Knowledge (XXG)

Reionization

Source 📝

1342: 1654:
gas through resonant scattering, wherein neutral atoms in the ground (n=1) state absorb Lyman alpha photons and almost immediately re-emit them in a random direction. This obscures Lyman alpha emission from galaxies that are embedded in neutral gas. Thus, experiments to find galaxies by their Lyman alpha light can indicate the ionization state of the surrounding gas.  An average density of galaxies with detectable Lyman alpha emission means the surrounding gas must be ionized; while an absence of detectable Lyman alpha sources may indicate neutral regions.  A closely related class of experiments measures the Lyman alpha line strength in samples of galaxies identified by other methods (primarily
1765:, which means that the primary candidates are all sources which produce a significant amount of energy in the ultraviolet and above. How numerous the source is must also be considered, as well as the longevity, as protons and electrons will recombine if energy is not continuously provided to keep them apart. Altogether, the critical parameter for any source considered can be summarized as its "emission rate of hydrogen-ionizing photons per unit cosmological volume." With these constraints, it is expected that quasars and first generation 1737: 1874: 570: 47: 1857:, and emit a great deal of light above the threshold for ionizing hydrogen. It is unknown, however, how many quasars existed prior to reionization. Only the brightest of quasars present during reionization can be detected, which means there is no direct information about dimmer quasars that existed. However, by looking at the more easily observed quasars in the nearby universe, and assuming that the 5336: 1865:) during reionization will be approximately the same as it is today, it is possible to make estimates of the quasar populations at earlier times. Such studies have found that quasars do not exist in high enough numbers to reionize the IGM alone, saying that "only if the ionizing background is dominated by low-luminosity AGNs can the quasar luminosity function provide enough ionizing photons." 1595:. However, as the universe expands, the density of free electrons will decrease, and scattering will occur less frequently. In the period during and after reionization, but before significant expansion had occurred to sufficiently lower the electron density, the light that composes the CMB will experience observable Thomson scattering. This scattering will leave its mark on the CMB 1416: 5727: 5701: 582: 1834:, populations of LCEs are now being studied at cosmological redshifts greater than 6, allowing for the first time a detailed and direct assessment of the origins of cosmic Reionization. Combining these large samples of galaxies with new constraints on the UV luminosity function indicates that dwarf galaxies overwhelmingly contribute to Reionization. 1478: > 6). At that time, however, matter had been diffused by the expansion of the universe, and the scattering interactions of photons and electrons were much less frequent than before electron-proton recombination. Thus, the universe was full of low density ionized hydrogen and remained transparent, as is the case today. 1502:. Quasars release an extraordinary amount of energy, being among the brightest objects in the universe. As a result, some quasars are detectable from as long ago as the epoch of reionization. Quasars also happen to have relatively uniform spectral features, regardless of their position in the sky or distance from the 1567: = 6 showed a Gunn-Peterson trough, indicating that the IGM was still at least partly neutral, the ones below did not, meaning the hydrogen was ionized. As reionization is expected to occur over relatively short timescales, the results suggest that the universe was approaching the end of reionization at 1604:
anisotropies are actually introduced because of reionization. By looking at the CMB anisotropies observed, and comparing with what they would look like had reionization not taken place, the electron column density at the time of reionization can be determined. With this, the age of the universe when
1546:
The redshifting for a particular quasar provides temporal information about reionization. Since an object's redshift corresponds to the time at which it emitted the light, it is possible to determine when reionization ended. Quasars below a certain redshift (closer in space and time) do not show the
1909:
galaxy also provides indirect evidence of Population III stars. Even without direct observations of Population III stars, they are a compelling source. They are more efficient and effective ionizers than Population II stars, as they emit more ionizing photons, and are capable of reionizing hydrogen
1538:
causes light to undergo noticeable redshifting. This means that as light from the quasar travels through the IGM and is redshifted, wavelengths which had been below the Lyman Alpha limit are stretched, and will in effect begin to fill in the Lyman absorption band. This means that instead of showing
1653:
light from galaxies offers a complementary tool set to study reionization.  The Lyman alpha line is the n=2 to n=1 transition of neutral hydrogen, and can be produced copiously by galaxies with young stars. Moreover, Lyman alpha photons interact strongly with neutral hydrogen in intergalactic
1661:
The earliest application of this method was in 2004, when the tension between late neutral gas indicated by quasar spectra and early reionization suggested by CMB results was strong.  The detection of Lyman alpha galaxies at redshift z=6.5 demonstrated that the intergalactic gas was already
1450:
of photons (of all wavelengths) off free electrons (and free protons, to a significantly lesser extent), but it became increasingly transparent as more electrons and protons combined to form neutral hydrogen atoms. While the electrons of neutral hydrogen can absorb photons of some wavelengths by
1665:
Lyman alpha emission can be used in other ways to further probe reionization. Theory suggests that reionization was patchy, meaning that the clustering of Lyman alpha selected samples should be strongly enhanced during the middle phases of reionization. Moreover, specific ionized regions can be
2227:
Zhu, Yongda; Becker, George D.; Bosman, Sarah E. I.; Keating, Laura C.; D’Odorico, Valentina; Davies, Rebecca L.; Christenson, Holly M.; Bañados, Eduardo; Bian, Fuyan; Bischetti, Manuela; Chen, Huanqing; Davies, Frederick B.; Eilers, Anna-Christina; Fan, Xiaohui; Gaikwad, Prakash (2022-06-01).
4633:
Mascia, S.; Pentericci, L.; Calabrò, A.; Santini, P.; Napolitano, L.; Haro, P. Arrabal; Castellano, M.; Dickinson, M.; Ocvirk, P.; Lewis, J. S. W.; Amorín, R.; Bagley, M.; Cleri, R. N. J.; Costantin, L.; Dekel, A. (2024). "New insight on the nature of cosmic reionizers from the CEERS survey".
1533:
For nearby objects in the universe, spectral absorption lines are very sharp, as only photons with energies just sufficient to cause an atomic transition can cause that transition. However, the distances between quasars and the telescopes which detect them are large, which means that the
5036:
Sobral, David; Matthee, Jorryt; Darvish, Behnam; Schaerer, Daniel; Mobasher, Bahram; Röttgering, Huub J. A.; Santos, Sérgio; Hemmati, Shoubaneh (4 June 2015). "Evidence For POPIII-Like Stellar Populations In The Most Luminous LYMAN-α Emitters At The Epoch Of Re-Ionisation: Spectroscopic
4389:
Saldana-Lopez, Alberto; Schaerer, Daniel; Chisholm, John; Flury, Sophia R.; Jaskot, Anne E.; Worseck, Gábor; Makan, Kirill; Gazagnes, Simon; Mauerhofer, Valentin; Verhamme, Anne; Amorín, Ricardo O.; Ferguson, Harry C.; Giavalisco, Mauro; Grazian, Andrea; Hayes, Matthew J. (July 2022).
1904:
explosions produce such heavy elements, so hot, large, Population III stars which will form supernovae are a possible mechanism for reionization. While they have not been directly observed, they are consistent according to models using numerical simulation and current observations. A
1683:
in hydrogen is potentially a means of studying this period, as well as the "dark ages" that preceded reionization. The 21-cm line occurs in neutral hydrogen, due to differences in energy between the spin triplet and spin singlet states of the electron and proton. This transition is
3044:
Wold, Isak G. B.; Malhotra, Sangeeta; Rhoads, James; Wang, Junxian; Hu, Weida; Perez, Lucia A.; Zheng, Zhen-Ya; Khostovan, Ali Ahmad; Walker, Alistair R.; Barrientos, L. Felipe; González-López, Jorge; Harish, Santosh; Infante, Leopoldo; Jiang, Chunyan; Pharo, John (2022-03-01).
4329:
Flury, Sophia R.; Jaskot, Anne E.; Ferguson, Harry C.; Worseck, Gábor; Makan, Kirill; Chisholm, John; Saldana-Lopez, Alberto; Schaerer, Daniel; McCandliss, Stephan; Wang, Bingjie; Ford, N. M.; Heckman, Timothy; Ji, Zhiyuan; Giavalisco, Mauro; Amorin, Ricardo (2022-05-01).
2986:
Ouchi, Masami; Shimasaku, Kazuhiro; Furusawa, Hisanori; Saito, Tomoki; Yoshida, Makiko; Akiyama, Masayuki; Ono, Yoshiaki; Yamada, Toru; Ota, Kazuaki; Kashikawa, Nobunari; Iye, Masanori; Kodama, Tadayuki; Okamura, Sadanori; Simpson, Chris; Yoshida, Michitoshi (2010-11-01).
1455:, a universe full of neutral hydrogen will be relatively opaque only at those absorbed wavelengths, but transparent throughout most of the spectrum. The Dark Ages of the universe start at that point, because there were no light sources other than the gradually redshifting 3223:
Hu, Weida; Wang, Junxian; Infante, Leopoldo; Rhoads, James E.; Zheng, Zhen-Ya; Yang, Huan; Malhotra, Sangeeta; Barrientos, L. Felipe; Jiang, Chunyan; González-López, Jorge; Prieto, Gonzalo; Perez, Lucia A.; Hibon, Pascale; Galaz, Gaspar; Coughlin, Alicia (2021-01-25).
2928:
Kashikawa, Nobunari; Shimasaku, Kazuhiro; Matsuda, Yuichi; Egami, Eiichi; Jiang, Linhua; Nagao, Tohru; Ouchi, Masami; Malkan, Matthew A.; Hattori, Takashi; Ota, Kazuaki; Taniguchi, Yoshiaki; Okamura, Sadanori; Ly, Chun; Iye, Masanori; Furusawa, Hisanori (2011-06-20).
4455:
Flury, Sophia R.; Jaskot, Anne E.; Ferguson, Harry C.; Worseck, Gábor; Makan, Kirill; Chisholm, John; Saldana-Lopez, Alberto; Schaerer, Daniel; McCandliss, Stephan R.; Xu, Xinfeng; Wang, Bingjie; Oey, M. S.; Ford, N. M.; Heckman, Timothy; Ji, Zhiyuan (2022-05-01).
