Knowledge

Energy modeling

Source 📝

2852: 2790: 3207: 3197: 2628:
Bri-Mathias; Hoque, Simi; Jenkins, Jesse; Jenn, Alan; Johansson, Daniel; Kaufman, Noah; Kiviluoma, Juha; Lin, Zhenhong; MacLean, Heather; Masanet, Eric; Masnadi, Mohammad; McMillan, Colin; Nock, Destenie; Patankar, Neha; Patino-Echeverri, Dalia; Schivley, Greg; Siddiqui, Sauleh; Smith, Amanda; Venkatesh, Aranya; Wagner, Gernot; Yeh, Sonia; Zhou, Yuyu (2020).
620:(DOE). NEMS computes equilibrium fuel prices and quantities for the US energy sector. To do so, the software iteratively solves a sequence of linear programs and nonlinear equations. NEMS has been used to explicitly model the demand-side, in particular to determine consumer technology choices in the residential and commercial building sectors. 555:
MARKAL (MARKet ALlocation) is an integrated energy systems modeling platform, used to analyze energy, economic, and environmental issues at the global, national, and municipal level over time-frames of up to several decades. MARKAL can be used to quantify the impacts of policy options on technology
189:
structure and focus instead on the operational dynamics of the system. Single-year models normally embed considerable temporal (typically hourly resolution) and technical detail (such as individual generation plant and transmissions lines). Long-range models – cast over one or more decades (from
590:
The TIMES model generator was also developed under the Energy Technology Systems Analysis Program (ETSAP). TIMES combines two different, but complementary, systematic approaches to modeling energy – a technical engineering approach and an economic approach. TIMES is a technology rich, bottom-up
136:
A wide variety of model types are in use. This section attempts to categorize the key types and their usage. The divisions provided are not hard and fast and mixed-paradigm models exist. In addition, the results from more general models can be used to inform the specification of more detailed
221:. Models may be recursive-dynamic, solving sequentially for each time interval, and thus evolving through time. Or they may be framed as a single forward-looking intertemporal problem, and thereby assume perfect foresight. Single-year engineering-based models usually attempt to minimize the 2627:
DeCarolis, Joseph; Jaramillo, Paulina; Johnson, Jeremiah; McCollum, David; Trutnevyte, Evelina; Daniels, David; Akın-Olçum, Gökçe; Bergerson, Joule; Cho, Soolyeon; Choi, Joon-Ho; Craig, Michael; de Queiroz, Anderson; Eshraghi, Hadi; Galik, Christopher; Gutowski, Timothy; Haapala, Karl; Hodge,
528:
in the United States to plan for the economic impact of proposed electric transmission and generation facilities in FERC-regulated electric wholesale markets. Portions of the model may also be used for the commitment and dispatch phase (updated on 5 minute intervals) in operation of wholesale
2578:
Howells, Mark; Rogner, Holger; Strachan, Neil; Heaps, Charles; Huntington, Hillard; Kypreos, Socrates; Hughes, Alison; Silveira, Semida; DeCarolis, Joe; Bazillian, Morgan; Roehrl, Alexander (2011). "OSeMOSYS: the open source energy modeling system: an introduction to its ethos, structure and
251:
grow in importance, models have needed to adopt an hourly temporal resolution in order to better capture their real-time dynamics. Long-range models are often limited to calculations at yearly intervals, based on typical day profiles, and are hence less suited to systems with significant
1156:
Riahi, Keywan; Dentener, Frank; Gielen, Dolf; Grubler, Arnulf; Jewell, Jessica; Klimont, Zbigniew; Krey, Volker; McCollum, David; Pachauri, Shonali; Rao, Shilpa; Ruijven, Bas van; Vuuren, Detlef P van; Wilson, Charlie (2012). "Chapter 17: Energy pathways for sustainable development". In
501:'s (SEI) US Center. LEAP can be used to examine city, statewide, national, and regional energy systems. LEAP is normally used for studies of between 20–50 years. Most of its calculations occur at yearly intervals. LEAP allows policy analysts to create and evaluate alternative 362:
Electricity sector models are used to model electricity systems. The scope may be national or regional, depending on circumstances. For instance, given the presence of national interconnectors, the western European electricity system may be modeled in its entirety.
651:
projects, often developing a diverse community as they proceed. OSeMOSYS is an example of such a model. The Open Energy Outlook is an open community that has produced a long-term outlook of the U.S. energy system using the open-source TEMOA model.
947: 2534: 2239: 256:. Day-ahead dispatching optimization is used to aid in the planning of systems with a significant portion of intermittent energy production in which uncertainty around future energy predictions is accounted for using stochastic optimization. 1191: 1657:
Unger, Thomas; Springfeldt, Per Erik; Tennbakk, Berit; Ravn, Hans; Havskjold, Monica; Niemi, Janne; Koljonen, Tiina; Fritz, Peter; Koreneff, Göran; Rydén, Bo; Lehtilä, Antti; Sköldberg, Håkan; Jakobsson, Tobias; Honkatukia, Juha (2010).
1930: 341:
Published surveys on energy system modeling have focused on techniques, general classification, an overview, decentralized planning, modeling methods, renewables integration, energy efficiency policies, electric vehicle integration,
595:
to produce a least-cost energy system, optimized according to a number of user-specified constraints, over the medium to long-term. It is used for "the exploration of possible energy futures based on contrasted scenarios".
373:
where appropriate. Some models (for instance, models for Germany) may assume a single common bus or "copper plate" where the grid is strong. The demand-side in electricity sector models is typically represented by a fixed
423:
In addition to the electricity sector, energy system models include the heat, gas, mobility, and other sectors as appropriate. Energy system models are often national in scope, but may be municipal or international.
473:
This section lists some of the major models in use. These are typically run by national governments. In a community effort, a large number of existing energy system models were collected in model fact sheets on the
533:'s PROMOD is a similar software package. These ISO and RTO regions also utilize a GE software package called MARS (Multi-Area Reliability Simulation) to ensure the power system meets reliability criteria (a 966: 2553: 354:
researchers have also analyzed model typologies. A 2014 paper outlines the modeling challenges ahead as energy systems become more complex and human and social factors become increasingly relevant.
541:
software package called PSSE (Power System Simulation for Engineering) analyzes load flow on the power system for short-circuits and stability during preliminary planning studies by RTOs and ISOs.
1232: 567:
TIMES (The Integrated MARKAL-EFOM System) is an evolution of MARKAL – both energy models have many similarities. TIMES succeeded MARKAL in 2008. Both models are technology explicit, dynamic
78:
is often used to determine the least-cost in some sense. Models can be international, regional, national, municipal, or stand-alone in scope. Governments maintain national energy models for
1965: 1696: 2293: 2743:
Göke, Leonard; Weibezahn, Jens; von Hirschhausen, Christian (2023). "A collective blueprint, not a crystal ball: how expectations and participation shape long-term energy scenarios".
2268: 1446:
Connolly, David; Lund, Henrik; Mathiesen, Brian Vad; Leahy, Marti (2010). "A review of computer tools for analysing the integration of renewable energy into various energy systems".
105:, which also contain a representation of the world energy system and are used to examine global transformation pathways through to 2050 or 2100 are not considered here in detail. 1162: 190:
the present until say 2050) – attempt to encapsulate the structural evolution of the system and are used to investigate capacity expansion and energy system transition issues.
1565:
Mahmud, Khizir; Town, Graham E (15 June 2016). "A review of computer tools for modeling electric vehicle energy requirements and their impact on power distribution networks".
1330: 525: 521: 1846:
Schimeczek, Christoph; Nienhaus, Kristina; Frey, Ulrich; Sperber, Evelyn; Sarfarazi, Seyedfarzad; Nitsch, Felix; Kochems, Johannes; Ghazi, A. Achraf El (17 April 2023).
