259:Willem 's Gravesande 1164:, which set out his 1097: 1009: 899:Ancient philosophers 864:improve this article 813:as a consequence of 753: 742:conservation of mass 431:Cohesion (chemistry) 253:Infinitesimal strain 89: 4685:1965AmJPh..33..759B 4484:2022NatPh..18..243C 4427:10.12942/lrr-2013-5 4418:2013LRR....16....5A 4361:2020SHPMP..69...67M 4231:2021FoPh...51...83C 4104:Scientific American 4069:2019SHPMP..65....1D 4008:Scientific American 3963:2012JChEd..89..968K 3899:1968AmJPh..36.1150W 3858:1978PhT....31i..23B 3323:Minkowski spacetime 3089:canonical conjugate 3081:continuous symmetry 3056:theoretical physics 2138:is the quantity of 2066:, or equivalently, 1790:for the principle. 1609:Karl Friedrich Mohr 1586:quantitĂ© de travail 1558: 1222:and efficiency for 1046: 349:Poiseuille equation 80:Continuum mechanics 74:Part of a series on 64:Energy conservation 29:Page version status 4801:Smith, C. (1998). 4131:. 23 December 2015 3772:: "The law of the 3421:. Addison Wesley. 3314:has argued at the 3214:General relativity 3194:Thus, the rule of 3181: 3104:Special relativity 3060: 3015: 2980: 2960: 2930: 2905: 2836: 2816: 2789: 2788: 2762: 2708: 2668: 2641: 2621: 2588: 2560: 2498: 2469: 2446: 2397:{\displaystyle dV} 2394: 2367: 2344: 2290: 2267: 2244: 2220: 2188: 2159: 2128: 2102: 2056: 1898:. This means that 1892:special relativity 1795:Peter Guthrie Tait 1696: 1658: 1559: 1544: 1533: 1498: 1372: 1352: 1332: 1305: 1255:Émilie du ChĂątelet 1252: 1249:Emilie du Chatelet 1194: 1143:was the conserved 1130: 1109: 1047: 1032: 1021: 972: 948:Christiaan Huygens 830:general relativity 775: 746:special relativity 555:Magnetorheological 550:Electrorheological 287:Fracture mechanics 124: 35: 4895:Conservation laws 4868: 4850:978-0-486-60221-9 4812:978-0-485-11431-7 4751:978-0-405-13880-5 4732:978-0-349-11064-6 4711:978-0-435-54150-7 4693:10.1119/1.1970980 4656:978-0-8020-1743-7 4634:978-0-7167-0809-4 4627:. W. H. Freeman. 4608:978-0-534-40842-8 4558:978-0-7167-1088-2 3971:10.1021/ed200405k 3931:978-3-527-40601-2 3907:10.1119/1.1974382 3893:(12): 1150–1160. 3866:10.1063/1.2995181 3830:978-3-7643-5313-1 3799:978-0-7914-2011-9 3611:978-0-19-993161-3 3586:978-94-007-2074-9 3463:Discover Magazine 3428:978-0-201-02115-8 3346:Milton A. Rothman 3284:Noether's theorem 3264:quantum mechanics 3064:Noether's theorem 3035:Noether's theorem 3029:Noether's theorem 2983:{\displaystyle i} 2896: 2839:{\displaystyle i} 2753: 2644:{\displaystyle i} 2551: 2472:{\displaystyle T} 2370:{\displaystyle P} 2247:{\displaystyle U} 1871: 1870: 1863: 1720:Ludwig A. Colding 1715:with the paddle. 1670:Dutch East Indies 1645:Benjamin Thompson 1638:Mikhail Lomonosov 1590:travail mĂ©canique 1524: 1522: 1448:Antoine Lavoisier 1375:{\displaystyle v} 1355:{\displaystyle m} 1290: 1149:elastic collision 1100: 1012: 976:Gottfried Leibniz 969:Gottfried Leibniz 903:Thales of Miletus 896: 895: 888: 811:Noether's theorem 800:Hawking radiation 692: 691: 567: 566: 501: 500: 270:Contact mechanics 193: 192: 122: 16:(Redirected from 4912: 4900:Energy (physics) 4866: 4854: 4830: 4816: 4797: 4755: 4736: 4715: 4696: 4665:History of ideas 4660: 4638: 4617:Timeless Reality 4612: 4600: 4589: 4580: 4571: 4562: 4523: 4522: 4510: 4504: 4503: 4477: 4456: 4450: 4449: 4439: 4429: 4411: 4387: 4381: 4380: 4354: 4334: 4328: 4327: 4325: 4323: 4308: 4302: 4301: 4295: 4287: 4277: 4257: 4251: 4250: 4224: 4204: 4195: 4194: 4192: 4190: 