1662:
predominantly ionized at an earlier time than the quasar spectra suggested.  Subsequent applications of the method suggested some residual neutral gas as recently as z=6.5, but still indicate that a majority of intergalactic gas was ionized prior to z=7.
1748:
While observations have come in which narrow the window during which the epoch of reionization could have taken place, it is still uncertain which objects provided the photons that reionized the IGM. To ionize neutral hydrogen, an energy larger than 13.6
1830:/COS with LyC escape fractions anywhere from ≈ 0 to 88%. The results from the Low-redshift Lyman Continuum Survey have provided the empirical foundation necessary to identify and understand LCEs at the Epoch of Reionization. With new observations from 1803:(LyC)-emitting candidates. Compact dwarf star-forming galaxies like the GPs are considered excellent low-redshift analogs of high-redshift Lyman-alpha and LyC emitters (LAEs and LCEs, respectively). At that time, only two other LCEs were known: 1914:. As a consequence, Population III stars are currently considered the most likely energy source to initiate the reionization of the universe, though other sources are likely to have taken over and driven reionization to completion. 2699:
Pentericci, L.; Fontana, A.; Vanzella, E.; Castellano, M.; Grazian, A.; Dijkstra, M.; Boutsia, K.; Cristiani, S.; Dickinson, M.; Giallongo, E.; Giavalisco, M.; Maiolino, R.; Moorwood, A.; Paris, D.; Santini, P. (2011-12-20).
2658:"Keck spectroscopy of faint 3 < z < 7 Lyman break galaxies - I. New constraints on cosmic reionization from the luminosity and redshift-dependent fraction of Lyman α emission: The Lyα emitting fraction at high redshift" 4515:
Chisholm, J.; Saldana-Lopez, A.; Flury, S.; Schaerer, D.; Jaskot, A.; Amorín, R.; Atek, H.; Finkelstein, S. L.; Fleming, B.; Ferguson, H.; Fernández, V.; Giavalisco, M.; Hayes, M.; Heckman, T.; Henry, A. (2022-11-09).
4567:
Mascia, S.; Pentericci, L.; Calabrò, A.; Treu, T.; Santini, P.; Yang, L.; Napolitano, L.; Roberts-Borsani, G.; Bergamini, P.; Grillo, C.; Rosati, P.; Vulcani, B.; Castellano, M.; Boyett, K.; Fontana, A. (April 2023).
1599:
map, introducing secondary anisotropies (anisotropies introduced after recombination). The overall effect is to erase anisotropies that occur on smaller scales. While anisotropies on small scales are erased,
1616: > 11. This redshift range was in clear disagreement with the results from studying quasar spectra. However, the three year WMAP data returned a different result, with reionization beginning at 1674:
Even with the quasar data roughly in agreement with the CMB anisotropy data, there are still a number of questions, especially concerning the energy sources of reionization and the effects on, and role of,
3550:
Bouwens, R. J.; et al. (2012). "Lower-luminosity Galaxies Could Reionize the Universe: Very Steep Faint-end Slopes to the UV Luminosity Functions at z >= 5-8 from the HUDF09 WFC3/IR Observations".
3163:
Tilvi, V.; Malhotra, S.; Rhoads, J. E.; Coughlin, A.; Zheng, Z.; Finkelstein, S. L.; Veilleux, S.; Mobasher, B.; Wang, J.; Probst, R.; Swaters, R.; Hibon, P.; Joshi, B.; Zabl, J.; Jiang, T. (2020-03-01).
3604:
Atek, Hakim; Richard, Johan; Jauzac, Mathilde; Kneib, Jean-Paul; Natarajan, Priyamvada; Limousin, Marceau; Schaerer, Daniel; Jullo, Eric; Ebeling, Harald; Egami, Eiichi; Clement, Benjamin (2015-11-18).
1701: 1575: > 10. On the other hand, long absorption troughs persisting down to z < 5.5 in the Lyman-alpha and Lyman-beta forests suggest that reionization potentially extends later than 1704:(EDGES) points to a signal from this era, although follow-up observations will be needed to confirm it. Several other projects hope to make headway in this area in the near future, such as the 5502: 171: 4723:
Fan, Xiaohu; et al. (2001). "A Survey of z>5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z~6".
1792:(JWST), constraints on the UV luminosity function at the Epoch of Reionization have become commonplace, allowing for better constraints on the faint, low-mass population of galaxies. 5147: 1705: 3672:"A Comprehensive Study of Galaxies at z ∼ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch" 1784:
are currently considered to be the primary source of ionizing photons during the epoch of reionization. For most scenarios, this would require the log-slope of the UV galaxy
4829:
Limin Lu; et al. (1998). "The Metal Contents of Very Low Column Density Lyman-alpha Clouds: Implications for the Origin of Heavy Elements in the Intergalactic Medium".
5435: 542: 3935: 1725: 5445: 3729:
McLeod, D. J.; Donnan, C. T.; McLure, R. J.; Dunlop, J. S.; Magee, D.; Begley, R.; Carnall, A. C.; Cullen, F.; Ellis, R. S.; Hamadouche, M. L.; Stanton, T. M. (2023).
1638:, the redshift of reionization, assuming it was an instantaneous event. While this is unlikely to be physical, since reionization was very likely not instantaneous, z 1486:
Looking back so far in the history of the universe presents some observational challenges. There are, however, a few observational methods for studying reionization.
1987: 2757:
Tilvi, V.; Papovich, C.; Finkelstein, S. L.; Long, J.; Song, M.; Dickinson, M.; Ferguson, H. C.; Koekemoer, A. M.; Giavalisco, M.; Mobasher, B. (2014-09-17).
1310: 612: 1591:
on different angular scales can also be used to study reionization. Photons undergo scattering when there are free electrons present, in a process known as
5180: 3670:
Harikane, Yuichi; Ouchi, Masami; Oguri, Masamune; Ono, Yoshiaki; Nakajima, Kimihiko; Isobe, Yuki; Umeda, Hiroya; Mawatari, Ken; Zhang, Yechi (2023-03-01).
1109: 5374: 1407:
also experienced a similar reionization phase change, but at a later epoch in the history of the universe. This is usually called "helium reionization".
1826:/COS program which nearly tripled the number of direct measurements of the LyC from dwarf galaxies. To date, at least 50 LCEs have been confirmed using 5096: 3607:"Are ultra-faint galaxies at z = 6–8 responsible for cosmic reionization? Combined constraints from the Hubble frontier fields clusters and parallels" 659: 1341: 5757: 5522: 1527: 846: 5128: 2287:
Kaplinghat, Manoj; et al. (2003). "Probing the Reionization History of the universe using the Cosmic Microwave Background Polarization".
1456: 2393:
Kogut, A.; et al. (2003). "First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature-Polarization Correlation".
2177: 5686: 1609: 346: 1612:
allowed that comparison to be made. The initial observations, released in 2003, suggested that reionization took place from 30 > 
1434: = 1089 (379,000 years after the Big Bang), due to the cooling of the universe to the point where the rate of recombination of 5615: 1539:
sharp spectral absorption lines, a quasar's light which has traveled through a large, spread out region of neutral hydrogen will show a
2446:
Spergel, D. N.; et al. (2007). "Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology".
5340: 4216:
Wang, Bingjie; Heckman, Timothy M.; Leitherer, Claus; Alexandroff, Rachel; Borthakur, Sanchayeeta; Overzier, Roderik A. (2019-10-30).
1551:), while quasars emitting light prior to reionization will feature a Gunn-Peterson trough. In 2001, four quasars were detected by the 3281:
Barkana, Rennan & Loeb, Abraham (2005). "Detecting the Earliest Galaxies through Two New Sources of 21 Centimeter Fluctuations".
1506:. Thus it can be inferred that any major differences between quasar spectra will be caused by the interaction of their emission with 5450: 3843:
Verhamme, A.; Orlitova, I.; Schaerer, D.; Hayes, M. (2014). "On the use of Lyman-alpha to detect Lyman continuum leaking galaxies".
1935:. Such stars are likely to have existed in the very early universe (i.e., at high redshift), and may have started the production of 555: 1700:. By studying 21-cm line emission, it will be possible to learn more about the early structures that formed. Observations from the 2119:
Becker, R. H.; et al. (2001). "Evidence For Reionization at z ~ 6: Detection of a Gunn-Peterson Trough In A z=6.28 Quasar".
605: 5543: 5173: 4930:
Venkatesan, Apama; et al. (2003). "Evolving Spectra of Population III Stars: Consequences for Cosmological Reionization".
4275:
Izotov, Y. I.; Worseck, G.; Schaerer, D.; Guseva, N. G.; Chisholm, J.; Thuan, T. X.; Fricke, K. J.; Verhamme, A. (2021-03-22).
4114:
Izotov, Y. I.; Schaerer, D.; Worseck, G.; Guseva, N. G.; Thuan, T. X.; Verhamme, A.; Orlitová, I.; Fricke, K. J. (2018-03-11).
1858: 1785: 1717: 1696:
that are absorbed and re-emitted by surrounding neutral hydrogen, it will produce a 21-cm line signal in that hydrogen through
188: 3437:
Madau, Piero; et al. (1999). "Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Source".
5605: 5440: 5367: 1811:. Finding local LyC emitters has thus become crucial to the theories about the early universe and the epoch of reionization. 1233: 550: 264: 5548: 5476: 5293: 4903:
Tumlinson, Jason; et al. (2002). "Cosmological Reionization by the First Stars: Evolving Spectra of Population III".
652: 193: 116: 5717: 1169: 1149: 4165:
Izotov, Y. I.; Worseck, G.; Schaerer, D.; Guseva, N. G; Thuan, T. X.; Fricke; Verhamme, A.; Orlitová, I. (2018-08-21).