905: 3001: 1087:
Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
867:
Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
769: 991:
Lunz, Benedikt; Stöcker, Philipp; Eckstein, Sascha; Nebel, Arjuna; Samadi, Sascha; Erlach, Berit; Fischedick, Manfred; Elsner, Peter; Sauer, Dirk Uwe (2016).
120:
that climate change mitigation will require a fundamental transformation of the energy supply system, including the substitution of unabated (not captured by
3283: 3243: 1886: 1122: 2514:. Washington, DC, USA: US Energy Information Administration, Office of Integrated and International Energy Analysis, US Department of Energy. April 2015 2968: 1659: 319: 98: 993:"Scenario-based comparative assessment of potential future electricity systems – A new methodological approach using Germany in 2050 as an example" 2051: 1592:
van Ruijven, Bas; Urban, Frauke; Benders, René MJ; Moll, Henri C; van der Sluijs, Jeroen P; de Vries, Bert; van Vuuren, Detlef P (December 2008).
454:. Individual plants are characterized by their efficiency curves (also known as input/output relations), nameplate capacities, investment costs ( 3411: 2547: 2415: 1672: 1098: 960: 878: 351: 185:
of the model is an important consideration. Single-year models – set in either the present or the future (say 2050) – assume a non-evolving
3447: 2941: 1661:
Coordinated use of energy system models in energy and climate policy analysis: lessons learned from the Nordic Energy Perspectives project
2468:"End use technology choice in the National Energy Modeling System (NEMS): an analysis of the residential and commercial building sectors" 229:. Long-range models, usually spanning decades, attempt to minimize both the short and long-run costs as a single intertemporal problem. 174:. A scenario is a coherent set of assumptions about a possible system. New scenarios are tested against a baseline scenario – normally 3059: 2053:
LEAP: Long range Energy Alternatives Planning System: a tool for energy policy analysis and climate change mitigation assessment – Flyer
683: 486:
LEAP, the Low Emissions Analysis Platform (formerly known as the Long-range Energy Alternatives Planning System) is a software tool for
3523: 617: 58:
to investigate different assumptions about the technical and economic conditions at play. Outputs may include the system feasibility,
1761: 1190:
Bauer, Nico; Mouratiadou, Ioanna; Luderer, Gunnar; Baumstark, Lavinia; Brecha, Robert J; Edenhofer, Ottmar; Kriegler, Elmar (2016).
1046: 584: 264: 167:
Models may be limited in scope to the electricity sector or they may attempt to cover an energy system in its entirety (see below).
74:
of the system under investigation. A wide range of techniques are employed, ranging from broadly economic to broadly engineering.
3182: 710: 3375: 3236: 3125: 2996: 2400:
Informing energy and climate policies using energy systems models: insights from scenario analysis increasing the evidence base
2210: 2060: 763: 613: 608: 498: 323: 102: 3518: 3493: 3488: 2110: 1894: 1406: 1295: 537:(LOLE) of no greater than 0.1 days per year). Further, a GE software package called PSLF (Positive Sequence Load Flow) and a 436: 3498: 2961: 2437: 786: 366:
Engineering-based models usually contain a good characterization of the technologies involved, including the high-voltage
280: 232:
The demand-side (or end-user domain) has historically received relatively scant attention, often modeled by just a simple
3344: 3298: 3293: 3260: 3038: 1780:
Agent-based simulation of electricity markets: a literature review — Working paper sustainability and innovation S5/2007
1378:
Hiremath, RB; Shikha, S; Ravindranath, NH (2007). "Decentralized energy planning: modeling and application — a review".
720: 475: 175: 117: 3288: 3105: 1522: 561: 296: 465:
Producing hybrid top-down/bottom-up models to capture both the economics and the engineering has proved challenging.
3401: 3229: 2902:
COST TD1207 Mathematical Optimization in the Decision Support Systems for Efficient and Robust Energy Networks wiki
2472: 1166: 1090: 870: 244: 121: 94: 86: 31: 1806: 3503: 3273: 3200: 3074: 3043: 726: 677: 491: 343: 253: 194: 109: 75: 2691: 157:
energy and non-energy capital investment and labour market adjustment dynamics leading to economic restructuring
3319: 2954: 1131: 534: 300: 288: 248: 113: 59: 949:
Flexibility concepts for the German power supply in 2050: ensuring stability in the age of renewable energies
647:, if not explicitly published. To improve transparency and public acceptance, some models are undertaken as 3533: 2669: 1593: 1303:. Tilburg, Netherlands: Tilburg University, Faculty of Economics and Business Administration. Archived from 739: 3426: 2851: 599:
As of 2015, the MARKAL and TIMES model generators are in use in 177 institutions spread over 70 countries.
3513: 3508: 3210: 2789: 2185: 2160: 2135: 2001: 1170: 462:). Some models allow for these parameters to depend on external conditions, such as ambient temperature. 237: 222: 1079: 859: 3452: 3396: 3177: 700: 509:, and environmental impacts. As of June 2021, LEAP has over 6000 users in 200 countries and territories 210: 2064: 1778: 616:(National Energy Modeling System) is a long-standing United States government policy model, run by the 326:
or IAM) are not considered here in any detail. Integrated models combine simplified sub-models of the
3406: 3252: 2349: 1208: 1025:
Rachunok, Benjamin; Staid, Andrea; Watson, Jean-Paul; Woodruff, David L.; Yang, Dominic (June 2018).
734: 648: 260: 197:
to solve for redundancy in the specification of the system. Some of the techniques used derive from
71: 2006: 1175: 3528: 3349: 3064: 1848:"AMIRIS: Agent-based Market model for the Investigation of Renewable and Integrated energy Systems" 704: 568: 455: 451: 432: 400: 367: 214: 198: 186: 30:
This article is about modeling energy systems. For the simulation of energy use in buildings, see
3442: 3339: 3329: 3100: 2915: 2778: 2752: 2651: 1957: 1911: 1828: 1632: 1224: 1060: 928: 906:"Improving deep decarbonization modelling capacity for developed and developing country contexts" 592: 580: 560:. The software was developed by the Energy Technology Systems Analysis Programme (ETSAP) of the 557: 404: 382: 206: 202: 2803: 2937: 2402:. Lecture Notes in Energy. Vol. 30. Cham, Switzerland: Springer International Publishing. 3354: 3334: 3314: 3079: 2770: 2543: 2411: 1867: 1757: 1719: 1668: 1624: 1547: 1496: 1353: 1269: 1094: 1052: 1042: 956: 874: 812:
Lai, Chun Sing; Locatelli, Giorgio; Pimm, Andrew; Wu, Xiaomei; Lai, Loi Lei (September 2020).
502: 459: 412: 396: 370: 171: 55: 1475:"Evaluating energy efficiency policies with energy-economy models — Report number LBNL-3862E" 663:, but it is necessary to understand that model results do not constitute future predictions. 236:. End-user energy demand curves, in the short-run at least, are normally found to be highly 3467: 3462: 3380: 3151: 3146: 2762: 2641: 2588: 2481: 2446: 2403: 2398:
Giannakidis, George; Labriet, Maryse; Gallachóir, Brian Ó; Tosato, GianCarlot, eds. (2015).
2011: 1992: 1949: 1903: 1859: 1820: 1811: 1749: 1711: 1616: 1608: 1574: 1537: 1486: 1455: 1421: 1387: 1345: 1258: 1216: 1034: 1031:
2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)
1004: 920: 835: 825: 576: 520:'s MAPS (Multi-Area Production Simulation) is a production simulation model used by various 517: 408: 338:
system in addition to the world energy system. Examples include GCAM, MESSAGE, and REMIND.