4173: 4167: 4166: 4164: 4162: 4147: 4141: 4140: 4138: 4136: 4121: 4115: 4114: 4112: 4110: 4095: 4089: 4088: 4052: 4046: 4045: 4043: 4041: 4032:. Archived from 4025: 4019: 4018: 4016: 4014: 3999: 3993: 3990: 3984: 3981: 3975: 3974: 3942: 3936: 3935: 3917: 3911: 3910: 3876: 3870: 3869: 3841: 3835: 3834: 3814: 3808: 3803: 3783: 3777: 3750: 3744: 3743: 3741: 3739: 3728: 3722: 3721: 3711: 3705: 3698: 3692: 3681: 3675: 3674: 3672: 3670: 3656:10.2307/27757357 3635: 3629: 3622: 3616: 3615: 3595: 3589: 3574: 3568: 3567: 3557: 3525: 3519: 3517: 3507: 3501: 3500: 3490: 3481: 3475: 3474: 3472: 3470: 3455: 3446: 3439: 3433: 3432: 3412: 3369: 3364: 3363: 3190: 3188: 3187: 3182: 3180: 3179: 3128:), which is the 3085:time translation 3052:abstract algebra 3024: 3022: 3021: 3016: 2989: 2987: 2986: 2981: 2969: 2967: 2966: 2961: 2959: 2958: 2939: 2937: 2936: 2931: 2929: 2928: 2915: 2914: 2904: 2863: 2845: 2843: 2842: 2837: 2825: 2823: 2822: 2817: 2815: 2814: 2798: 2796: 2795: 2790: 2787: 2786: 2773: 2772: 2763: 2761: 2744: 2717: 2715: 2714: 2709: 2704: 2677: 2675: 2674: 2669: 2667: 2666: 2650: 2648: 2647: 2642: 2630: 2628: 2627: 2622: 2620: 2619: 2597: 2595: 2594: 2589: 2584: 2583: 2570: 2569: 2559: 2526: 2507: 2505: 2504: 2499: 2494: 2478: 2476: 2475: 2470: 2455: 2453: 2452: 2447: 2439: 2403: 2401: 2400: 2395: 2376: 2374: 2373: 2368: 2353: 2351: 2350: 2345: 2337: 2299: 2297: 2296: 2291: 2276: 2274: 2273: 2268: 2253: 2251: 2250: 2245: 2229: 2227: 2226: 2221: 2216: 2197: 2195: 2194: 2189: 2184: 2168: 2166: 2165: 2160: 2137: 2135: 2134: 2129: 2111: 2109: 2108: 2103: 2077: 2065: 2063: 2062: 2057: 2043: 1920:For example, an 1866: 1859: 1855: 1852: 1846: 1823: 1815: 1606: 1568: 1566: 1565: 1560: 1557: 1552: 1543: 1542: 1532: 1523: 1515: 1414: 1381: 1379: 1378: 1373: 1361: 1359: 1358: 1353: 1341: 1339: 1338: 1333: 1331: 1330: 1314: 1312: 1311: 1306: 1304: 1303: 1291: 1283: 1278: 1277: 1202:Daniel Bernoulli 1191:Daniel Bernoulli 1139: 1137: 1136: 1131: 1129: 1128: 1119: 1118: 1108: 1082:, held that the 1056: 1054: 1053: 1048: 1045: 1040: 1031: 1030: 1020: 935:was impossible. 933:perpetual motion 923: 907: 891: 884: 880: 877: 871: 848: 840: 785: 782: 781: 776: 774: 773: 735:potential energy 729:when a stick of 684: 677: 670: 516: 481:Gay-Lussac's law 471:Combined gas law 421:Capillary action 306: 149: 133: 131: 130: 125: 123: 121: 113: 105: 71: 21: 4920: 4919: 4915: 4914: 4913: 4911: 4910: 4909: 4885: 4884: 4879:Project PHYSNET 4862: 4851: 4833: 4819: 4813: 4800: 4771: 4752: 4739: 4733: 4718: 4712: 4699: 4679:(10): 759–765. 4670: 4667: 4657: 4641: 4635: 4622: 4609: 4601:. Brooks/Cole. 4592: 4583: 4574: 4565: 4559: 4546: 4536: 4534:Modern accounts 4531: 4526: 4512: 4511: 4507: 4458: 4457: 4453: 4389: 4388: 4384: 4336: 4335: 4331: 4321: 4319: 4310: 4309: 4305: 4288: 4259: 4258: 4254: 4206: 4205: 4198: 4188: 4186: 4182:Quanta Magazine 4175: 4174: 4170: 4160: 4158: 4149: 4148: 4144: 4134: 4132: 4123: 4122: 4118: 4108: 4106: 4097: 4096: 4092: 4054: 4053: 4049: 4039: 4037: 4027: 4026: 4022: 4012: 4010: 4001: 4000: 3996: 3991: 3987: 3982: 3978: 3944: 3943: 3939: 3932: 3919: 3918: 3914: 3878: 3877: 3873: 3843: 3842: 3838: 3831: 3816: 3815: 3811: 3800: 3785: 3784: 3780: 3751: 3747: 3737: 3735: 3730: 3729: 3725: 3713: 3712: 3708: 3699: 3695: 3682: 3678: 3668: 3666: 3637: 3636: 3632: 3623: 3619: 3612: 3597: 3596: 3592: 3575: 3571: 3527: 3526: 3522: 3509: 3508: 3504: 3488: 3483: 3482: 