2702:"SPECTROSCOPIC CONFIRMATION OF z ∼ 7 LYMAN BREAK GALAXIES: PROBING THE EARLIEST GALAXIES AND THE EPOCH OF REIONIZATION" 5466: 4850:
Fosbury, R. A. E.; et al. (2003). "Massive Star Formation in a Gravitationally Lensed H II Galaxy at z = 3.357".
1709: 1588: 877: 598: 574: 121: 4776:
Gnedin, Nickolay & Ostriker, Jeremiah (1997). "Reionization of the Universe and the Early Production of Metals".
5661: 5646: 5471: 5407: 5301: 5276: 5271: 5261: 5197: 5189: 5166: 3334:
Alvarez, M. A.; Pen, Ue-Li; Chang, Tzu-Ching (2010). "Enhanced Detectability of Pre-reionization 21 cm Structure".
1965: 811: 629: 340: 320: 128: 73: 3931:"Ionization state of inter-stellar medium in galaxies: evolution, SFR-M*-Z dependence, and ionizing photon escape" 5517: 5360: 5265: 5039: 2816:"Luminosity Functions of Lyα Emitters at Redshifts z = 6.5 and z = 5.7: Evidence against Reionization at z ≤ 6.5" 1713: 1697: 1535: 1467: 1424: 1385: 1129: 166: 4063:
Izotov, Y. I.; Schaerer, D.; Thuan, T. X.; Worseck, G.; Guseva, N. G.; Orlitová, I.; Verhamme, A. (2016-10-01).
3990:
Izotov, Y. I.; Orlitová, I.; Schaerer, D.; Thuan, T. X.; Verhamme, A.; Guseva, N. G.; Worseck, G. (2016-01-14).
1822:/COS) to measure the LyC directly. These efforts culminated in the Low-redshift Lyman Continuum Survey, a large 5681: 5486: 5257: 3785:
Jaskot, A. E. & Oey, M. S. (2014). "Linking Ly-alpha and Low-Ionization Transitions at Low Optical Depth".
1762: 1721: 1552: 1519: 1404: 1370: 833: 645: 335: 100: 4116:"J1154+2443: a low-redshift compact star-forming galaxy with a 46 per cent leakage of Lyman continuum photons" 2989:"STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS" 1474:. This occurred between 150 million and one billion years after the Big Bang (at a redshift 20 >  5671: 5215: 2340:
Dore, O.; et al. (2007). "Signature of patchy reionization in the polarization anisotropy of the CMB".
984: 303: 183: 5762: 5579: 4392:"The Low-Redshift Lyman Continuum Survey: Unveiling the ISM properties of low- z Lyman-continuum emitters" 1846: 1741: 1571: = 6. This, in turn, suggests that the universe must still have been almost entirely neutral at 886: 5137: 5752: 5625: 5481: 5228: 1911: 508: 310: 252: 3731:"The galaxy UV luminosity function at z ≃ 11 from a suite of public JWST ERS, ERO and Cycle-1 programs" 2230:"Long Dark Gaps in the Lyβ Forest at z < 6: Evidence of Ultra-late Reionization from XQR-30 Spectra" 5656: 5058: 5002: 4949: 4912: 4869: 4795: 4742: 4695: 4653: 4591: 4479: 4413: 4353: 4239: 4013: 3954: 3887: 3864:
Izotov, Y. I.; Guseva, N. G.; Fricke, K. J.; Henkel, C.; Schaerer, D.; Thuan, T. X. (February 2021).
3804: 3752: 3693: 3628: 3570: 3513: 3456: 3353: 3300: 3247: 3187: 3127: 3068: 3010: 2952: 2894: 2837: 2780: 2723: 2622: 2565: 2518: 2465: 2412: 2359: 2306: 2251: 2138: 2091: 2044: 1897: 1601: 1540: 1523: 1362: 868: 521: 493: 315: 5676: 5630: 5507: 5417: 5397: 5125: 4218:"A New Technique for Finding Galaxies Leaking Lyman-continuum Radiation: [S ii]-deficiency" 2002: 1676: 1628: 1470:
energy, the universe reverted from being composed of neutral atoms, to once again being an ionized
1189: 918: 453: 413: 383: 330: 286: 274: 178: 68: 5610: 5224: 5101: 5074: 5048: 5018: 4992: 4965: 4939: 4885: 4859: 4830: 4811: 4785: 4758: 4732: 4643: 4615: 4581: 4529: 4469: 4437: 4403: 4343: 4288: 4229: 4178: 4127: 4076: 4045: 4003: 3972: 3944: 3911: 3877: 3844: 3820: 3794: 3742: 3683: 3652: 3618: 3586: 3560: 3529: 3503: 3472: 3446: 3369: 3343: 3316: 3290: 3237: 3177: 3117: 3058: 3000: 2988: 2942: 2930: 2884: 2872: 2827: 2770: 2713: 2701: 2669: 2612: 2534: 2508: 2481: 2455: 2428: 2402: 2375: 2349: 2322: 2296: 2241: 2189: 2154: 2128: 2034: 1918: 1906: 1881: 1655: 1592: 1548: 1447: 1354: 1253: 1209: 938: 534: 473: 443: 408: 378: 325: 269: 38: 4065:"Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies" 3866:"Low-redshift compact star-forming galaxies as analogues of high-redshift star-forming galaxies" 3606: 2656:
Stark, Daniel P.; Ellis, Richard S.; Chiu, Kuenley; Ouchi, Masami; Bunker, Andrew (2010-11-01).
1634:
The parameter usually quoted here is τ, the "optical depth to reionization," or alternatively, z
4167:"Low-redshift Lyman continuum leaking galaxies with high [O iii]/[O ii] ratios" 3166:"Onset of Cosmic Reionization: Evidence of an Ionized Bubble Merely 680 Myr after the Big Bang" 2758: 1849:(AGN), were considered a good candidate source because they are highly efficient at converting 5747: 5666: 5651: 5220: 4607: 4549: 4497: 4429: 4371: 4308: 4257: 4198: 4147: 4096: 4037: 4029: 3903: 3711: 3644: 3263: 3205: 3145: 3086: 3026: 2968: 2910: 2853: 2796: 2739: 2638: 2601:"Searching for the Earliest Galaxies Using the Gunn-Peterson Trough and the Lyα Emission Line" 2581: 2269: 2209: 2060: 1922: 1788:, often denoted α, to be steeper than it is today, approaching α = -2. With the advent of the 503: 4570:"Closing in on the sources of cosmic reionization: First results from the GLASS-JWST program" 3992:"Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy" 5731: 5705: 5584: 5066: 5010: 4957: 4877: 4803: 4750: 4703: 4661: 4657: 4599: 4595: 4539: 4518:"The far-ultraviolet continuum slope as a Lyman Continuum escape estimator at high redshift" 4517: 4487: 4421: 4417: 4361: 4298: 4276: 4247: 4188: 4166: 4137: 4086: 4021: 3962: 3895: 3891: 3812: 3760: 3701: 3636: 3578: 3521: 3464: 3361: 3308: 3255: 3195: 3135: 3076: 3018: 2960: 2902: 2845: 2788: 2731: 2679: 2630: 2573: 2526: 2522: 2473: 2420: 2367: 2314: 2259: 2199: 2146: 2099: 2052: 1936: 1736: 1471: 1377: 1025: 586: 398: 388: 373: 224: 93: 4115: 5600: 5132: 4679: 2871:
Hu, E. M.; Cowie, L. L.; Barger, A. J.; Capak, P.; Kakazu, Y.; Trouille, L. (2010-12-10).
2173: 1979: 1889: 1808: 513: 448: 433: 418: 403: 393: 257: 5512: 4332:"The Low-redshift Lyman Continuum Survey. I. New, Diverse Local Lyman Continuum Emitters" 154: 5062: 5006: 4953: 4916: 4873: 4799: 4746: 4699: 4483: 4357: 4243: 4017: 3958: 3808: 3756: 3697: 3632: 3574: 3517: 3460: 3357: 3304: 3251: 3191: 3131: 3104:
McQuinn, Matthew; Hernquist, Lars; Zaldarriaga, Matias; Dutta, Suvendra (October 2007).
3072: 3014: 2956: 2898: 2841: 2784: 2727: 2626: 2569: 2469: 2416: 2363: 2310: 2255: 2178:"Evidence of patchy hydrogen reionization from an extreme Lyα trough below redshift six" 2142: 2095: 2048: 5092: 1781: 1685: 1085: 1005: 498: 458: 5070: 3816: 3525: 3365: 3022: 2964: 2906: 2735: 1873: 1466:
that were energetic enough to re-ionize neutral hydrogen. As these objects formed and
5741: 4762: 4619: 4441: 3976: 3915: 3824: 3640: 3590: 3582: 3533: 3387: 3373: 3225: 3140: 3105: 2684: 2657: 2538: 2379: 1892:, the only elements that formed aside from hydrogen and helium were trace amounts of 1680: 1419:
Schematic timeline of the universe, depicting reionization's place in cosmic history.
1330: 483: 468: 368: 17: 5078: 5022: 4969: 4889: 4569: 4391: 3865: 3656: 3476: 2815: 2792: 2600: 2432: 2326: 2158: 2022: 5335: 5253: 5248: 5243: 5232: 5210: 4815: 4049: 3492:"In the Beginning: The First Sources of Light and the Reionization of the Universe" 3409: 3320: 2485: 1750: 1515: 1452: 1229: 958: 488: 463: 438: 423: 4665: 4603: 4425: 3899: 2530: 1462:
The second phase change occurred once gas clouds started to condense in the early
2499:
Planck Collaboration (2020). "Planck 2018 results. VI. Cosmological parameters".