67: 2506: 992: 772:(Prospective Outlook on Long-term Energy Systems) – an energy sector world simulation model 751: 3278: 3156: 3115: 3084: 2370:
Loulou, Richard; Remne, Uwe; Kanudia, Amit; Lehtila, Antti; Goldstein, Gary (April 2005).
1542: 1491: 1199: 226: 2901: 1212: 112:
has grown in importance. The energy supply sector is the largest contributor to global
3457: 3421: 3268: 3141: 1990:
Böhringer, Christoph; Rutherford, Thomas F (2008). "Combining bottom-up and top-down".
689: 347: 47: 2433:"The National Energy Modeling System: a large-scale energy-economic equilibrium model" 1192:"Global fossil energy markets and climate change mitigation – an analysis with REMIND" 3482: 3416: 3324: 3120: 3110: 2782: 2655: 2630:"Leveraging open-source tools for collaborative macro-energy system modeling efforts" 2467: 2029: 1915: 1636: 1474: 1027:"Stochastic Unit Commitment Performance Considering Monte Carlo Wind Power Scenarios" 730: 694: 636: 572: 487: 439:. General equilibrium models represent a specialized activity and require dedicated 386: 327: 90: 79: 51: 1961: 1847: 1832: 1228: 1064: 932: 858:
Bruckner, Thomas; Bashmakov, Igor Alexeyevic; Mulugetta, Yacob; et al. (2014).
225:
financial cost, while single-year market-based models use optimization to determine
2466:
Wilkerson, Jordan T; Cullenward, Danny; Davidian, Danielle; Weyant, John P (2013).
1612: 1578: 1459: 1008: 375: 233: 182: 1304: 924: 830: 813: 2921: 85:
Energy models are usually intended to contribute variously to system operations,
3161: 2646: 2629: 2592: 2485: 2015: 1824: 754:(Integrated National Energy Modeling System) – a national energy model for China 714: 644: 640: 506: 392: 312: 276: 125: 97:
are explicitly excluded, although they too are sometimes called energy models.
17: 2766: 2700: 2451: 2432: 2371: 2322: 1748:. Power Engineering Society Summer Meeting – Volume 4. Seattle, WA, USA: IEEE. 1715: 1425: 1391: 1038: 723:– database projects which collect, clean, and republish energy-related datasets 141:
of models. Models may, in general, need to capture "complex dynamics such as:
2866: 2825: 2407: 1953: 1929:
Bruckner, Thomas; Morrison, Robbie; Handley, Chris; Patterson, Murray (2003).
1907: 1473:
Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A (1 August 2010).
1349: 1220: 440: 27:
Process of building computer models of energy systems in order to analyze them
2774: 1871: 1753: 1723: 1628: 1551: 1357: 1273: 2830:. London, United Kingdom: Department of Mathematics, Imperial College London 814:"A review on long-term electrical power system modeling with energy storage" 138: 2536:
Consulting with energy scenarios: requirements for scientific policy advice
686:– possible futures in which global warming is reduced by deliberate actions 2542:. Berlin, Germany: acatech — National Academy of Science and Engineering. 955:. Berlin, Germany: acatech – National Academy of Science and Engineering. 635:
Public policy energy models have been criticized for being insufficiently
2911: 2508:
Annual energy outlook 2015: with projections to 2040 – DOE/EIA-0383(2015)
1746:
Strategic bidding in competitive electricity markets: a literature survey
1157:
Gomez-Echeverri, L; Johansson, TB; Nakicenovic, N; Patwardhan, A (eds.).
840: 331: 268: 1863: 1777:
Sensfuß, Frank; Ragwitz, Mario; Genoese, Massimo; Möst, Dominik (2007).
3221: 2844:
00:11:42. Presentation to Climate forecasting for energy workshop on 4
1594:"Modeling energy and development: an evaluation of models and concepts" 575:. In both cases, the equilibrium is determined by maximizing the total 538: 335: 292: 2690:
DeCarolis, Joseph; Hunter, Kevin; Sreepathi, Sarat (21–23 June 2010).
1807:"A critical survey of agent-based wholesale electricity market models" 1620: 1500: 1056: 1026: 3022: 3017: 2991: 1521:
Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A (2010).
807: 805: 775:
KAPSARC Energy Model - an energy sector model for Saudi Arabia 
757: 550: 308: 272: 218: 1697:"Energy systems modeling for twenty-first century energy challenges" 2757: 2693:
The TEMOA project: tools for energy model optimization and analysis
1297:
Classification of energy models — FEW Research Memorandum — Vol 777
304: 93:
development. This page concentrates on policy models. Individual
2946: 2931: 1931:"High-resolution modeling of energy-services supply systems using 1523:"Evaluating energy efficiency policies with energy-economy models" 1329:
Bhattacharyya, Subhes C; Timilsina, Govinda R (23 November 2010).
284: 1259:"Mathematical modeling and simulation methods in energy systems" 63: 3225: 2950: 1695:
Pfenninger, Stefan; Hawkes, Adam; Keirstead, James (May 2014).
450:
capture the engineering well and often rely on techniques from
2914:
energy model from the Department of Development and Planning,
2872:
Berit Erlach explains energy system modeling in everyday terms
2827:
Open energy system modelling for climate scientists and others
530: 1161:. Laxenburg, Austria, Cambridge, UK, and New York, NY, USA: 108:
Energy modeling has increased in importance as the need for
2907: 381:
Market-based models, in addition, represent the prevailing
2722: 2606: 2431:
Gabriel, Steven A; Kydes, Andy S; Whitman, Peter (1999).
792:
Introductory video with reference to public policy 
697:– the interpretation of the energy sector in system terms 2927: 2240:"NYISO Notice to Stakeholders of Request for MAPS data" 2089: 1124:
Integrated assessment models for climate change control
899: 897: 785:
Introductory video on open energy system modeling with
2379:. Energy Technology Systems Analysis Programme (ETSAP) 1159:
Global energy assessment: toward a sustainable future
2294:"New York State Resource Planning Analysis (NYSPSC)" 1163:
International Institute for Applied Systems Analysis
853: 851: 54:
in order to analyze them. Such models often employ
3435: 3389: 3363: 3307: 3259: 3170: 3134: 3093: 3052: 3031: 3010: 2984: 2889:
June 2019 in Berlin, Germany. Reference LP-001-01.