3478: 3468: 3466: 3457: 3456: 3449: 3440: 3436: 3429: 3414: 3413: 3409: 3405: 3400: 3365: 3358: 3355: 3331:quantum gravity 3304: 3278:(or a space of 3260: 3216: 3206:defined by the 3203:reference frame 3171: 3157: 3156: 3114:Albert Einstein 3106: 3077:laws of physics 3066:, developed by 3037: 3031: 2992: 2991: 2972: 2971: 2950: 2945: 2944: 2920: 2906: 2854: 2853: 2828: 2827: 2806: 2801: 2800: 2778: 2764: 2720: 2719: 2680: 2679: 2658: 2653: 2652: 2633: 2632: 2611: 2603: 2602: 2575: 2561: 2517: 2516: 2485: 2484: 2461: 2460: 2417: 2416: 2383: 2382: 2359: 2358: 2315: 2314: 2279: 2278: 2256: 2255: 2236: 2235: 2207: 2206: 2202:of the system. 2200:internal energy 2175: 2174: 2148: 2147: 2117: 2116: 2068: 2067: 2025: 2024: 2014: 2008: 2002: 1977: 1971: 1877: 1867: 1856: 1850: 1847: 1836: 1824: 1813: 1784:William Rankine 1765:Émile Clapeyron 1733: 1709:internal energy 1682:mechanical work 1660:The mechanical 1621: 1534: 1509: 1508: 1404: 1364: 1363: 1344: 1343: 1322: 1317: 1316: 1295: 1269: 1264: 1263: 1120: 1110: 1095: 1094: 1022: 1007: 1006: 1000: 990: 901:as far back as 892: 881: 875: 872: 861: 849: 838: 765: 751: 749: 719:chemical energy 704:isolated system 688: 659: 658: 657: 577: 569: 568: 522:Viscoelasticity 513: 503: 502: 490: 440: 436:Surface tension 400: 303: 301:Fluid mechanics 293: 292: 291: 205: 203:Solid mechanics 195: 194: 146: 138: 114: 106: 87: 86: 67: 60: 55: 54: 53: 52: 51: 50: 34: 22: 15: 12: 11: 5: 4918: 4916: 4908: 4907: 4902: 4897: 4887: 4886: 4883: 4882: 4861: 4860:External links 4858: 4857: 4856: 4849: 4831: 4817: 4811: 4798: 4786:10.1086/346430 4769: 4756: 4750: 4737: 4731: 4716: 4710: 4697: 4666: 4663: 4662: 4661: 4655: 4639: 4633: 4620: 4613: 4607: 4590: 4581: 4572: 4563: 4557: 4544: 4535: 4532: 4530: 4527: 4525: 4524: 4505: 4468:(3): 243–250. 4462:Nature Physics 4451: 4382: 4329: 4303: 4252: 4196: 4168: 4142: 4116: 4090: 4047: 4036:on 5 June 2007 4020: 3994: 3985: 3976: 3957:(8): 968–972. 3937: 3930: 3912: 3871: 3836: 3829: 3809: 3798: 3778: 3745: 3723: 3706: 3693: 3676: 3630: 3628:pp. 4–355 3617: 3610: 3590: 3569: 3540:(3): 559–584. 3520: 3502: 3476: 3447: 3434: 3427: 3406: 3404: 3401: 3399: 3398: 3393: 3388: 3383: 3378: 3376:Energy quality 3372: 3371: 3370: 3354: 3351: 3303: 3300: 3280:wave functions 3259: 3258:Quantum theory 3256: 3215: 3212: 3178: 3174: 3170: 3167: 3164: 3134:invariant mass 3126:Minkowski norm 3110:Henri PoincarĂ© 3105: 3102: 3096:) in the flat 3033:Main article: 3030: 3027: 3014: 3011: 3008: 3005: 3002: 2999: 2979: 2957: 2953: 2941: 2940: 2927: 2923: 2919: 2913: 2909: 2903: 2899: 2895: 2892: 2889: 2885: 2882: 2879: 2876: 2872: 2869: 2866: 2862: 2835: 2813: 2809: 2785: 2781: 2777: 2771: 2767: 2760: 2756: 2750: 2747: 2743: 2739: 2736: 2733: 2730: 2727: 2707: 2703: 2699: 2696: 2693: 2690: 2687: 2665: 2661: 2640: 2618: 2614: 2610: 2599: 2598: 2587: 2582: 2578: 2574: 2568: 2564: 2558: 2554: 2550: 2547: 2544: 2541: 2538: 2535: 2532: 2529: 2525: 2497: 2493: 2468: 2457: 2456: 2445: 2442: 2438: 2433: 2430: 2427: 2424: 2393: 2390: 2366: 2355: 2354: 2343: 2340: 2336: 2331: 2328: 2325: 2322: 2289: 2286: 2266: 2263: 2243: 2219: 2215: 2187: 2183: 2158: 2155: 2127: 2124: 2113: 2112: 2101: 2098: 2095: 2092: 2089: 2086: 2083: 2080: 2076: 2055: 2052: 2049: 2046: 2042: 2038: 2035: 2032: 2004:Main article: 2001: 1998: 1973:Main article: 1970: 1967: 1937:nor the total 1904:radiant energy 1873:Main article: 1869: 1868: 1827: 