5574: 5564: 5238: 4458:"The Low-redshift Lyman Continuum Survey. II. New Insights into LyC Diagnostics" 1758: 1692:
dependent, meaning that as objects form in the "dark ages" and emit Lyman-alpha
1689: 1650: 1105: 236: 229: 4684:"Cosmological H II regions and the photoionization of the intergalactic medium" 4492: 4457: 4366: 4331: 4252: 4217: 3706: 3671: 3259: 3200: 3165: 3081: 3046: 2553: 2371: 2264: 2229: 5569: 5316: 5311: 3991: 1992: 1862: 1800: 1796: 1596: 1511: 897: 478: 4611: 4553: 4544: 4501: 4433: 4375: 4312: 4261: 4202: 4151: 4100: 4033: 3907: 3765: 3730: 3715: 3648: 3267: 3209: 3149: 3090: 3030: 2972: 2914: 2857: 2800: 2743: 2642: 2585: 2273: 2213: 2064: 1884:
were the earliest stars, which had no elements more massive than hydrogen or
5383: 5321: 4303: 4193: 4142: 4091: 4064: 2204: 1901: 1754: 1045: 428: 5158: 4983:
Alvarez, Marcelo; et al. (2006). "The H II Region of the First Star".
4041: 3967: 3930: 1415: 27:
Process that caused matter to reionize early in the history of the Universe
1631:
mission, yield an instantaneous reionization redshift of z = 7.68 ± 0.79.
5527: 5412: 5402: 5205: 4997: 4944: 4864: 4835: 4790: 4737: 3508: 3451: 3295: 2832: 2617: 2460: 2407: 2354: 2301: 2133: 1960: 1940: 1896:. Yet quasar spectra have revealed the presence of heavy elements in the 1877:
Simulated image of the first stars, 400 million years after the Big Bang.
1495: 1463: 1435: 1428: 1397: 1366: 1350: 161: 63: 56: 4025: 2931:"COMPLETING THE CENSUS OF Lyα EMITTERS AT THE REIONIZATION EPOCH $ ^,$ " 5306: 3047:"LAGER Lyα Luminosity Function at z ∼ 7: Implications for Reionization" 1973: 1893: 1842: 1814:
Subsequently, motivated, a series of surveys have been conducted using
1804: 1624: = 7. This is in much better agreement with the quasar data. 1065: 1522:
is large, meaning that even for low levels of neutral hydrogen in the
46: 5140:, website of the group researching Epoch of Reionization using LOFAR. 4277:"Lyman continuum leakage from low-mass galaxies with M ⋆ < 108 M⊙" 1997: 1944: 1925: 1885: 1854: 1770: 1693: 1499: 1443: 1439: 1393: 1389: 1273: 980: 5152: 3849: 3491: 1970:
Galaxies in the local universe that 'leak' Lyman continuum photons.
1753:
is required, which corresponds to photons with a wavelength of 91.2
1688:, meaning it occurs extremely rarely. The transition is also highly 5053: 5014: 4961: 4881: 4807: 4754: 4708: 4683: 4648: 4586: 4534: 4474: 4408: 4348: 4293: 4234: 4183: 4132: 4081: 4008: 3882: 3747: 3688: 3623: 3468: 3312: 3242: 3182: 3063: 2849: 2634: 2577: 2513: 2477: 2424: 2318: 2246: 2150: 2104: 2079: 2056: 1446:
rate. The universe was opaque before the recombination, due to the
3949: 3799: 3565: 3348: 3122: 3005: 2947: 2889: 2775: 2718: 2674: 2194: 2039: 1872: 1735: 1503: 1414: 1340: 1297: 857: 2172:
Becker, George D.; Bolton, James S.; Madau, Piero; Pettini, Max;
5097:"Astronomers Report Finding Earliest Stars That Enriched Cosmos" 1948: 1850: 1766: 1507: 5356: 5162: 1744:
image to answer the question of how the Universe was reionised.
1702:
Experiment to Detect the Global Epoch of Reionization Signature
1396:, reionization usually refers strictly to the reionization of 1381: 1293: 624: 5352: 5143: 2759:"RAPID DECLINE OF Lyα EMISSION TOWARD THE REIONIZATION ERA" 2080:"On the Density of Neutral Hydrogen in Intergalactic Space" 1642:
provides an estimate of the mean redshift of reionization.
3388:"Astronomers detect light from the Universe's first stars" 1666:
pinpointed by identifying groups of Lyman alpha emitters.
1910:
on their own in some reionization models with reasonable
1740:
Astronomers hope to use observations such as this 2018
1720:(GMRT), Mapper of the IGM Spin Temperature (MIST), the 1423:
The first phase change of hydrogen in the universe was
5715: 5148:
Precision Array for Probing the Epoch of Reionization
2599:
Miralda-Escude, Jordi; Rees, Martin J. (1998-04-10).
1706:
Precision Array for Probing the Epoch of Reionization
5639: 5593: 5557: 5536: 5495: 5459: 5426: 5390: 5292: 5196: 2814:Malhotra, Sangeeta; Rhoads, James E. (2004-12-10). 2023:"The History and Morphology of Helium Reionization" 2552:Partridge, R. B.; Peebles, P. J. E. (March 1967). 4522:Monthly Notices of the Royal Astronomical Society 4281:Monthly Notices of the Royal Astronomical Society 4171:Monthly Notices of the Royal Astronomical Society 4120:Monthly Notices of the Royal Astronomical Society 4069:Monthly Notices of the Royal Astronomical Society 3936:Monthly Notices of the Royal Astronomical Society 3780: 3778: 3776: 3735:Monthly Notices of the Royal Astronomical Society 3110:Monthly Notices of the Royal Astronomical Society 2662:Monthly Notices of the Royal Astronomical Society 2182:Monthly Notices of the Royal Astronomical Society 1726:Large-Aperture Experiment to Detect the Dark Ages 3838: 3836: 3834: 2021:Furlanetto, Steven R.; Oh, S. Peng (July 2008). 1917:In June 2015, astronomers reported evidence for 1547:Gunn-Peterson trough (though they may show the 1442:to form neutral hydrogen was higher than the re 1392:in the universe is in the form of hydrogen and 3545: 3543: 3432: 3430: 2873:"AN ATLAS OF z = 5.7 AND z = 6.5 Lyα EMITTERS" 1605:reionization occurred can then be calculated. 5368: 5174: 1988:List of the most distant astronomical objects 1795:In 2014, two separate studies identified two 653: 606: 8: 1620: = 11 and the universe ionized by 1494:One means of studying reionization uses the 4336:The Astrophysical Journal Supplement Series 3676:The Astrophysical Journal Supplement Series 2448:The Astrophysical Journal Supplement Series 2395:The Astrophysical Journal Supplement Series 1943:that are needed for the later formation of 1563: = 6.28. While the quasars above 5375: 5361: 5353: 5181: 5167: 5159: 2078:Gunn, J. E. & Peterson, B. A. (1965). 660: 646: 613: 599: 213: 87: 45: 29: 5446:Religious interpretations of the Big Bang 5052: 4996: 4943: 4863: 4834: 4789: 4736: 4707: 4647: 4585: 4543: 4533: 4491: 4473: 4407: 4365: 4347: 4302: 4292: 4251: 4233: 4192: 4182: 4141: 4131: 4090: 4080: 4007: 3966: 3948: 3881: 3848: 3798: 3764: 3746: 3705: 3687: 3622: 3564: 3507: 3450: 3347: 3294: 3241: 3199: 3181: 3139: 3121: 3106:"Studying reionization with Lyα emitters" 3080: 3062: 3004: 2946: 2888: 2831: 2774: 2717: 2683: 2673: 2616: 2512: 2459: 2406: 2353: 2300: 2263: 2245: 2203: 2193: 2132: 2103: 2038: 5436:Discovery of cosmic microwave background 3226:"A Lyman-α protocluster at redshift 6.9" 1376:Reionization is the second of two major 5722: 2013: 1530:at those wavelengths is highly likely. 1514:of light at the energies of one of the 244: 216: 108: 37: 4324: 4322: 3929:Nakajima, K. & Ouchi, M. (2014). 1457:cosmic microwave background radiation 7: 5155:, Mapper of the IGM Spin Temperature 1861:(number of quasars as a function of 1610:Wilkinson Microwave Anisotropy Probe 1490:Quasars and the Gunn-Peterson trough 1369:to reionize after the lapse of the " 1282: 1262: 1242: 1218: 1198: 1178: 1158: 1138: 1118: 1094: 1074: 1054: 1034: 1014: 994: 967: 947: 927: 907: 5341:Graphical timeline of the Big Bang 2176:; Venemans, Bram P. (2015-03-11). 