1089:. Cambridge, United Kingdom and New York, NY, USA: 869:. Cambridge, United Kingdom and New York, NY, USA: 431:are broadly economic in nature and based on either 2607:"OSeMOSYS: an open-source energy modelling system" 2922:Open Energy Modelling Initiative open models page 2533:acatech; Lepoldina; Akademienunion, eds. (2016). 1935:: overview and application to policy development" 1338:International Journal of Energy Sector Management 946:acatech; Lepoldina; Akademienunion, eds. (2016). 128:conversion technologies by low-GHG alternatives. 1078:Clarke, Leon; Jiang, Kejun; et al. (2014). 643:and data sets should at least be available for 490:analysis, air pollution abatement planning and 443:. Partial equilibrium models are more common. 2934:framework that allows the public to experiment 1080:"Chapter 6: Assessing transformation pathways" 1020: 1018: 717:energy modeling initiative, centered on Europe 178:(BAU) – and the differences in outcome noted. 3237: 2962: 2090:"LEAP: tools for sustainable energy analysis" 160:infrastructure deployment and urban planning" 8: 1266:Encyclopedia of Life Support Systems (EOLSS) 1257:Bahn, O; Haurie, A; Zachary, DS (May 2005). 2324:A comparison of the TIMES and MARKAL models 1744:David, AK; Wen, Fushuan (16–20 July 2000). 1121:Kelly, David L; Kolstad, Charles D (1998). 680:– actions to limit long-term climate change 564:(IEA) over a period of almost two decades. 346:, and the use of layered models to support 137:models, and vice versa, thereby creating a 3244: 3230: 3222: 2969: 2955: 2947: 2875:. Berlin, Germany: Löschwasser Productions 2373:Documentation for the TIMES model – Part I 1530:Annual Review of Environment and Resources 1479:Annual Review of Environment and Resources 529:electric markets for RTO and ISO regions. 505:and to compare their energy requirements, 2756: 2645: 2450: 2005: 1541: 1490: 1174: 839: 829: 766:– the US government national energy model 2030:"Open Energy Platform: Model Factsheets" 1704:Renewable and Sustainable Energy Reviews 1414:Renewable and Sustainable Energy Reviews 1380:Renewable and Sustainable Energy Reviews 583:. Both MARKAL and TIMES are written in 322:-style integrated models (also known as 2824:Hilbers, Adriaan P (19 December 2020). 801: 3412:Construction and management simulation 2930:— an online "toy" model utilizing the 2186:"GE Power System Load Flow Simulation" 2161:"GE Multi-Area Reliability Simulation" 2865:Morrison, Robbie (22 December 2020). 2136:"GE Multi-Area Production Simulation" 1805:Weidlich, Anke; Veit, Daniel (2008). 1543:10.1146/annurev-environ-052810-164840 1492:10.1146/annurev-environ-052810-164840 1405:Jebaraj, S; Iniyan, S (August 2006). 1294:Van Beeck, Nicole MJP (August 1999). 352:Deep Decarbonization Pathways Project 7: 3448:List of computer simulation software 2942:National Renewable Energy Laboratory 2904:– a typology for optimization models 1786:. Karlsruhe, Germany: Fraunhofer ISI 904:Pye, Steve; Bataille, Chris (2016). 3060:Climate change mitigation scenarios 1885:Abrell, Jan; Weigt, Hannes (2012). 684:Climate change mitigation scenarios 522:Regional Transmission Organizations 2868:Energy system models explained: Dr 2745:Energy Research and Social Science 1331:"A review of energy system models" 627:each year – for instance in 2015. 25: 1033:. Boise, ID: IEEE. pp. 1–6. 3206: 3205: 3196: 3195: 2850: 2788: 1268:. Oxford, UK: EOLSS Publishers. 711:Open Energy Modelling Initiative 213:. Solvers may use classical or 170:Most energy models are used for 3376:Integrated assessment modelling 3126:Integrated assessment modelling 2063:(SEI) US Center. Archived from 2061:Stockholm Environment Institute 1852:Journal of Open Source Software 609:National Energy Modeling System 499:Stockholm Environment Institute 407:and analyze the integration of 2938:Building Energy Modeling Tools 2924:– a list of open energy models 2111:"ABB PROMOD Market Simulation" 1895:Networks and Spatial Economics 1667:. Stockholm, Sweden: Elforsk. 1613:10.1016/j.worlddev.2008.01.011 1579:10.1016/j.apenergy.2016.03.100 1460:10.1016/j.apenergy.2009.09.026 1009:10.1016/j.apenergy.2016.03.087 399:are used to capture and study 1: 2701:International Energy Workshop 2211:"NYSRC 2018 IRM Study Report" 1942:Annals of Operations Research 925:10.1080/14693062.2016.1173004 831:10.1016/j.jclepro.2020.124298 818:Journal of Cleaner Production 577:consumer and producer surplus 3345:Hydrological transport model 3299:Protein structure prediction 3294:Modelling biological systems 3039:Open energy system databases 2220:. 8 December 2017. p. 2 721:Open energy system databases 623:NEMS is used to produce the 591:model generator, which uses 526:Independent System Operators 324:integrated assessment models 154:firm and household behaviour 103:integrated assessment models 3289:Metabolic network modelling 3106:Electric power transmission 2647:10.1016/j.joule.2020.11.002 2593:10.1016/j.enpol.2011.06.033 2486:10.1016/j.eneco.2013.09.023 2016:10.1016/j.eneco.2007.03.004 1887:"Combining energy networks" 1825:10.1016/j.eneco.2008.01.003 1407:"A review of energy models" 860:"Chapter 7: Energy systems" 562:International Energy Agency 245:intermittent energy sources 95:building energy simulations 46:is the process of building 3550: 3402:Business process modelling 2767:10.1016/j.erss.2023.102957 2452:10.1287/opre.49.1.14.11195 2190:www.geenergyconsulting.com 2165:www.geenergyconsulting.com 2140:www.geenergyconsulting.com 1716:10.1016/j.rser.2014.02.003 1426:10.1016/j.rser.2004.09.004 1392:10.1016/j.rser.2005.07.005 1167:Cambridge University Press 1091:Cambridge University Press 1039:10.1109/PMAPS.2018.8440563 871:Cambridge University Press 606: 548: 497:LEAP was developed at the 32:building energy simulation 29: 3524:Mathematical optimization 3274:Chemical process modeling 3191: 