1825: 1818: 1812: 1809: 1631:caloric theory 1620: 1617: 1570: 1569: 1556: 1551: 1547: 1541: 1537: 1531: 1527: 1521: 1518: 1460:caloric theory 1402:Carl Holtzmann 1371: 1351: 1329: 1325: 1302: 1298: 1294: 1289: 1286: 1281: 1276: 1272: 1181:causal closure 1166:laws of motion 1158:published his 1141: 1140: 1127: 1123: 1117: 1113: 1107: 1103: 1072:kinetic energy 1058: 1057: 1044: 1039: 1035: 1029: 1025: 1019: 1015: 998: 988: 952:linear momenta 894: 893: 852: 850: 843: 837: 834: 772: 768: 764: 761: 758: 727:kinetic energy 690: 689: 687: 686: 679: 672: 664: 661: 660: 656: 655: 650: 645: 640: 635: 630: 625: 620: 615: 610: 605: 600: 595: 590: 585: 579: 578: 575: 574: 571: 570: 565: 564: 563: 562: 557: 552: 544: 543: 537: 536: 535: 534: 529: 524: 514: 509: 508: 505: 504: 499: 498: 492: 491: 489: 488: 483: 478: 473: 468: 463: 458: 452: 449: 448: 442: 441: 439: 438: 433: 428: 426:Chromatography 423: 418: 412: 409: 408: 402: 401: 399: 398: 379: 378: 377: 358: 346: 341: 329: 316: 313: 312: 304: 299: 298: 295: 294: 290: 289: 284: 279: 278: 277: 267: 262: 257: 256: 255: 250: 240: 235: 230: 225: 224: 223: 213: 207: 206: 201: 200: 197: 196: 191: 190: 189: 188: 180: 179: 175: 174: 173: 172: 167: 162: 154: 153: 147: 144: 143: 140: 139: 134: 120: 117: 112: 109: 103: 100: 97: 94: 83: 82: 76: 75: 58: 56: 36: 30: 27: 25: 24: 23: 14: 13: 10: 9: 6: 4: 3: 2: 4917: 4906: 4903: 4901: 4898: 4896: 4893: 4892: 4890: 4880: 4876: 4872: 4871: 4864: 4863: 4859: 4852: 4846: 4842: 4841: 4836: 4832: 4828: 4827: 4822: 4818: 4814: 4808: 4804: 4799: 4795: 4791: 4787: 4783: 4779: 4775: 4770: 4767: 4764: 4760: 4757: 4753: 4747: 4743: 4738: 4734: 4728: 4724: 4723: 4717: 4713: 4707: 4703: 4698: 4694: 4690: 4686: 4682: 4678: 4674: 4669: 4668: 4664: 4658: 4652: 4648: 4644: 4640: 4636: 4630: 4626: 4621: 4618: 4614: 4610: 4604: 4599: 4598: 4591: 4587: 4582: 4578: 4573: 4569: 4564: 4560: 4554: 4550: 4545: 4542: 4538: 4537: 4533: 4528: 4520: 4516: 4509: 4506: 4501: 4497: 4493: 4489: 4485: 4481: 4476: 4471: 4467: 4463: 4455: 4452: 4447: 4443: 4438: 4433: 4428: 4423: 4419: 4415: 4410: 4405: 4401: 4397: 4393: 4386: 4383: 4378: 4374: 4370: 4366: 4362: 4358: 4353: 4348: 4344: 4340: 4333: 4330: 4318:. 9 July 2007 4317: 4313: 4307: 4304: 4299: 4293: 4285: 4281: 4276: 4271: 4267: 4263: 4256: 4253: 4248: 4244: 4240: 4236: 4232: 4228: 4223: 4218: 4214: 4210: 4203: 4201: 4197: 4184: 4183: 4178: 4172: 4169: 4157: 4153: 4146: 4143: 4130: 4126: 4120: 4117: 4105: 4101: 4094: 4091: 4086: 4082: 4078: 4074: 4070: 4066: 4062: 4058: 4051: 4048: 4035: 4031: 4024: 4021: 4009: 4005: 3998: 3995: 3989: 3986: 3980: 3977: 3972: 3968: 3964: 3960: 3956: 3952: 3948: 3941: 3938: 3933: 3927: 3923: 3916: 3913: 3908: 3904: 3900: 3896: 3892: 3888: 3887: 3882: 3875: 3872: 3867: 3863: 3859: 3855: 3851: 3847: 3846:Physics Today 3840: 3837: 3832: 3826: 3822: 3821: 3813: 3810: 3807: 3801: 3795: 3791: 3790: 3782: 3779: 3775: 3771: 3770:pages 203-208 3767: 3763: 3762:pages 106-117 3759: 3755: 3749: 3746: 3733: 3727: 3724: 3719: 3718: 3710: 3707: 3703: 3697: 3694: 3690: 3686: 3680: 3677: 3665: 3661: 3657: 3653: 3649: 3645: 3641: 3634: 3631: 3627: 3621: 3618: 3613: 3607: 3603: 3602: 3594: 3591: 3587: 3583: 3579: 3573: 3570: 3565: 3561: 3556: 3551: 3547: 3543: 3539: 3535: 3531: 3524: 3521: 3515: 3514: 3506: 3503: 3498: 3494: 3487: 3480: 3477: 3464: 3460: 3454: 3452: 3448: 3444: 3438: 3435: 3430: 3424: 3420: 3419: 3411: 3408: 3402: 3397: 3394: 