341:2dF Galaxy Redshift Survey ("2dF") 25: 5451:Timeline of cosmological theories 3787:The Astrophysical Journal Letters 3553:The Astrophysical Journal Letters 3336:The Astrophysical Journal Letters 3170:The Astrophysical Journal Letters 1773:were the main sources of energy. 556:Timeline of cosmological theories 321:Cosmic Background Explorer (COBE) 5725: 5699: 5334: 3141:10.1111/j.1365-2966.2007.12085.x 2685:10.1111/j.1365-2966.2010.17227.x 1818:'s Cosmic Origins Spectrograph ( 580: 569: 568: 5544:Future of an expanding universe 1718:Giant Metrewave Radio Telescope 1583:CMB anisotropy and polarization 336:Sloan Digital Sky Survey (SDSS) 189:Future of an expanding universe 5758:Physical cosmological concepts 5441:History of the Big Bang theory 3490:Barkana, R.; Loeb, A. (2001). 1384:in the universe (the first is 551:History of the Big Bang theory 347:Wilkinson Microwave Anisotropy 1: 5549:Ultimate fate of the universe 5477:Gravitational wave background 3526:10.1016/S0370-1573(01)00019-9 2554:"Are Young Galaxies Visible?" 1510:along the line of sight. For 543:Discovery of cosmic microwave 194:Ultimate fate of the universe 4574:Astronomy & Astrophysics 4396:Astronomy & Astrophysics 3870:Astronomy & Astrophysics 3410:"Hubble opens its eye again" 2501:Astronomy & Astrophysics 1555:with redshifts ranging from 5467:Cosmic microwave background 5071:10.1088/0004-637x/808/2/139 4682:& Giroux, Mark (1987). 4666:10.1051/0004-6361/202347884 4604:10.1051/0004-6361/202345866 4426:10.1051/0004-6361/202141864 3900:10.1051/0004-6361/202039772 3817:10.1088/2041-8205/791/2/L19 3366:10.1088/2041-8205/723/1/L17 3023:10.1088/0004-637X/723/1/869 2965:10.1088/0004-637X/734/2/119 2907:10.1088/0004-637X/725/1/394 2736:10.1088/0004-637X/743/2/132 2531:10.1051/0004-6361/201833910 1757:or shorter. This is in the 1589:cosmic microwave background 1361:is the process that caused 311:Black Hole Initiative (BHI) 5779: 5472:Cosmic neutrino background 5408:Chronology of the universe 5302:Heat death of the universe 5198:Chronology of the universe 4905:ASP Conference Proceedings 4636:Astronomy and Astrophysics 3641:10.1088/0004-637X/814/1/69 3583:10.1088/2041-8205/752/1/L5 3260:10.1038/s41550-020-01291-y 2372:10.1103/PhysRevD.76.043002 1966:Chronology of the universe 1790:James Webb Space Telescope 1345:Phases of the reionization 74:Chronology of the universe 5695: 5518:Expansion of the universe 5330: 5144:Official website of PAPER 5040:The Astrophysical Journal 4688:The Astrophysical Journal 4462:The Astrophysical Journal 4222:The Astrophysical Journal 3611:The Astrophysical Journal 3439:The Astrophysical Journal 3283:The Astrophysical Journal 3051:The Astrophysical Journal 2993:The Astrophysical Journal 2935:The Astrophysical Journal 2877:The Astrophysical Journal 2820:The Astrophysical Journal 2793:10.1088/0004-637X/794/1/5 2763:The Astrophysical Journal 2706:The Astrophysical Journal 2605:The Astrophysical Journal 2558:The Astrophysical Journal 2289:The Astrophysical Journal 2234:The Astrophysical Journal 2084:The Astrophysical Journal 2027:The Astrophysical Journal 1714:Murchison Widefield Array 1698:Wouthuysen-Field coupling 1679:during reionization. The 1536:expansion of the universe 1388:). While the majority of 1326: 638: 627: 167:Expansion of the universe 5258:Big Bang nucleosynthesis 5190:Timeline of the Big Bang 4725:The Astronomical Journal 4493:10.3847/1538-4357/ac61e4 4367:10.3847/1538-4365/ac5331 4253:10.3847/1538-4357/ab418f 3707:10.3847/1538-4365/acaaa9 3201:10.3847/2041-8213/ab75ec 3082:10.3847/1538-4357/ac4997 2265:10.3847/1538-4357/ac6e60 1982:– second of two galaxies 1890:Big Bang nucleosynthesis 1763:electromagnetic spectrum 1724:(DARE) mission, and the 1722:Dark Ages Radio Explorer 1553:Sloan Digital Sky Survey 1520:scattering cross-section 1403:It is believed that the 331:Planck space observatory 117:Gravitational wave (GWB) 5672:Observational cosmology 5216:Grand unification epoch 4658:2024A&A...685A...3M 4596:2023A&A...672A.155M 4418:2022A&A...663A..59S 3892:2021A&A...646A.138I 2523:2020A&A...641A...6P 1976:– first of two galaxies 184:Inhomogeneous cosmology 5523:Accelerating expansion 4545:10.1093/mnras/stac2874 3766:10.1093/mnras/stad3471 3414:www.spacetelescope.org 1912:initial mass functions 1907:gravitationally lensed 1878: 1847:active galactic nuclei 1816:Hubble Space Telescope 1745: 1742:Hubble Space Telescope 1587:The anisotropy of the 1427:, which occurred at a 1420: 1346: 703:−10 — 693:−11 — 683:−12 — 673:−13 — 5626:Shape of the universe 5616:Large-scale structure 5429:cosmological theories 4985:Astrophysical Journal 4932:Astrophysical Journal 4852:Astrophysical Journal 4778:Astrophysical Journal 4304:10.1093/mnras/stab612 4194:10.1093/mnras/sty1378 4143:10.1093/mnras/stx3115 4092:10.1093/mnras/stw1205 2205:10.1093/mnras/stu2646 1876: 1739: 1627:Results in 2018 from 1559: = 5.82 to 1418: 1344: 848:Accelerated expansion 793:−1 — 783:−2 — 773:−3 — 763:−4 — 753:−5 — 743:−6 — 733:−7 — 723:−8 — 713:−9 — 275:Large-scale structure 253:Shape of the universe 18:Epoch of Reionization 5706:astronomy portal 5294:Fate of the universe 5126:End of the Dark Ages 3968:10.1093/mnras/stu902 2121:Astronomical Journal 2009:Notes and references 1919:Population III stars 1898:intergalactic medium 1882:Population III stars 1869:Population III stars 1646:Lyman alpha emission 1541:Gunn-Peterson trough 1524:intergalactic medium 1363:electrically neutral 1066:NGC 188 star cluster 587:Astronomy portal 545:background radiation 522:List of cosmologists 5631:Structure formation 5594:Structure formation 5508:Friedmann equations 5418:Observable universe 5398:Age of the universe 5063:2015ApJ...808..139S 5007:2006ApJ...639..621A 4954:2003ApJ...584..621V 4917:2002ASPC..267..433T 4874:2003ApJ...596..797F 4800:1997ApJ...486..581G 4747:2001AJ....122.2833F 4700:1987ApJ...321L.107S 4484:2022ApJ...930..126F 4358:2022ApJS..260....1F 4244:2019ApJ...885...57W 4026:10.1038/nature16456 4018:2016Natur.529..178I 3959:2014MNRAS.442..900N 3809:2014ApJ...791L..19J 3757:2024MNRAS.527.5004M 3698:2023ApJS..265....5H 3633:2015ApJ...814...69A 3575:2012ApJ...752L...5B 3518:2001PhR...349..125B 3461:1999ApJ...514..648M 3358:2010ApJ...723L..17A 3305:2005ApJ...626....1B 3252:2021NatAs...5..485H 3192:2020ApJ...891L..10T 3132:2007MNRAS.381...75M 3073:2022ApJ...927...36W 3015:2010ApJ...723..869O 2957:2011ApJ...734..119K 2899:2010ApJ...725..394H 2842:2004ApJ...617L...5M 2785:2014ApJ...794....5T 2728:2011ApJ...743..132P 2627:1998ApJ...497...21M 2570:1967ApJ...147..868P 2470:2007ApJS..170..377S 2417:2003ApJS..148..161K 2364:2007PhRvD..76d3002D 2311:2003ApJ...583...24K 2256:2022ApJ...932...76Z 2174:Ryan-Weber, Emma V. 2143:2001AJ....122.2850B 2096:1965ApJ...142.1633G 2049:2008ApJ...681....1F 1859:luminosity function 1799:(GPs) to be likely 1786:luminosity function 1710:Low Frequency Array 1677:structure formation 1190:Sexual reproduction 1130:Earliest known life 287:Structure formation 179:Friedmann equations 69:Age of the universe 33:Part of a series on 5611:Large quasar group 5225:Inflationary epoch 5131:2005-03-09 at the 5102:The New York Times 3390:. 