3075:Mathematical optimization 3044:Open energy system models 2885:Video 00:13:17. Filmed 9 2408:10.1007/978-3-319-16540-0 1908:10.1007/s11067-011-9160-0 1350:10.1108/17506221011092742 1221:10.1007/s10584-013-0901-6 727:Open energy system models 678:Climate change mitigation 507:social costs and benefits 492:climate change mitigation 358:Electricity sector models 344:international development 254:variable renewable energy 207:mixed-integer programming 195:mathematical optimization 148:technology stock turnover 110:climate change mitigation 76:Mathematical optimization 3320:Chemical transport model 3284:Infectious disease model 1754:10.1109/PESS.2000.866982 556:development and natural 535:loss of load expectation 458:), and operating costs ( 249:energy demand management 114:greenhouse gas emissions 60:greenhouse gas emissions 2059:. Somerville, MA, USA: 1954:10.1023/A:1023359303704 789:language example  740:Power system simulation 513:Power system simulation 145:energy system operation 2804:"KAPSARC Energy Model" 1169:. pp. 1203–1306. 44:energy system modeling 3519:Mathematical modeling 3494:Computational science 3489:Climate change policy 3453:Mathematical modeling 3397:Biopsychosocial model 3178:Energy Modeling Forum 2670:"Open energy outlook" 733:models that are also 707:-based modeling forum 701:Energy Modeling Forum 625:Annual Energy Outlook 211:nonlinear programming 209:), although some use 151:technology innovation 3499:Computer programming 3407:Catastrophe modeling 3253:Scientific modelling 873:. pp. 511–597. 649:open-source software 618:Department of Energy 476:Open Energy Platform 419:Energy system models 385:, which may include 215:genetic optimisation 3350:Modular Ocean Model 3065:Computer simulation 2703:. Stockholm, Sweden 2559:on 21 December 2016 2438:Operations Research 1864:10.21105/joss.05041 1213:2016ClCh..136...69B 705:Stanford University 569:partial equilibrium 452:operations research 437:general equilibrium 433:partial equilibrium 405:electricity markets 199:operations research 3443:Data visualization 3427:Input–output model 3340:Hydrological model 3330:Geologic modelling 3183:openmod initiative 3101:Electricity market 2916:Aalborg University 2303:. 17 December 2015 1310:on 27 January 2017 1238:on 27 January 2017 593:linear programming 581:linear programming 558:resource depletion 469:Established models 409:renewable energies 401:strategic behavior 397:agent-based models 383:electricity market 348:climate protection 330:, agriculture and 203:linear programming 87:engineering design 3476: 3475: 3355:Wildfire modeling 3335:Groundwater model 3315:Atmospheric model 3219: 3218: 3080:Scenario analysis 2640:(12): 2523–2526. 2587:(10): 5850–5870. 2549:978-3-8047-3550-7 2417:978-3-319-16540-0 1674:978-91-978585-9-5 1607:(12): 2801–2821. 1601:World Development 1100:978-1-107-65481-5 1085:. In IPCC (ed.). 972:on 6 October 2016 962:978-3-8047-3549-1 880:978-1-107-65481-5 865:. In IPCC (ed.). 760:– an energy model 413:energy transition 371:transmission grid 334:, and the global 201:. Most rely on 193:Models often use 176:business-as-usual 172:scenario analysis 72:energy efficiency 56:scenario analysis 16:(Redirected from 3541: 3504:Economics models 3468:Visual analytics 3463:Systems thinking 3381:Population model 3246: 3239: 3232: 3223: 3209: 3208: 3201:Economics models 3199: 3198: 2971: 2964: 2957: 2948: 2890: 2888: 2884: 2882: 2880: 2871: 2862: 2856: 2855: 2854: 2848:December 2020. 2847: 2843: 2839: 2837: 2835: 2821: 2815: 2814: 2812: 2810: 2800: 2794: 2793: 2792: 2786: 2760: 2740: 2734: 2733: 2731: 2729: 2719: 2713: 2712: 2710: 2708: 2698: 2687: 2681: 2680: 2678: 2676: 2666: 2660: 2659: 2649: 2624: 2618: 2617: 2615: 2613: 2603: 2597: 2596: 2575: 2569: 2568: 2566: 2564: 2558: 2552:. Archived from 2541: 2530: 2524: 2523: 2521: 2519: 2513: 2503: 2497: 2496: 2494: 2492: 2473:Energy Economics 2463: 2457: 2456: 2454: 2428: 2422: 2421: 2395: 2389: 2388: 2386: 2384: 2378: 2367: 2361: 2360: 2358: 2356: 2346: 2340: 2339: 2337: 2335: 2329: 2319: 2313: 2312: 2310: 2308: 2298: 2290: 2284: 2283: 2281: 2279: 2265: 2259: 2258: 2256: 2254: 2244: 2236: 2230: 2229: 2227: 2225: 2215: 2207: 2201: 2200: 2198: 2196: 2182: 2176: 2175: 2173: 2171: 2157: 2151: 2150: 2148: 2146: 2132: 2126: 2125: 2123: 2121: 2107: 2101: 2100: 2098: 2096: 2086: 2080: 2079: 2077: 2075: 2070:on 8 August 2017 2069: 2058: 2050:SEI (May 2012). 2047: 2041: 2040: 2038: 2036: 2026: 2020: 2019: 2009: 1993:Energy Economics 1987: 1981: 1980: 1978: 1976: 1970: 1964:. Archived from 1948:(1–4): 151–180. 1939: 1926: 1920: 1919: 1891: 1882: 1876: 1875: 1843: 1837: 1836: 1819:(4): 1728–1759. 1812:Energy Economics 1802: 1796: 1795: 1793: 1791: 1785: 1774: 1768: 1767: 1741: 1735: 1734: 1732: 1730: 1701: 1692: 1686: 1685: 1683: 1681: 1666: 1654: 1648: 1647: 1645: 1643: 1598: 1589: 1583: 1582: 1562: 1556: 1555: 1545: 1527: 1518: 1512: 1511: 1509: 1507: 1494: 1470: 1464: 1463: 1454:(4): 1059–1082. 1443: 1437: 1436: 1434: 1432: 1411: 1402: 1396: 1395: 1375: 1369: 1368: 1366: 1364: 1335: 1326: 1320: 1319: 1317: 1315: 1309: 1302: 1291: 1285: 1284: 1282: 1280: 1263: 1254: 1248: 1247: 1245: 1243: 1237: 1231:. Archived from 1196: 1187: 1181: 1180: 1178: 1153: 1147: 1146: 1144: 1142: 1136: 1130:. Archived from 1129: 1118: 1112: 1111: 1109: 1107: 1084: 1075: 1069: 1068: 1022: 1013: 1012: 988: 982: 981: 979: 977: 971: 965:. Archived from 954: 943: 937: 936: 910: 901: 892: 891: 889: 887: 864: 855: 846: 845: 843: 833: 809: 660: 655:Not a criticism 518:General Electric 448:bottom-up models 311:. Occasionally 163: 68:natural resource 21: 18:Energy modelling 3549: 3548: 3544: 3543: 3542: 3540: 3539: 3538: 3479: 3478: 3477: 3472: 3431: 3385: 3371:Energy modeling 3359: 3303: 3279:Ecosystem model 3255: 3250: 3220: 3215: 3187: 3166: 3130: 3116:Energy planning 3089: 3085:System dynamics 