3392: 3389: 3387: 3384: 3382: 3379: 3377: 3374: 3373: 3368: 3367:Energy portal 3362: 3357: 3352: 3350: 3347: 3343: 3340: 3336: 3332: 3328: 3324: 3319: 3317: 3313: 3309: 3301: 3299: 3296: 3292: 3287: 3285: 3281: 3277: 3276:Hilbert space 3273: 3269: 3265: 3257: 3255: 3253: 3249: 3243: 3241: 3237: 3232: 3228: 3224: 3220: 3213: 3211: 3209: 3204: 3200: 3198: 3192: 3176: 3172: 3168: 3165: 3162: 3154: 3150: 3146: 3142: 3137: 3135: 3131: 3127: 3123: 3119: 3115: 3111: 3103: 3101: 3099: 3095: 3090: 3086: 3082: 3078: 3074: 3069: 3065: 3057: 3053: 3049: 3048:mathematician 3045: 3041: 3036: 3026: 3012: 3009: 3006: 3003: 3000: 2997: 2977: 2955: 2951: 2925: 2921: 2917: 2911: 2907: 2901: 2897: 2893: 2890: 2887: 2883: 2880: 2877: 2874: 2870: 2867: 2864: 2852: 2851: 2850: 2849: 2833: 2811: 2807: 2783: 2779: 2775: 2769: 2765: 2758: 2754: 2748: 2745: 2741: 2737: 2734: 2731: 2728: 2725: 2705: 2701: 2697: 2694: 2691: 2688: 2685: 2663: 2659: 2638: 2616: 2612: 2608: 2585: 2580: 2576: 2572: 2566: 2562: 2556: 2552: 2548: 2545: 2542: 2539: 2536: 2533: 2530: 2527: 2515: 2514: 2513: 2509: 2495: 2482: 2466: 2443: 2440: 2431: 2428: 2425: 2422: 2415: 2414: 2413: 2411: 2407: 2391: 2388: 2380: 2364: 2341: 2338: 2329: 2326: 2323: 2320: 2313: 2312: 2311: 2308: 2306: 2302: 2287: 2284: 2264: 2261: 2241: 2233: 2217: 2203: 2201: 2185: 2172: 2156: 2153: 2145: 2141: 2125: 2122: 2099: 2096: 2093: 2090: 2087: 2084: 2081: 2078: 2053: 2050: 2047: 2044: 2036: 2033: 2030: 2023: 2022: 2021: 2019: 2013: 2007: 1999: 1997: 1995: 1991: 1987: 1982: 1976: 1968: 1966: 1964: 1960: 1956: 1952: 1948: 1943: 1940: 1936: 1931: 1927: 1923: 1918: 1916: 1912: 1910: 1905: 1901: 1897: 1893: 1889: 1887: 1883: 1876: 1865: 1862: 1854: 1851:November 2015 1844: 1840: 1834: 1833: 1828:This section 1826: 1822: 1817: 1816: 1810: 1808: 1806: 1802: 1801: 1796: 1791: 1789: 1785: 1780: 1778: 1774: 1770: 1766: 1762: 1758: 1754: 1750: 1746: 1742: 1738: 1731: 1726: 1723: 1721: 1716: 1714: 1710: 1706: 1701: 1693: 1689: 1685: 1683: 1679: 1675: 1671: 1667: 1663: 1656: 1652: 1648: 1646: 1641: 1639: 1634: 1632: 1628: 1627: 1618: 1616: 1614: 1610: 1605: 1604: 1598: 1595:In the paper 1593: 1591: 1587: 1583: 1579: 1575: 1554: 1549: 1545: 1539: 1535: 1529: 1525: 1519: 1516: 1507: 1506: 1505: 1503: 1496: 1492: 1488: 1486: 1482: 1478: 1473: 1469: 1465: 1464:Count Rumford 1461: 1457: 1453: 1449: 1445: 1440: 1438: 1434: 1433:John Playfair 1430: 1426: 1422: 1418: 1412: 1408: 1403: 1399: 1395: 1391: 1387: 1385: 1369: 1362:its mass and 1349: 1327: 1323: 1300: 1296: 1292: 1287: 1284: 1279: 1274: 1270: 1260: 1256: 1250: 1246: 1242: 1240: 1236: 1232: 1227: 1225: 1221: 1217: 1213: 1212: 1211:Hydrodynamica 1207: 1203: 1199: 1192: 1188: 1184: 1182: 1178: 1174: 1169: 1167: 1163: 1162: 1157: 1152: 1150: 1146: 1125: 1121: 1115: 1111: 1105: 1101: 1093: 1092: 1091: 1089: 1085: 1081: 1077: 1073: 1069: 1065: 1064: 1042: 1037: 1033: 1027: 1023: 1017: 1013: 1005: 1004: 1003: 1001: 995: 991: 985: 981: 977: 970: 966: 962: 960: 959: 953: 949: 944: 941: 936: 934: 930: 925: 919: 915: 911: 904: 900: 890: 887: 879: 876:November 2015 869: 865: 859: 858: 853:This section 851: 847: 842: 841: 835: 833: 831: 826: 821: 819: 816: 812: 808: 803: 801: 797: 793: 789: 784: 770: 766: 762: 759: 756: 747: 743: 738: 736: 732: 728: 724: 720: 715: 714:closed system 711: 710: 705: 701: 697: 685: 680: 678: 673: 671: 666: 665: 663: 662: 654: 651: 649: 646: 644: 641: 639: 636: 634: 631: 