28 February 2018 1879: 1797:Green Pea galaxies 1746: 1656:Lyman break galaxy 1593:Thomson scattering 1549:Lyman-alpha forest 1421: 1347: 1254:Cambrian explosion 1170:Atmospheric oxygen 869:Single-celled life 326:Dark Energy Survey 270:Large quasar group 39:Physical cosmology 5713: 5712: 5667:Illustris project 5350: 5349: 5262:Matter domination 5221:Electroweak epoch 4002:(7585): 178–180. 2342:Physical Review D 1937:chemical elements 1923:Cosmos Redshift 7 1900:at an early era. 1518:of hydrogen, the 1516:Lyman transitions 1482:Detection methods 1405:primordial helium 1378:phase transitions 1349:In the fields of 1339: 1338: 1331:billion years ago 1305: 1304: 1281: 1280: 1261: 1260: 1241: 1240: 1217: 1216: 1197: 1196: 1177: 1176: 1157: 1156: 1137: 1136: 1117: 1116: 1093: 1092: 1073: 1072: 1053: 1052: 1046:Milky Way spirals 1033: 1032: 1013: 1012: 993: 992: 966: 965: 946: 945: 926: 925: 919:Earliest Universe 623: 622: 294: 293: 136: 135: 16:(Redirected from 5770: 5730: 5729: 5728: 5721: 5704: 5703: 5702: 5606:Galaxy formation 5585:Lambda-CDM model 5496:Present universe 5377: 5370: 5363: 5354: 5338: 5183: 5176: 5169: 5160: 5114: 5113: 5111: 5109: 5095:(17 June 2015). 5089: 5083: 5082: 5056: 5033: 5027: 5026: 5000: 4998:astro-ph/0507684 4980: 4974: 4973: 4947: 4945:astro-ph/0206390 4927: 4921: 4920: 4900: 4894: 4893: 4867: 4865:astro-ph/0307162 4847: 4841: 4840: 4838: 4836:astro-ph/9802189 4826: 4820: 4819: 4793: 4791:astro-ph/9612127 4773: 4767: 4766: 4740: 4738:astro-ph/0108063 4731:(6): 2833–2849. 4720: 4714: 4713: 4711: 4676: 4670: 4669: 4651: 4630: 4624: 4623: 4589: 4564: 4558: 4557: 4547: 4537: 4528:(4): 5104–5120. 4512: 4506: 4505: 4495: 4477: 4452: 4446: 4445: 4411: 4386: 4380: 4379: 4369: 4351: 4326: 4317: 4316: 4306: 4296: 4287:(2): 1734–1752. 4272: 4266: 4265: 4255: 4237: 4213: 4207: 4206: 4196: 4186: 4177:(4): 4851–4865. 4162: 4156: 4155: 4145: 4135: 4126:(4): 4514–4527. 4111: 4105: 4104: 4094: 4084: 4075:(4): 3683–3701. 4060: 4054: 4053: 4011: 3987: 3981: 3980: 3970: 3952: 3926: 3920: 3919: 3885: 3861: 3855: 3854: 3852: 3840: 3829: 3828: 3802: 3782: 3771: 3770: 3768: 3750: 3726: 3720: 3719: 3709: 3691: 3667: 3661: 3660: 3626: 3601: 3595: 3594: 3568: 3547: 3538: 3537: 3511: 3509:astro-ph/0010468 3487: 3481: 3480: 3454: 3452:astro-ph/9809058 3434: 3425: 3424: 3422: 3420: 3406: 3400: 3399: 3397: 3395: 3384: 3378: 3377: 3351: 3331: 3325: 3324: 3298: 3296:astro-ph/0410129 3278: 3272: 3271: 3245: 3230:Nature Astronomy 3220: 3214: 3213: 3203: 3185: 3160: 3154: 3153: 3143: 3125: 3101: 3095: 3094: 3084: 3066: 3041: 3035: 3034: 3008: 2983: 2977: 2976: 2950: 2925: 2919: 2918: 2892: 2868: 2862: 2861: 2835: 2833:astro-ph/0407408 2811: 2805: 2804: 2778: 2754: 2748: 2747: 2721: 2696: 2690: 2689: 2687: 2677: 2668:(3): 1628–1648. 2653: 2647: 2646: 2620: 2618:astro-ph/9707193 2596: 2590: 2589: 2549: 2543: 2542: 2516: 2496: 2490: 2489: 2463: 2461:astro-ph/0603449 2443: 2437: 2436: 2410: 2408:astro-ph/0302213 2390: 2384: 2383: 2357: 2355:astro-ph/0701784 2337: 2331: 2330: 2304: 2302:astro-ph/0207591 2284: 2278: 2277: 2267: 2249: 2224: 2218: 2217: 2207: 2197: 2188:(4): 3402–3419. 2169: 2163: 2162: 2136: 2134:astro-ph/0108097 2127:(6): 2850–2857. 2116: 2110: 2109: 2107: 2075: 2069: 2068: 2042: 2018: 2003:Strömgren sphere 1934: 1579: = 6. 1319: 1288: 1283: 1274:Earliest mammals 1268: 1263: 1248: 1243: 1230:Earliest animals 1224: 1219: 1204: 1199: 1184: 1179: 1164: 1159: 1144: 1139: 1124: 1119: 1100: 1095: 1080: 1075: 1060: 1055: 1040: 1035: 1026:Andromeda Galaxy 1020: 1015: 1000: 995: 987: 973: 968: 953: 948: 933: 928: 913: 908: 900: 860: 849: 838: 835:Matter-dominated 825: 814: 804: 799: 794: 789: 784: 779: 774: 769: 764: 759: 754: 749: 744: 739: 734: 729: 724: 719: 714: 709: 704: 699: 694: 689: 684: 679: 674: 662: 655: 648: 642: 632: 625: 615: 608: 601: 585: 584: 583: 572: 571: 265:Galaxy formation 225:Lambda-CDM model 214: 206:Components  88: 49: 30: 21: 5778: 5777: 5773: 5772: 5771: 5769: 5768: 5767: 5738: 5737: 5736: 5726: 5724: 5716: 5714: 5709: 5700: 5698: 5691: 5635: 5601:Galaxy filament 5589: 5553: 5537:Future universe 5532: 5491: 5487:Nucleosynthesis 5455: 5428: 5422: 5386: 5381: 5351: 5346: 5326: 5288: 5277:Habitable epoch 5192: 5187: 5153:Website of MIST 5133:Wayback Machine 5122: 5117: 5107: 5105: 5093:Overbye, Dennis 5091: 5090: 5086: 5037:Confirmation". 5035: 5034: 5030: 4982: 4981: 4977: 4929: 4928: 4924: 4902: 4901: 4897: 4849: 4848: 4844: 4828: 4827: 4823: 4775: 4774: 4770: 4722: 4721: 4717: 4678: 4677: 4673: 4632: 4631: 4627: 4566: 4565: 4561: 4514: 4513: 4509: 4454: 4453: 4449: 4388: 4387: 4383: 4328: 4327: 4320: 4274: 4273: 4269: 4215: 4214: 4210: 4164: 4163: 4159: 4113: 4112: 4108: 4062: 4061: 4057: 3989: 3988: 3984: 3928: 3927: 3923: 3863: 3862: 3858: 3842: 3841: 3832: 3784: 3783: 3774: 3728: 3727: 3723: 3669: 3668: 3664: 3603: 3602: 3598: 3549: 3548: 3541: 3496:Physics Reports 3489: 3488: 3484: 3436: 3435: 3428: 3418: 3416: 3408: 3407: 3403: 3393: 3391: 3386: 3385: 3381: 3333: 3332: 3328: 3280: 3279: 3275: 3222: 3221: 3217: 3162: 3161: 3157: 3103: 3102: 3098: 3043: 3042: 3038: 2985: 2984: 2980: 2927: 2926: 2922: 2870: 2869: 2865: 2813: 2812: 2808: 2756: 2755: 2751: 2698: 2697: 2693: 2655: 2654: 2650: 2598: 2597: 2593: 2551: 2550: 2546: 2498: 2497: 2493: 2445: 2444: 2440: 2392: 2391: 2387: 2339: 2338: 2334: 2286: 2285: 2281: 2226: 2225: 2221: 2171: 2170: 2166: 2118: 2117: 2113: 2077: 2076: 2072: 2020: 2019: 2015: 2011: 1980:Tololo-1247-232 1957: 1951:as we know it. 1929: 1871: 1840: 1809:Tololo-1247-232 1801:Lyman Continuum 1779: 1734: 1672: 1648: 1641: 1637: 1585: 1492: 1484: 1413: 1400:, the element. 1390:baryonic matter 1335: 1334: 1322: 1321: 1320: 1316: 1314: 1312: 1309: 1301: 1300: 1286: 1277: 1276: 1266: 1257: 1256: 1246: 1237: 1236: 1222: 1213: 1212: 1202: 1193: 1192: 1182: 1173: 1172: 1162: 1153: 1152: 1150:Earliest oxygen 1142: 1133: 1132: 1122: 1113: 1112: 1098: 1089: 1088: 1078: 1069: 1068: 1058: 1049: 1048: 1038: 1029: 1028: 1018: 1009: 1008: 998: 989: 988: 978: 971: 962: 961: 959:Earliest galaxy 951: 942: 941: 931: 922: 921: 911: 904: 903: 902: 898: 893: 892: 891: 888: 882: 881: 880: 873: 872: 871: 864: 863: 862: 858: 853: 852: 851: 847: 842: 841: 840: 836: 834: 829: 828: 827: 823: 818: 817: 816: 812: 805: 802: 800: 797: 795: 792: 790: 787: 785: 782: 780: 777: 775: 772: 770: 767: 765: 762: 760: 757: 755: 752: 750: 747: 745: 742: 740: 737: 735: 732: 730: 727: 725: 722: 720: 717: 715: 712: 710: 707: 705: 702: 700: 697: 695: 692: 690: 687: 685: 682: 680: 677: 675: 672: 666: 640: 634: 631:Nature timeline 630: 619: 581: 579: 561: 560: 547: 544: 537: 535:Subject history 527: 526: 518: 363: 355: 354: 351: 348: 306: 296: 295: 258:Galaxy filament 211: 199: 198: 150: 145:Expansion  138: 137: 122:Microwave (CMB) 101:Nucleosynthesis 85: 28: 23: 22: 15: 12: 11: 5: 5776: 5774: 5766: 5765: 5760: 5755: 5750: 5740: 5739: 5735: 5734: 5711: 5710: 5696: 5693: 5692: 5690: 5689: 5684: 5679: 5674: 5669: 5664: 5659: 5654: 5649: 5643: 5641: 5637: 5636: 5634: 5633: 5628: 5623: 5618: 5613: 5608: 5603: 5597: 5595: 5591: 5590: 5588: 5587: 5582: 5577: 5572: 5567: 5561: 5559: 5555: 5554: 5552: 5551: 5546: 5540: 5538: 5534: 5533: 5531: 5530: 5525: 5520: 5515: 5510: 5505: 5499: 5497: 5493: 5492: 5490: 5489: 5484: 5479: 5474: 5469: 5463: 5461: 5457: 5456: 5454: 5453: 5448: 5443: 5438: 5432: 5430: 5424: 5423: 5421: 5420: 5415: 5410: 5405: 5400: 5394: 5392: 5388: 5387: 5382: 5380: 5379: 5372: 5365: 5357: 5348: 5347: 5345: 5344: 5331: 5328: 5327: 5325: 5324: 5319: 5314: 5309: 5304: 5298: 5296: 5290: 5289: 5287: 5286: 5281: 5280: 5279: 5269: 5251: 5246: 5241: 5236: 5218: 5213: 5208: 5202: 5200: 5194: 5193: 5188: 5186: 5185: 5178: 5171: 5163: 5157: 5156: 5150: 5141: 5135: 5121: 5120:External links 5118: 5116: 5115: 5084: 5028: 5015:10.1086/499578 4991:(2): 621–632. 