3070:Energy modeling 3048: 3027: 3006: 2980: 2978:Energy modeling 2975: 2898: 2893: 2886: 2878: 2876: 2869: 2864: 2863: 2859: 2849: 2845: 2841: 2833: 2831: 2823: 2822: 2818: 2808: 2806: 2802: 2801: 2797: 2787: 2742: 2741: 2737: 2727: 2725: 2721: 2720: 2716: 2706: 2704: 2696: 2689: 2688: 2684: 2674: 2672: 2668: 2667: 2663: 2626: 2625: 2621: 2611: 2609: 2605: 2604: 2600: 2577: 2576: 2572: 2562: 2560: 2556: 2550: 2539: 2532: 2531: 2527: 2517: 2515: 2511: 2505: 2504: 2500: 2490: 2488: 2465: 2464: 2460: 2430: 2429: 2425: 2418: 2397: 2396: 2392: 2382: 2380: 2376: 2369: 2368: 2364: 2354: 2352: 2348: 2347: 2343: 2333: 2331: 2327: 2321: 2320: 2316: 2306: 2304: 2296: 2292: 2291: 2287: 2277: 2275: 2273:www.siemens.com 2267: 2266: 2262: 2252: 2250: 2242: 2238: 2237: 2233: 2223: 2221: 2213: 2209: 2208: 2204: 2194: 2192: 2184: 2183: 2179: 2169: 2167: 2159: 2158: 2154: 2144: 2142: 2134: 2133: 2129: 2119: 2117: 2109: 2108: 2104: 2094: 2092: 2088: 2087: 2083: 2073: 2071: 2067: 2056: 2049: 2048: 2044: 2034: 2032: 2028: 2027: 2023: 2007:10.1.1.184.8384 1989: 1988: 1984: 1974: 1972: 1968: 1937: 1928: 1927: 1923: 1889: 1884: 1883: 1879: 1845: 1844: 1840: 1804: 1803: 1799: 1789: 1787: 1783: 1776: 1775: 1771: 1764: 1743: 1742: 1738: 1728: 1726: 1699: 1694: 1693: 1689: 1679: 1677: 1675: 1664: 1656: 1655: 1651: 1641: 1639: 1596: 1591: 1590: 1586: 1564: 1563: 1559: 1525: 1520: 1519: 1515: 1505: 1503: 1472: 1471: 1467: 1445: 1444: 1440: 1430: 1428: 1409: 1404: 1403: 1399: 1377: 1376: 1372: 1362: 1360: 1333: 1328: 1327: 1323: 1313: 1311: 1307: 1300: 1293: 1292: 1288: 1278: 1276: 1261: 1256: 1255: 1251: 1241: 1239: 1235: 1200:Climatic Change 1194: 1189: 1188: 1184: 1176:10.1.1.434.4160 1155: 1154: 1150: 1140: 1138: 1137:on 30 June 2016 1134: 1127: 1120: 1119: 1115: 1105: 1103: 1101: 1082: 1077: 1076: 1072: 1049: 1024: 1023: 1016: 990: 989: 985: 975: 973: 969: 963: 952: 945: 944: 940: 919:(S1): S27–S46. 908: 903: 902: 895: 885: 883: 881: 862: 857: 856: 849: 811: 810: 803: 799: 782: 780:Further reading 669: 658: 633: 611: 605: 553: 547: 515: 484: 471: 429:top-down models 421: 411:as part of the 360: 227:market clearing 161: 134: 64:financial costs 48:computer models 40:Energy modeling 35: 28: 23: 22: 15: 12: 11: 5: 3547: 3545: 3537: 3536: 3534:Systems theory 3531: 3526: 3521: 3516: 3511: 3506: 3501: 3496: 3491: 3481: 3480: 3474: 3473: 3471: 3470: 3465: 3460: 3458:Systems theory 3455: 3450: 3445: 3439: 3437: 3436:Related topics 3433: 3432: 3430: 3429: 3424: 3422:Economic model 3419: 3414: 3409: 3404: 3399: 3393: 3391: 3387: 3386: 3384: 3383: 3378: 3373: 3367: 3365: 3364:Sustainability 3361: 3360: 3358: 3357: 3352: 3347: 3342: 3337: 3332: 3327: 3322: 3317: 3311: 3309: 3305: 3304: 3302: 3301: 3296: 3291: 3286: 3281: 3276: 3271: 3269:Cellular model 3265: 3263: 3257: 3256: 3251: 3249: 3248: 3241: 3234: 3226: 3217: 3216: 3214: 3213: 3203: 3192: 3189: 3188: 3186: 3185: 3180: 3174: 3172: 3168: 3167: 3165: 3164: 3159: 3154: 3149: 3144: 3142:Hartmut Bossel 3138: 3136: 3132: 3131: 3129: 3128: 3123: 3118: 3113: 3108: 3103: 3097: 3095: 3091: 3090: 3088: 3087: 3082: 3077: 3072: 3067: 3062: 3056: 3054: 3050: 3049: 3047: 3046: 3041: 3035: 3033: 3029: 3028: 3026: 3025: 3020: 3014: 3012: 3008: 3007: 3005: 3004: 2999: 2994: 2988: 2986: 2982: 2981: 2976: 2974: 2973: 2966: 2959: 2951: 2945: 2944: 2935: 2925: 2919: 2905: 2897: 2896:External links 2894: 2892: 2891: 2857: 2816: 2795: 2735: 2714: 2682: 2661: 2619: 2598: 2579:development". 2570: 2548: 2525: 2498: 2458: 2423: 2416: 2390: 2362: 2341: 2314: 2285: 2269:"Siemens PSSE" 2260: 2231: 2202: 2177: 2152: 2127: 2102: 2081: 2042: 2021: 2000:(2): 574–596. 1982: 1971:on 12 May 2016 1921: 1902:(3): 377–401. 1877: 1838: 1797: 1769: 1762: 1736: 1687: 1673: 1649: 1584: 1567:Applied Energy 1557: 1536:(1): 305–344. 1513: 1465: 1448:Applied Energy 1438: 1420:(4): 281–311. 1397: 1386:(5): 729–752. 1370: 1344:(4): 494–518. 1321: 1286: 1249: 1182: 1148: 1113: 1099: 1070: 1047: 1014: 997:Applied Energy 983: 961: 938: 913:Climate Policy 893: 879: 847: 800: 798: 795: 794: 793: 790: 781: 778: 777: 776: 773: 767: 761: 755: 743: 742: 737: 729:– a review of 724: 718: 708: 698: 692: 690:Economic model 687: 681: 668: 665: 632: 629: 607:Main article: 604: 601: 573:energy markets 549:Main article: 546: 543: 514: 511: 483: 480: 470: 467: 420: 417: 359: 356: 165: 164: 158: 155: 152: 149: 146: 133: 130: 52:energy systems 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3546: 3535: 3532: 3530: 3527: 3525: 3522: 3520: 3517: 3515: 3514:Energy policy 3512: 3510: 3509:Energy models 3507: 3505: 3502: 3500: 3497: 3495: 3492: 3490: 3487: 3486: 3484: 3469: 3466: 3464: 3461: 3459: 3456: 3454: 3451: 3449: 3446: 3444: 3441: 3440: 3438: 3434: 3428: 3425: 3423: 3420: 3418: 3417:Crime mapping 3415: 3413: 3410: 3408: 3405: 3403: 3400: 3398: 3395: 3394: 3392: 3388: 3382: 3379: 3377: 3374: 3372: 3369: 3368: 3366: 3362: 3356: 3353: 3351: 3348: 3346: 3343: 3341: 3338: 3336: 3333: 3331: 3328: 3326: 3325:Climate model 3323: 3321: 3318: 3316: 3313: 3312: 3310: 3308:Environmental 3306: 3300: 3297: 3295: 3292: 3290: 3287: 3285: 3282: 3280: 3277: 3275: 3272: 3270: 3267: 3266: 3264: 3262: 3258: 3254: 3247: 3242: 3240: 3235: 3233: 3228: 3227: 3224: 3212: 3211:Energy models 3204: 3202: 3194: 3193: 3190: 3184: 3181: 3179: 3176: 3175: 3173: 3171:Organizations 3169: 3163: 3160: 3158: 3155: 3153: 3152:Mark Jacobson 3150: 3148: 3147:Joe DeCarolis 3145: 3143: 3140: 3139: 3137: 3133: 3127: 3124: 3122: 3121:Energy policy 3119: 3117: 3114: 3112: 3111:Energy market 3109: 3107: 3104: 3102: 3099: 3098: 3096: 3092: 3086: 3083: 3081: 3078: 3076: 3073: 3071: 3068: 3066: 3063: 3061: 3058: 3057: 3055: 3051: 3045: 3042: 3040: 3037: 3036: 3034: 3030: 3024: 3021: 3019: 3016: 3015: 3013: 3009: 3003: 3000: 2998: 2995: 2993: 2990: 2989: 2987: 2983: 2979: 2972: 2967: 2965: 2960: 2958: 