629: 626: 624: 621: 619: 616: 614: 611: 609: 606: 604: 601: 599: 596: 594: 591: 589: 586: 584: 581: 580: 573: 572: 561: 558: 556: 553: 551: 548: 547: 546: 545: 542: 538: 533: 530: 528: 525: 523: 520: 519: 518: 517: 512: 507: 506: 497: 493: 487: 484: 482: 479: 477: 474: 472: 469: 467: 466:Charles's law 464: 462: 459: 457: 454: 453: 451: 450: 447: 443: 437: 434: 432: 429: 427: 424: 422: 419: 417: 414: 413: 411: 410: 407: 403: 397: 394: 390: 387: 383: 380: 375: 374:non-Newtonian 372: 368: 364: 363: 362: 359: 357: 354: 350: 347: 345: 342: 340: 337: 333: 330: 328: 325: 321: 318: 317: 315: 314: 311: 307: 302: 297: 296: 288: 285: 283: 280: 276: 273: 272: 271: 268: 266: 263: 261: 260:Compatibility 258: 254: 251: 249: 248:Finite strain 246: 245: 244: 241: 239: 236: 234: 231: 229: 226: 222: 219: 218: 217: 214: 212: 209: 208: 204: 199: 198: 187: 184: 183: 182: 181: 176: 171: 168: 166: 163: 161: 158: 157: 156: 155: 152:Conservations 150: 142: 141: 137: 118: 115: 110: 107: 101: 98: 95: 92: 85: 84: 81: 77: 73: 72: 69: 65: 48: 47:1 August 2024 44: 40: 33: 19: 4869: 4839: 4835:PoincarĂ©, H. 4825: 4802: 4777: 4773: 4765: 4762: 4741: 4720: 4701: 4676: 4672: 4646: 4624: 4616: 4596: 4585: 4576: 4567: 4548: 4540: 4529:Bibliography 4518: 4514: 4508: 4465: 4461: 4454: 4399: 4395: 4385: 4342: 4338: 4332: 4320:. Retrieved 4315: 4306: 4292:cite journal 4265: 4261: 4255: 4212: 4208: 4189:25 September 4187:. Retrieved 4180: 4171: 4159:. Retrieved 4155: 4145: 4135:25 September 4133:. Retrieved 4128: 4119: 4109:25 September 4107:. Retrieved 4103: 4093: 4060: 4056: 4050: 4038:. Retrieved 4034:the original 4023: 4013:25 September 4011:. Retrieved 4007: 3997: 3988: 3979: 3954: 3950: 3940: 3921: 3915: 3890: 3884: 3874: 3849: 3845: 3839: 3819: 3812: 3788: 3781: 3773: 3765: 3757: 3753: 3748: 3736:. Retrieved 3726: 3716: 3709: 3701: 3696: 3688: 3684: 3679: 3667:. Retrieved 3647: 3643: 3633: 3625: 3620: 3600: 3593: 3580:. Springer. 3577: 3572: 3537: 3533: 3523: 3512: 3505: 3496: 3492: 3479: 3469:25 September 3467:. Retrieved 3462: 3442: 3437: 3417: 3410: 3344: 3320: 3310:, Professor 3305: 3288: 3268:self-adjoint 3261: 3244: 3221: 3217: 3196: 3193: 3153:total energy 3138: 3107: 3068:Emmy Noether 3061: 3044:Emmy Noether 2942: 2600: 2510: 2458: 2410:quasi-static 2409: 2356: 2309: 2303: 2204: 2114: 2015: 1994:antineutrino 1986:Enrico Fermi 1978: 1962: 1958: 1953:energy) and 1950: 1946: 1944: 1938: 1934: 1919: 1914: 1908: 1899: 1895: 1885: 1881: 1878: 1857: 1848: 1837:Please help 1832:verification 1829: 1805:Whig history 1798: 1792: 1787: 1781: 1776: 1772: 1756: 1752: 1734: 1724: 1717: 1697: 1659: 1642: 1635: 1624: 1622: 1612: 1596: 1594: 1589: 1585: 1571: 1501: 1499: 1485:Thomas Young 1480: 1476: 1455: 1443: 1441: 1394:John Smeaton 1388: 1253: 1228: 1209: 1206:virtual work 1195: 1172: 1170: 1159: 1156:Isaac Newton 1153: 1144: 1142: 1080:Isaac Newton 1068:living force 1067: 1061: 1059: 996: 992:, each with 986: 979: 973: 956: 945: 937: 929:Simon Stevin 926: 897: 882: 873: 862:Please help 857:verification 854: 822: 804: 739: 708: 695: 693: 541:Smart fluids 486:Graham's law 392: 385: 370: 356:Pascal's law 352: 335: 323: 178:Inequalities 169: 68: 46: 37:This is the 31: 3852:(9): 23–8. 