4975: 4962:10.1086/345738 4938:(2): 621–632. 4922: 4895: 4882:10.1086/378228 4858:(1): 797–809. 4842: 4821: 4808:10.1086/304548 4784:(2): 581–598. 4768: 4755:10.1086/324111 4715: 4709:10.1086/185015 4671: 4625: 4559: 4507: 4447: 4381: 4318: 4267: 4208: 4157: 4106: 4055: 3982: 3943:(1): 900–916. 3921: 3856: 3830: 3772: 3721: 3662: 3596: 3539: 3502:(2): 125–238. 3482: 3469:10.1086/306975 3445:(2): 648–659. 3426: 3401: 3379: 3342:(1): L17–L21. 3326: 3313:10.1086/429954 3273: 3236:(5): 485–490. 3215: 3155: 3096: 3036: 2999:(1): 869–894. 2978: 2920: 2883:(1): 394–423. 2863: 2850:10.1086/427182 2806: 2749: 2691: 2648: 2635:10.1086/305458 2591: 2578:10.1086/149079 2544: 2491: 2478:10.1086/513700 2454:(2): 377–408. 2438: 2425:10.1086/377219 2401:(1): 161–173. 2385: 2332: 2319:10.1086/344927 2279: 2219: 2164: 2151:10.1086/324231 2111: 2105:10.1086/148444 2070: 2057:10.1086/588546 2012: 2010: 2007: 2006: 2005: 2000: 1995: 1990: 1985: 1984: 1983: 1977: 1968: 1963: 1956: 1953: 1870: 1867: 1839: 1836: 1782:Dwarf galaxies 1778: 1777:Dwarf galaxies 1775: 1733: 1732:Energy sources 1730: 1671: 1668: 1647: 1644: 1639: 1635: 1584: 1581: 1491: 1488: 1483: 1480: 1412: 1409: 1337: 1336: 1328: 1327: 1324: 1323: 1308: 1307: 1306: 1303: 1302: 1292: 1291: 1289: 1279: 1278: 1272: 1271: 1269: 1259: 1258: 1252: 1251: 1249: 1239: 1238: 1228: 1227: 1225: 1215: 1214: 1210:Earliest fungi 1208: 1207: 1205: 1195: 1194: 1188: 1187: 1185: 1175: 1174: 1168: 1167: 1165: 1155: 1154: 1148: 1147: 1145: 1135: 1134: 1128: 1127: 1125: 1115: 1114: 1104: 1103: 1101: 1091: 1090: 1086:Alpha Centauri 1084: 1083: 1081: 1071: 1070: 1064: 1063: 1061: 1051: 1050: 1044: 1043: 1041: 1031: 1030: 1024: 1023: 1021: 1011: 1010: 1006:Omega Centauri 1004: 1003: 1001: 991: 990: 977: 976: 974: 964: 963: 957: 956: 954: 944: 943: 939:Earliest stars 937: 936: 934: 924: 923: 917: 916: 914: 905: 896: 895: 894: 885: 884: 883: 878:Photosynthesis 876: 875: 874: 867: 866: 865: 859:Water on Earth 856: 855: 854: 845: 844: 843: 832: 831: 830: 821: 820: 819: 810: 809: 808: 806: 803:0 — 801: 796: 791: 786: 781: 776: 771: 766: 761: 756: 751: 746: 741: 736: 731: 726: 721: 716: 711: 706: 701: 696: 691: 686: 681: 676: 671: 668: 667: 665: 664: 657: 650: 639: 636: 635: 628: 621: 620: 618: 617: 610: 603: 595: 592: 591: 590: 589: 577: 563: 562: 559: 558: 553: 548: 541: 538: 533: 532: 529: 528: 525: 524: 517: 516: 511: 506: 501: 496: 491: 486: 481: 476: 471: 466: 461: 456: 451: 446: 441: 436: 431: 426: 421: 416: 411: 406: 401: 396: 391: 386: 381: 376: 371: 365: 364: 361: 360: 357: 356: 353: 352: 345: 343: 338: 333: 328: 323: 318: 313: 307: 302: 301: 298: 297: 292: 291: 290: 289: 277: 272: 267: 255: 247: 246: 242: 241: 240: 239: 227: 219: 218: 212: 205: 204: 201: 200: 197: 196: 191: 186: 181: 169: 164: 151: 144: 143: 140: 139: 134: 133: 132: 131: 129:Neutrino (CNB) 119: 111: 110: 106: 105: 104: 103: 86: 84:Early universe 83: 82: 79: 78: 77: 76: 71: 66: 51: 50: 42: 41: 35: 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5775: 5764: 5763:Space plasmas 5761: 5759: 5756: 5754: 5751: 5749: 5746: 5745: 5743: 5733: 5723: 5719: 5708: 5707: 5694: 5688: 5685: 5683: 5680: 5678: 5675: 5673: 5670: 5668: 5665: 5663: 5660: 5658: 5655: 5653: 5650: 5648: 5645: 5644: 5642: 5638: 5632: 5629: 5627: 5624: 5622: 5619: 5617: 5614: 5612: 5609: 5607: 5604: 5602: 5599: 5598: 5596: 5592: 5586: 5583: 5581: 5578: 5576: 5573: 5571: 5568: 5566: 5563: 5562: 5560: 5556: 5550: 5547: 5545: 5542: 5541: 5539: 5535: 5529: 5526: 5524: 5521: 5519: 5516: 5514: 5511: 5509: 5506: 5504: 5501: 5500: 5498: 5494: 5488: 5485: 5483: 5480: 5478: 5475: 5473: 5470: 5468: 5465: 5464: 5462: 5460:Past universe 5458: 5452: 5449: 5447: 5444: 5442: 5439: 5437: 5434: 5433: 5431: 5425: 5419: 5416: 5414: 5411: 5409: 5406: 5404: 5401: 5399: 5396: 5395: 5393: 5389: 5385: 5378: 5373: 5371: 5366: 5364: 5359: 5358: 5355: 5343: 5342: 5337: 5333: 5332: 5329: 5323: 5320: 5318: 5315: 5313: 5310: 5308: 5305: 5303: 5300: 5299: 5297: 5295: 5291: 5285: 5282: 5278: 5275: 5274: 5273: 5270: 5267: 5266:Recombination 5263: 5259: 5255: 5252: 5250: 5247: 5245: 5242: 5240: 5237: 5234: 5230: 5226: 5222: 5219: 5217: 5214: 5212: 5209: 5207: 5204: 5203: 5201: 5199: 5195: 5191: 5184: 5179: 5177: 5172: 5170: 5165: 5164: 5161: 5154: 5151: 5149: 5145: 5142: 5139: 5136: 5134: 5130: 5127: 5124: 5123: 5119: 5104: 5103: 5098: 5094: 5088: 5085: 5080: 5076: 5072: 5068: 5064: 5060: 5055: 5050: 5046: 5042: 5041: 5032: 5029: 5024: 5020: 5016: 5012: 5008: 5004: 4999: 4994: 4990: 4986: 4979: 4976: 4971: 4967: 4963: 4959: 4955: 4951: 4946: 4941: 4937: 4933: 4926: 4923: 4918: 4914: 4910: 4906: 4899: 4896: 4891: 4887: 4883: 4879: 4875: 4871: 4866: 4861: 4857: 4853: 4846: 4843: 4837: 4832: 4825: 4822: 4817: 4813: 4809: 4805: 4801: 4797: 4792: 4787: 4783: 4779: 4772: 4769: 4764: 4760: 4756: 4752: 4748: 4744: 4739: 4734: 4730: 4726: 4719: 4716: 4710: 4705: 4701: 4697: 4693: 4689: 4685: 4681: 4680:Shapiro, Paul 4675: 4672: 4667: 4663: 4659: 4655: 4650: 4645: 4641: 4637: 4629: 4626: 4621: 4617: 4613: 4609: 4605: 4601: 4597: 4593: 4588: 4583: 4579: 4575: 4571: 4563: 4560: 4555: 4551: 4546: 4541: 4536: 4531: 4527: 4523: 4519: 4511: 4508: 4503: 4499: 4494: 4489: 4485: 4481: 4476: 4471: 4467: 4463: 4459: 4451: 4448: 4443: 4439: 4435: 4431: 4427: 4423: 4419: 4415: 4410: 4405: 4401: 4397: 4393: 4385: 4382: 4377: 4373: 4368: 4363: 4359: 4355: 4350: 4345: 4341: 4337: 4333: 4325: 4323: 4319: 4314: 4310: 4305: 4300: 4295: 4290: 4286: 4282: 4278: 4271: 4268: 4263: 4259: 4254: 4249: 4245: 4241: 4236: 4231: 4227: 4223: 4219: 4212: 4209: 4204: 4200: 4195: 4190: 4185: 4180: 4176: 4172: 4168: 4161: 4158: 4153: 4149: 4144: 4139: 4134: 4129: 4125: 4121: 4117: 4110: 4107: 4102: 4098: 4093: 4088: 4083: 4078: 4074: 4070: 4066: 4059: 4056: 4051: 4047: 4043: 4039: 4035: 4031: 4027: 4023: 4019: 4015: 4010: 4005: 4001: 3997: 3993: 3986: 3983: 3978: 3974: 3969: 3964: 3960: 3956: 3951: 3946: 3942: 3938: 3937: 3932: 3925: 3922: 3917: 3913: 