2953: 2952: 2949: 2943: 2939: 2936: 2933: 2929: 2926: 2923: 2920: 2917: 2913: 2909: 2906: 2903: 2900: 2899: 2895: 2874: 2873: 2861: 2858: 2853: 2829: 2828: 2820: 2817: 2805: 2799: 2796: 2791: 2784: 2780: 2776: 2772: 2768: 2764: 2759: 2754: 2750: 2746: 2739: 2736: 2724: 2718: 2715: 2702: 2695: 2694: 2686: 2683: 2671: 2665: 2662: 2657: 2653: 2648: 2643: 2639: 2635: 2631: 2623: 2620: 2608: 2602: 2599: 2594: 2590: 2586: 2582: 2581:Energy Policy 2574: 2571: 2555: 2551: 2545: 2538: 2537: 2529: 2526: 2510: 2509: 2502: 2499: 2487: 2483: 2479: 2475: 2474: 2469: 2462: 2459: 2453: 2448: 2444: 2440: 2439: 2434: 2427: 2424: 2419: 2413: 2409: 2405: 2401: 2394: 2391: 2375: 2374: 2366: 2363: 2351: 2345: 2342: 2326: 2325: 2318: 2315: 2302: 2301:www.nyiso.com 2295: 2289: 2286: 2274: 2270: 2264: 2261: 2249:. August 2000 2248: 2247:www.nyiso.com 2241: 2235: 2232: 2219: 2218:www.nysrc.org 2212: 2206: 2203: 2191: 2187: 2181: 2178: 2166: 2162: 2156: 2153: 2141: 2137: 2131: 2128: 2116: 2112: 2106: 2103: 2091: 2085: 2082: 2066: 2062: 2055: 2054: 2046: 2043: 2031: 2025: 2022: 2017: 2013: 2008: 2003: 1999: 1995: 1994: 1986: 1983: 1967: 1963: 1959: 1955: 1951: 1947: 1943: 1936: 1934: 1925: 1922: 1917: 1913: 1909: 1905: 1901: 1897: 1896: 1888: 1881: 1878: 1873: 1869: 1865: 1861: 1857: 1853: 1849: 1842: 1839: 1834: 1830: 1826: 1822: 1818: 1814: 1813: 1808: 1801: 1798: 1782: 1781: 1773: 1770: 1765: 1763:0-7803-6420-1 1759: 1755: 1751: 1747: 1740: 1737: 1725: 1721: 1717: 1713: 1709: 1705: 1698: 1691: 1688: 1676: 1670: 1663: 1662: 1653: 1650: 1638: 1634: 1630: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1595: 1588: 1585: 1580: 1576: 1572: 1568: 1561: 1558: 1553: 1549: 1544: 1539: 1535: 1531: 1524: 1517: 1514: 1502: 1498: 1493: 1488: 1484: 1480: 1476: 1469: 1466: 1461: 1457: 1453: 1449: 1442: 1439: 1427: 1423: 1419: 1415: 1408: 1401: 1398: 1393: 1389: 1385: 1381: 1374: 1371: 1359: 1355: 1351: 1347: 1343: 1339: 1332: 1325: 1322: 1306: 1299: 1298: 1290: 1287: 1275: 1271: 1267: 1260: 1253: 1250: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1202: 1201: 1193: 1186: 1183: 1177: 1172: 1168: 1164: 1160: 1152: 1149: 1133: 1126: 1125: 1117: 1114: 1102: 1096: 1092: 1088: 1081: 1074: 1071: 1066: 1062: 1058: 1054: 1050: 1048:9781538635964 1044: 1040: 1036: 1032: 1028: 1021: 1019: 1015: 1010: 1006: 1002: 998: 994: 987: 984: 968: 964: 958: 951: 950: 942: 939: 934: 930: 926: 922: 918: 914: 907: 900: 898: 894: 882: 876: 872: 868: 861: 854: 852: 848: 842: 841:11311/1204822 837: 832: 827: 823: 819: 815: 808: 806: 802: 796: 791: 788: 784: 783: 779: 774: 771: 768: 765: 762: 759: 756: 753: 750: 749: 748: 747: 741: 738: 736: 732: 731:energy system 728: 725: 722: 719: 716: 712: 709: 706: 702: 699: 696: 695:Energy system 693: 691: 688: 685: 682: 679: 676: 675: 674: 673: 666: 664: 662: 653: 650: 646: 642: 638: 630: 628: 626: 621: 619: 615: 610: 602: 600: 597: 594: 588: 586: 582: 578: 574: 570: 565: 563: 559: 552: 544: 542: 540: 536: 532: 527: 523: 519: 512: 510: 508: 504: 500: 495: 493: 489: 488:energy policy 481: 479: 477: 468: 466: 463: 461: 457: 453: 449: 444: 442: 438: 434: 430: 425: 418: 416: 414: 410: 406: 402: 398: 394: 390: 388: 387:nodal pricing 384: 379: 377: 372: 369: 364: 357: 355: 353: 349: 345: 339: 337: 333: 329: 328:world economy 325: 321: 316: 314: 310: 306: 302: 298: 294: 290: 286: 282: 278: 274: 270: 266: 262: 259:Implementing 257: 255: 250: 246: 241: 239: 235: 230: 228: 224: 220: 216: 212: 208: 204: 200: 196: 191: 188: 184: 179: 177: 173: 168: 159: 156: 153: 150: 147: 144: 143: 142: 140: 131: 129: 127: 123: 119: 115: 111: 106: 104: 100: 96: 92: 91:energy policy 88: 83: 82:development. 81: 80:energy policy 77: 73: 69: 65: 62:, cumulative 61: 57: 53: 49: 45: 41: 37: 33: 19: 3370: 3157:John Laitner 3094:Applications 3069: 2977: 2928:model.energy 2877:. Retrieved 2867: 2860: 2832:. Retrieved 2826: 2819: 2807:. Retrieved 2798: 2748: 2744: 2738: 2726:. Retrieved 2717: 2705:. Retrieved 2692: 2685: 2673:. Retrieved 2664: 2637: 2633: 2622: 2610:. Retrieved 2601: 2584: 2580: 2573: 2561:. Retrieved 2554:the original 2535: 2528: 2516:. Retrieved 2507: 2501: 2489:. Retrieved 2477: 2471: 2461: 2445:(1): 14–25. 2442: 2436: 2426: 2399: 2393: 2381:. Retrieved 2372: 2365: 2353:. Retrieved 2344: 2332:. Retrieved 2323: 2317: 2305:. Retrieved 2300: 2288: 2276:. Retrieved 2272: 2263: 2251:. Retrieved 2246: 2234: 2222:. Retrieved 2217: 2205: 2193:. Retrieved 2189: 2180: 2168:. Retrieved 2164: 2155: 2143:. Retrieved 2139: 2130: 2118:. Retrieved 2114: 2105: 2093:. Retrieved 2084: 2072:. Retrieved 2065:the original 2052: 2045: 2033:. Retrieved 2024: 1997: 1991: 1985: 1973:. Retrieved 1966:the original 1945: 1941: 1932: 1924: 1899: 1893: 1880: 1858:(84): 5041. 1855: 1851: 1841: 1816: 1810: 1800: 1788:. Retrieved 1779: 1772: 1745: 1739: 1727:. Retrieved 1707: 1703: 1690: 1678:. Retrieved 1660: 1652: 1640:. Retrieved 1604: 1600: 1587: 1570: 1566: 1560: 1533: 1529: 1516: 1504:. Retrieved 1482: 1478: 1468: 1451: 1447: 1441: 1429:. Retrieved 1417: 1413: 1400: 1383: 1379: 1373: 1361:. Retrieved 1341: 1337: 1324: 1312:. Retrieved 1305:the original 1296: 1289: 1277:. Retrieved 1265: 1252: 1240:. Retrieved 1233:the original 1207:(1): 69–82. 1204: 1198: 1185: 1158: 1151: 1139:. Retrieved 1132:the original 1123: 1116: 1104:. Retrieved 1086: 1073: 1030: 1000: 996: 986: 974:. Retrieved 967:the original 948: 941: 916: 912: 884:. Retrieved 866: 821: 817: 745: 744: 671: 670: 656: 654: 634: 624: 622: 612: 598: 589: 566: 554: 545:MARKAL/TIMES 516: 496: 494:assessment. 485: 472: 464: 447: 445: 428: 426: 422: 391: 380: 376:load profile 365: 361: 340: 317: 313:spreadsheets 258: 242: 234:demand curve 231: 192: 183:time horizon 180: 169: 166: 135: 118:IPCC reports 107: 84: 43: 39: 38: 36: 3162:John Weyant 2879:22 December 2834:19 December 2563:19 December 2480:: 773–784. 