3272:Hamiltonian 2481:temperature 1961:, not just 1896:rest energy 1761:Sadi Carnot 1745:electricity 1446:. In 1783, 1421:Marc Seguin 1405: [ 1398:Peter Ewart 1239:Hamiltonian 796:black holes 744:. However, 560:Ferrofluids 461:Boyle's law 233:Hooke's law 211:Deformation 4889:Categories 4867:MISN-0-158 4759:Kuhn, T.S. 4475:2203.04231 4352:1910.06473 4322:10 October 4275:2401.14261 4222:2101.11052 3734:. Bartleby 3403:References 3145:rest frame 3098:space-time 2010:See also: 1981:beta decay 1235:Lagrangian 1076:physicists 914:four roots 910:Empedocles 815:continuous 805:Given the 613:Gay-Lussac 576:Scientists 476:Fick's law 456:Atmosphere 275:frictional 228:Plasticity 216:Elasticity 4794:145585492 4780:: 18–49. 4500:246949254 4409:0806.0339 4377:204575731 4345:: 67–81. 4247:226664820 4215:(4): 83. 4129:Space.com 4085:126366668 4040:5 January 3291:Born rule 3248:Alan Guth 3223:John Baez 3130:rest mass 3007:− 3001:≡ 2952:μ 2908:μ 2898:∑ 2881:− 2755:∑ 2735:δ 2695:δ 2692:≠ 2553:∑ 2543:δ 2540:− 2534:δ 2423:δ 2321:δ 2285:δ 2262:δ 2154:δ 2146:process, 2123:δ 2094:δ 2091:− 2085:δ 2051:δ 2031:δ 1900:rest mass 1882:intrinsic 1793:In 1877, 1749:magnetism 1607:in 1837, 1526:∑ 1487:in 1807. 1390:Engineers 1224:hydraulic 1161:Principia 1154:In 1687, 1102:∑ 1014:∑ 946:In 1669, 938:In 1639, 723:converted 709:conserved 653:Truesdell 583:Bernoulli 532:Rheometer 527:Rheometry 367:Newtonian 361:Viscosity 111:φ 99:− 4875:PDF file 4837:(1905). 4823:(1872). 4821:Mach, E. 4521:(1): 28. 4446:28179844 4402:(1): 5. 4063:: 1–14. 3669:24 March 3664:27757357 3564:34759713 3353:See also 3312:Eric Ash 3295:measured 3073:symmetry 2799:, where 2379:pressure 1926:positron 1922:electron 1713:friction 1502:vis viva 1477:Vis viva 1456:vis viva 1444:vis viva 1427:such as 1425:chemists 1392:such as 1315:, where 1173:vis viva 1145:vis viva 1088:momentum 1063:vis viva 994:velocity 918:Epicurus 794:or when 731:dynamite 511:Rheology 416:Adhesion 396:Pressure 382:Buoyancy 327:Dynamics 165:Momentum 43:reviewed 4681:Bibcode 4643:Lanczos 4480:Bibcode 4437:5255913 4414:Bibcode 4357:Bibcode 4268:(120). 4227:Bibcode 4065:Bibcode 3959:Bibcode 3895:Bibcode 3854:Bibcode 3738:6 April 3555:8570307 3499:: 1–26. 3141:massive 2479:is the 2377:is the 2305:Entropy 2144:heating 1930:photons 1472:cannons 940:Galileo 836:History 598:Charles 406:Liquids 320:Statics 265:Bending 4847:  4809:  4792:  4768:321–56 4748:  4729:  4708:  4653:  4631:  4605:  4555:  4498:  4444:  4434:  4375:  4245:  4185:. 2022 4161:26 May 4083:  3928:  3827:  3796:  3662:  3608:  3584:  3562:  3552:  3465:. 2010 3425:  3302:Status 2601:where 2459:where 2406:volume 2357:where 2140:energy 2115:where 2016:For a 1939:energy 1924:and a 1763:, and 1753:energy 1747:, and 1674:oxygen 1629:. The 1481:energy 1468:boring 1419:, and 1237:, and 1198:Johann 984:masses 980:motion 702:of an 700:energy 648:Stokes 643:Pascal 633:Navier 628:Newton 618:Graham 593:Cauchy 496:Plasma 391:  389:Mixing 384:  369:  351:  334:  322:  310:Fluids 243:Strain 238:Stress 221:linear 170:Energy 4790:S2CID 4496:S2CID 4470:arXiv 4404:arXiv 4373:S2CID 4347:arXiv 4270:arXiv 4243:S2CID 4217:arXiv 4081:S2CID 3691:, 233 3660:JSTOR 3489:(PDF) 1959:total 1947:total 1915:total 1909:total 1741:light 1692:Joule 1613:Kraft 1413:] 1384:speed 798:emit 623:Hooke 603:Euler 588:Boyle 446:Gases 4845:ISBN 4807:ISBN 4774:Isis 4746:ISBN 4727:ISBN 4706:ISBN 4651:ISBN 4629:ISBN 4603:ISBN 4553:ISBN 4442:PMID 4324:2022 4298:link 4191:2022 4163:2024 4137:2022 4111:2022 4042:2017 4015:2022 3926:ISBN 3825:ISBN 3794:ISBN 3740:2014 3671:2022 3606:ISBN 3582:ISBN 3560:PMID 3471:2022 3423:ISBN 3308:Orbo 3252:zero 3112:and 3054:and 2651:and 2483:and 2381:and 2171:work 1963:rest 1951:rest 1935:mass 1911:mass 1888:mass 1886:rest 1680:and 1678:heat 1580:and 1574:work 1458:and 1450:and 1382:its 1220:work 1200:and 694:The 638:Noll 608:Fick 160:Mass 145:Laws 4782:doi 4766:pp. 4689:doi 4488:doi 4432:PMC 4422:doi 4365:doi 4316:BBC 4280:doi 4235:doi 4073:doi 3967:doi 3903:doi 3862:doi 3652:doi 3550:PMC 3542:doi 3497:150 3335:TeV 3316:BBC 3262:In 3094:QED 3083:of 1913:or 1884:or 1841:by 1504:to 1470:of 1183:.) 