2307:26 November 2278:26 November 2253:26 November 2224:26 November 2195:26 November 2170:26 November 2145:26 November 2120:26 November 2115:new.abb.com 2035:18 December 1680:14 November 1573:: 337–359. 1485:: 305–344. 1363:13 December 1003:: 555–580. 976:19 December 735:open source 715:open source 645:peer review 641:source code 637:transparent 393:Game theory 277:Mathematica 205:(including 132:Model types 126:fossil fuel 3529:Simulation 3483:Categories 3261:Biological 2908:EnergyPLAN 2809:12 January 2758:2112.04821 2751:: 102957. 2383:31 October 2355:31 October 2334:31 October 1642:25 October 1621:1874/32954 1506:4 November 1314:25 October 1279:25 October 824:: 124298. 797:References 631:Criticisms 571:models of 446:So-called 441:algorithms 427:So-called 318:As noted, 315:are used. 217:, such as 3011:Open data 2918:, Denmark 2783:254877765 2775:2214-6296 2656:229492155 2002:CiteSeerX 1916:254865361 1872:2475-9066 1724:1364-0321 1710:: 74–86. 1637:154709268 1629:0305-750X 1552:1543-5938 1358:1750-6220 1274:0711-2440 1171:CiteSeerX 503:scenarios 350:policy. 261:languages 238:inelastic 223:short-run 139:hierarchy 70:use, and 3053:Concepts 2912:freeware 2350:"MARKAL" 1962:14877200 1833:54861876 1729:14 March 1229:18764144 1065:52049473 933:76657283 667:See also 332:land-use 269:MathProg 263:include 2723:"TEMOA" 2095:15 June 1501:1001644 1431:2 March 1209:Bibcode 1057:1530691 672:General 639:. The 539:Siemens 403:within 336:climate 293:Fortran 187:capital 116:. The 101:-style 3390:Social 3135:People 3023:Reegle 3018:OpenEI 2992:MARKAL 2985:Models 2887:  2870:  2846:  2842:  2781:  2773:  2728:4 July 2707:4 July 2675:4 July 2654:  2546:  2414:  2330:. 2009 2004:  1960:  1914:  1870:  1831:  1760:  1722:  1671:  1635:  1627:  1550:  1499:  1356:  1272:  1242:10 May 1227:  1173:  1097:  1063:  1055:  1045:  959:  931:  877:  787:python 758:MARKAL 746:Models 659:  551:MARKAL 309:Vensim 307:, and 281:Python 273:MATLAB 219:CMA-ES 162:  3032:Lists 3002:POLES 2932:PyPSA 2840:Video 2779:S2CID 2753:arXiv 2697:(PDF) 2652:S2CID 2634:Joule 2612:8 May 2557:(PDF) 2540:(PDF) 2518:9 May 2512:(PDF) 2491:9 May 2377:(PDF) 2328:(PDF) 2297:(PDF) 2243:(PDF) 2214:(PDF) 2074:4 May 2068:(PDF) 2057:(PDF) 1975:8 May 1969:(PDF) 1958:S2CID 1938:(PDF) 1933:deeco 1912:S2CID 1890:(PDF) 1829:S2CID 1790:9 May 1784:(PDF) 1700:(PDF) 1665:(PDF) 1633:S2CID 1597:(PDF) 1526:(PDF) 1410:(PDF) 1334:(PDF) 1308:(PDF) 1301:(PDF) 1262:(PDF) 1236:(PDF) 1225:S2CID 1195:(PDF) 1141:9 May 1135:(PDF) 1128:(PDF) 1106:9 May 1083:(PDF) 1061:S2CID 970:(PDF) 953:(PDF) 929:S2CID 909:(PDF) 886:9 May 863:(PDF) 770:POLES 752:iNEMS 713:– an 456:capex 285:Pyomo 89:, or 2997:NEMS 2910:— a 2881:2020 2836:2020 2811:2019 2771:ISSN 2730:2023 2709:2023 2677:2023 2614:2016 2565:2016 2544:ISBN 2520:2016 2493:2016 2412:ISBN 2385:2016 2357:2016 2336:2016 2309:2018 2280:2018 2255:2018 2226:2018 2197:2018 2172:2018 2147:2018 2122:2018 2097:2021 2076:2016 2037:2018 1977:2016 1868:ISSN 1792:2016 1758:ISBN 1731:2017 1720:ISSN 1682:2016 1669:ISBN 1644:2016 1625:ISSN 1548:ISSN 1508:2016 1497:OSTI 1433:2013 1365:2016 1354:ISSN 1316:2016 1281:2016 1270:ISSN 1244:2016 1165:and 1143:2016 1108:2016 1095:ISBN 1053:OSTI 1043:ISBN 978:2016 957:ISBN 888:2016 875:ISBN 764:NEMS 703:– a 614:NEMS 603:NEMS 585:GAMS 579:via 524:and 482:LEAP 460:opex 395:and 320:IPCC 297:Java 265:GAMS 247:and 181:The 99:IPCC 2940:by 2763:doi 2642:doi 2589:doi 2482:doi 2447:doi 2404:doi 2012:doi 1950:doi 1946:121 1904:doi 1860:doi 1821:doi 1750:doi 1712:doi 1617:hdl 1609:doi 1575:doi 1571:172 1538:doi 1487:doi 1456:doi 1422:doi 1388:doi 1346:doi 1217:doi 1205:136 1035:doi 1005:doi 1001:171 921:doi 836:hdl 826:doi 822:280 657:per 531:ABB 435:or 305:C++ 243:As 122:CCS 50:of 42:or 3485:: 2777:. 2769:. 2761:. 2749:97 2747:. 2699:. 2650:. 2636:. 2632:. 2585:39 2583:. 2478:40 2476:. 2470:. 2443:49 2441:. 2435:. 2410:. 2299:. 2271:. 2245:. 2216:. 2188:. 2163:. 2138:. 2113:. 2010:. 1998:30 1996:. 1956:. 1944:. 1940:. 1910:. 1900:12 1898:. 1892:. 1866:. 1854:. 1850:. 1827:. 1817:30 1815:. 1809:. 1756:. 1718:. 1708:33 1706:. 1702:. 1631:. 1623:. 1615:. 1605:36 1603:. 1599:. 1569:. 1546:. 1534:35 1532:. 1528:. 1495:. 1483:35 1481:. 1477:. 1452:87 1450:. 1418:10 1416:. 1412:. 1384:11 1382:. 1352:. 1340:. 1336:. 1264:. 1223:. 1215:. 1203:. 1197:. 1093:. 1059:. 1051:. 1041:. 1029:. 1017:^ 999:. 995:. 927:. 917:16 915:. 911:. 896:^ 850:^ 834:. 820:. 816:. 804:^ 661:se 587:. 478:. 415:. 389:. 378:. 368:AC 303:, 299:, 295:, 291:, 287:, 283:, 279:, 275:, 271:, 267:, 240:. 124:) 66:, 3245:e 3238:t 3231:v 2970:e 2963:t 2956:v 2883:. 2838:. 2813:. 2785:. 2765:: 2755:: 2732:. 2711:. 2679:. 2658:. 2644:: 2638:4 2616:. 2595:. 2591:: 2567:. 2522:. 2495:. 2484:: 2455:. 2449:: 2420:. 2406:: 2387:. 2359:. 2338:. 2311:. 2282:. 2257:. 2228:. 2199:. 2174:. 2149:. 2124:. 2099:. 2078:. 2039:. 2018:. 2014:: 1979:. 1952:: 1918:. 1906:: 1874:. 1862:: 1856:8 1835:. 1823:: 1794:. 1766:. 1752:: 1733:. 1714:: 1684:. 1646:. 1619:: 1611:: 1581:. 1577:: 1554:. 1540:: 1510:. 1489:: 1462:. 1458:: 1435:. 1424:: 1394:. 1390:: 1367:. 1348:: 1342:4 1318:. 1283:. 1246:. 1219:: 1211:: 1179:. 1145:. 1110:. 1067:. 1037:: 1011:. 1007:: 980:. 935:. 923:: 890:. 844:. 838:: 828:: 301:C 289:R 34:. 20:)

Index

Energy modelling
building energy simulation
computer models
energy systems
scenario analysis
greenhouse gas emissions
financial costs
natural resource
energy efficiency
Mathematical optimization
energy policy
engineering design
energy policy
building energy simulations
IPCC
integrated assessment models
climate change mitigation
greenhouse gas emissions
IPCC reports
CCS
fossil fuel
hierarchy
scenario analysis
business-as-usual
time horizon
capital
mathematical optimization
operations research
linear programming
mixed-integer programming

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.