1066:or 1002:), 866:by 725:to 721:is 45:on 4891:: 4788:. 4778:13 4776:. 4687:. 4677:33 4675:. 4519:14 4517:. 4494:. 4486:. 4478:. 4466:18 4464:. 4440:. 4430:. 4420:. 4412:. 4400:16 4398:. 4394:. 4371:. 4363:. 4355:. 4343:69 4341:. 4314:. 4294:}} 4290:{{ 4278:. 4266:41 4264:. 4241:. 4233:. 4225:. 4213:51 4211:. 4199:^ 4179:. 4154:. 4127:. 4102:. 4079:. 4071:. 4061:65 4059:. 4006:. 3965:. 3955:89 3953:. 3949:. 3901:. 3891:36 3889:. 3883:. 3860:. 3850:31 3848:. 3804:, 3689:43 3687:, 3658:. 3646:. 3642:. 3558:. 3548:. 3538:26 3536:. 3532:. 3495:. 3491:. 3461:. 3450:^ 3254:. 3242:. 3210:. 3191:. 3100:. 3025:. 1807:. 1767:, 1743:, 1462:. 1415:, 1411:ar 1409:; 1407:de 1400:, 1396:, 1233:, 1151:. 1090:: 922:c. 906:c. 802:. 41:, 4881:. 4873:( 4853:. 4815:. 4796:. 4784:: 4754:. 4735:. 4714:. 4695:. 4691:: 4683:: 4659:. 4637:. 4611:. 4561:. 4502:. 4490:: 4482:: 4472:: 4448:. 4424:: 4416:: 4406:: 4379:. 4367:: 4359:: 4349:: 4326:. 4300:) 4282:: 4272:: 4249:. 4237:: 4229:: 4219:: 4193:. 4165:. 4139:. 4113:. 4087:. 4075:: 4067:: 4044:. 4017:. 3973:. 3969:: 3961:: 3934:. 3909:. 3905:: 3897:: 3868:. 3864:: 3856:: 3833:. 3802:. 3742:. 3673:. 3654:: 3648:7 3614:. 3588:. 3566:. 3544:: 3516:. 3473:. 3431:. 3177:2 3173:c 3169:m 3166:= 3163:E 3058:. 3013:S 3010:T 3004:H 2998:G 2978:i 2956:i 2926:i 2922:N 2918:d 2912:i 2902:i 2894:+ 2891:V 2888:d 2884:P 2878:S 2875:d 2871:T 2868:= 2865:U 2861:d 2834:i 2812:i 2808:s 2784:i 2780:M 2776:d 2770:i 2766:s 2759:i 2749:+ 2746:T 2742:/ 2738:Q 2732:= 2729:S 2726:d 2706:T 2702:/ 2698:Q 2689:S 2686:d 2664:i 2660:h 2639:i 2617:i 2613:M 2609:d 2586:, 2581:i 2577:M 2573:d 2567:i 2563:h 2557:i 2549:+ 2546:W 2537:Q 2531:= 2528:U 2524:d 2496:S 2492:d 2467:T 2444:, 2441:S 2437:d 2432:T 2429:= 2426:Q 2392:V 2389:d 2365:P 2342:, 2339:V 2335:d 2330:P 2327:= 2324:W 2288:W 2265:Q 2242:U 2218:U 2214:d 2186:U 2182:d 2157:W 2126:Q 2100:, 2097:W 2088:Q 2082:= 2079:U 2075:d 2054:W 2048:+ 2045:U 2041:d 2037:= 2034:Q 1957:( 1864:) 1858:( 1853:) 1849:( 1835:. 1775:( 1732:. 1555:2 1550:i 1546:v 1540:i 1536:m 1530:i 1520:2 1517:1 1370:v 1350:m 1328:k 1324:E 1301:2 1297:v 1293:m 1288:2 1285:1 1280:= 1275:k 1271:E 1126:i 1122:v 1116:i 1112:m 1106:i 1043:2 1038:i 1034:v 1028:i 1024:m 1018:i 999:i 997:v 989:i 987:m 920:( 889:) 883:( 878:) 874:( 860:. 771:2 767:c 763:m 760:= 757:E 683:e 676:t 669:v 393:· 386:· 376:) 371:· 365:( 353:· 336:· 324:· 119:x 116:d 108:d 102:D 96:= 93:J 66:. 49:. 20:)

Index

Energy conservation (physics)
latest accepted revision
reviewed
Energy conservation
Continuum mechanics
Fick's laws of diffusion
Mass
Momentum
Energy
Clausius–Duhem (entropy)
Solid mechanics
Deformation
Elasticity
linear
Plasticity
Hooke's law
Stress
Strain
Finite strain
Infinitesimal strain
Compatibility
Bending
Contact mechanics
frictional
Material failure theory
Fracture mechanics
Fluid mechanics
Fluids
Statics
Dynamics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