3909: 3905: 3901: 3897: 3893: 3889: 3884: 3879: 3875: 3871: 3867: 3860: 3857: 3851: 3846: 3839: 3837: 3835: 3831: 3826: 3822: 3818: 3814: 3810: 3806: 3801: 3796: 3792: 3788: 3781: 3779: 3777: 3773: 3767: 3762: 3758: 3754: 3749: 3744: 3740: 3736: 3732: 3725: 3722: 3717: 3713: 3708: 3703: 3699: 3695: 3690: 3685: 3681: 3677: 3673: 3666: 3663: 3658: 3654: 3650: 3646: 3642: 3638: 3634: 3630: 3625: 3620: 3616: 3612: 3608: 3600: 3597: 3592: 3588: 3584: 3580: 3576: 3572: 3567: 3562: 3558: 3554: 3546: 3544: 3540: 3535: 3531: 3527: 3523: 3519: 3515: 3510: 3505: 3501: 3497: 3493: 3486: 3483: 3478: 3474: 3470: 3466: 3462: 3458: 3453: 3448: 3444: 3440: 3433: 3431: 3427: 3415: 3411: 3405: 3402: 3389: 3383: 3380: 3375: 3371: 3367: 3363: 3359: 3355: 3350: 3345: 3341: 3337: 3330: 3327: 3322: 3318: 3314: 3310: 3306: 3302: 3297: 3292: 3288: 3284: 3277: 3274: 3269: 3265: 3261: 3257: 3253: 3249: 3244: 3239: 3235: 3231: 3227: 3219: 3216: 3211: 3207: 3202: 3197: 3193: 3189: 3184: 3179: 3175: 3171: 3167: 3159: 3156: 3151: 3147: 3142: 3137: 3133: 3129: 3124: 3119: 3115: 3111: 3107: 3100: 3097: 3092: 3088: 3083: 3078: 3074: 3070: 3065: 3060: 3056: 3052: 3048: 3040: 3037: 3032: 3028: 3024: 3020: 3016: 3012: 3007: 3002: 2998: 2994: 2990: 2982: 2979: 2974: 2970: 2966: 2962: 2958: 2954: 2949: 2944: 2940: 2936: 2932: 2924: 2921: 2916: 2912: 2908: 2904: 2900: 2896: 2891: 2886: 2882: 2878: 2874: 2867: 2864: 2859: 2855: 2851: 2847: 2843: 2839: 2834: 2829: 2825: 2821: 2817: 2810: 2807: 2802: 2798: 2794: 2790: 2786: 2782: 2777: 2772: 2768: 2764: 2760: 2753: 2750: 2745: 2741: 2737: 2733: 2729: 2725: 2720: 2715: 2711: 2707: 2703: 2695: 2692: 2686: 2681: 2676: 2671: 2667: 2663: 2659: 2652: 2649: 2644: 2640: 2636: 2632: 2628: 2624: 2619: 2614: 2610: 2606: 2602: 2595: 2592: 2587: 2583: 2579: 2575: 2571: 2567: 2563: 2559: 2555: 2548: 2545: 2540: 2536: 2532: 2528: 2524: 2520: 2515: 2510: 2506: 2502: 2495: 2492: 2487: 2483: 2479: 2475: 2471: 2467: 2462: 2457: 2453: 2449: 2442: 2439: 2434: 2430: 2426: 2422: 2418: 2414: 2409: 2404: 2400: 2396: 2389: 2386: 2381: 2377: 2373: 2369: 2365: 2361: 2356: 2351: 2348:(4): 043002. 2347: 2343: 2336: 2333: 2328: 2324: 2320: 2316: 2312: 2308: 2303: 2298: 2294: 2290: 2283: 2280: 2275: 2271: 2266: 2261: 2257: 2253: 2248: 2243: 2239: 2235: 2231: 2223: 2220: 2215: 2211: 2206: 2201: 2196: 2191: 2187: 2183: 2179: 2175: 2168: 2165: 2160: 2156: 2152: 2148: 2144: 2140: 2135: 2130: 2126: 2122: 2115: 2112: 2106: 2101: 2097: 2093: 2090:: 1633–1641. 2089: 2085: 2081: 2074: 2071: 2066: 2062: 2058: 2054: 2050: 2046: 2041: 2036: 2032: 2028: 2024: 2017: 2014: 2008: 2004: 2001: 1999: 1996: 1994: 1991: 1989: 1986: 1981: 1978: 1975: 1972: 1971: 1969: 1967: 1964: 1962: 1959: 1958: 1954: 1952: 1950: 1946: 1942: 1939:heavier than 1938: 1932: 1927: 1924: 1920: 1915: 1913: 1908: 1903: 1899: 1895: 1891: 1887: 1883: 1875: 1868: 1866: 1864: 1860: 1856: 1852: 1848: 1845:, a class of 1844: 1837: 1835: 1833: 1829: 1825: 1821: 1817: 1812: 1810: 1806: 1802: 1798: 1793: 1791: 1787: 1783: 1776: 1774: 1772: 1768: 1764: 1760: 1756: 1752: 1743: 1738: 1731: 1729: 1727: 1723: 1719: 1715: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1682: 1678: 1669: 1667: 1663: 1659: 1657: 1652: 1645: 1643: 1632: 1630: 1625: 1623: 1619: 1615: 1611: 1606: 1603: 1598: 1594: 1590: 1582: 1580: 1578: 1574: 1570: 1566: 1562: 1558: 1554: 1550: 1544: 1542: 1537: 1531: 1529: 1525: 1521: 1517: 1513: 1509: 1505: 1501: 1497: 1489: 1487: 1481: 1479: 1477: 1473: 1469: 1465: 1460: 1458: 1454: 1453:excited state 1451:rising to an 1449: 1445: 1441: 1437: 1433: 1430: 1426: 1425:recombination 1417: 1410: 1408: 1406: 1401: 1399: 1395: 1391: 1387: 1386:recombination 1383: 1379: 1374: 1372: 1368: 1365:atoms in the 1364: 1360: 1356: 1352: 1343: 1332: 1325: 1318: 1299: 1295: 1294:Earliest apes 1290: 1285: 1284: 1275: 1270: 1265: 1264: 1255: 1250: 1245: 1244: 1235: 1231: 1226: 1221: 1220: 1211: 1206: 1201: 1200: 1191: 1186: 1181: 1180: 1171: 1166: 1161: 1160: 1151: 1146: 1141: 1140: 1131: 1126: 1121: 1120: 1111: 1107: 1102: 1097: 1096: 1087: 1082: 1077: 1076: 1067: 1062: 1057: 1056: 1047: 1042: 1037: 1036: 1027: 1022: 1017: 1016: 1007: 1002: 997: 996: 986: 982: 975: 970: 969: 960: 955: 950: 949: 940: 935: 930: 929: 920: 915: 910: 909: 906: 901: 890: 887:Multicellular 879: 870: 861: 850: 839: 826: 815: 807: 670: 669: 663: 658: 656: 651: 649: 644: 643: 637: 633: 626: 616: 611: 609: 604: 602: 597: 596: 594: 593: 588: 578: 576: 567: 566: 565: 564: 557: 554: 552: 549: 546: 540: 539: 536: 531: 530: 523: 520: 519: 515: 512: 510: 507: 505: 502: 500: 497: 495: 492: 490: 487: 485: 482: 480: 477: 475: 472: 470: 467: 465: 462: 460: 457: 455: 452: 450: 447: 445: 442: 440: 437: 435: 432: 430: 427: 425: 422: 420: 417: 415: 412: 410: 407: 405: 402: 400: 397: 395: 392: 390: 387: 385: 382: 380: 377: 375: 372: 370: 367: 366: 359: 358: 350: 344: 342: 339: 337: 334: 332: 329: 327: 324: 322: 319: 317: 314: 312: 309: 308: 305: 300: 299: 288: 285: 281: 278: 276: 273: 271: 268: 266: 263: 259: 256: 254: 251: 250: 249: 248: 243: 238: 235: 231: 228: 226: 223: 222: 221: 220: 215: 209: 203: 202: 195: 192: 190: 187: 185: 182: 180: 177: 173: 170: 168: 165: 163: 160: 156: 153: 152: 148: 142: 141: 130: 127: 123: 120: 118: 115: 114: 113: 112: 107: 102: 99: 95: 92: 91: 90: 89: 81: 80: 75: 72: 70: 67: 65: 62: 58: 55: 54: 53: 52: 48: 44: 43: 40: 36: 32: 31: 19: 5753:Astrophysics 5697: 5621:Reionization 5620: 5580:Quintessence 5513:Hubble's law 5339: 5284:Reionization 5283: 5254:Photon epoch 5249:Lepton epoch 5244:Hadron epoch 5233:Baryogenesis 5211:Planck epoch 5106:. Retrieved 5100: 5087: 5044: 5038: 5031: 4988: 4984: 4978: 4935: 4931: 4925: 4908: 4904: 4898: 4855: 4851: 4845: 4824: 4781: 4777: 4771: 4728: 4724: 4718: 4691: 4687: 4674: 4639: 4635: 4628: 4577: 4573: 4562: 4525: 4521: 4510: 4465: 4461: 4450: 4399: 4395: 4384: 4339: 4335: 4284: 4280: 4270: 4225: 4221: 4211: 4174: 4170: 4160: 4123: 4119: 4109: 4072: 4068: 4058: 3999: 3995: 3985: 3940: 3934: 3924: 3873: 3869: 3859: 3790: 3786: 3738: 3734: 3724: 3679: 3675: 3665: 3614: 3610: 3599: 3556: 3552: 3499: 3495: 3485: 3442: 3438: 3417:. Retrieved 3413: 3404: 3392:. Retrieved 3382: 3339: 3335: 3329: 3286: 3282: 3276: 3233: 3229: 3218: 3173: 3169: 3158: 3116:(1): 75–96. 3113: 3109: 3099: 3054: 3050: 3039: 2996: 2992: 2981: 2938: 2934: 2923: 2880: 2876: 2866: 2826:(1): L5–L8. 2823: 2819: 2809: 2766: 2762: 2752: 2709: 2705: 2694: 2665: 2661: 2651: 2611:(1): 21–27. 2608: 2604: 2594: 2561: 2557: 2547: 2504: 2500: 2494: 2451: 2447: 2441: 2398: 2394: 2388: 2345: 2341: 2335: 2295:(1): 24–32. 2292: 2288: 2282: 2237: 2233: 2222: 2185: 2181: 2167: 2124: 2120: 2114: 2087: 2083: 2073: 2030: 2026: 2016: 1930: 1916: 1880: 1841: 1831: 1827: 1823: 1819: 1815: 1813: 1794: 1789: 1780: 1761:part of the 1747: 1673: 1664: 1660: 1649: 1633: 1626: 1621: 1617: 1613: 1607: 1602:polarization 1586: 1576: 1572: 1568: 1564: 1560: 1556: 1545: 1532: 1493: 1485: 1475: 1461: 1431: 1422: 1402: 1375: 1359:reionization 1358: 1348: 1110:Solar System 824:Reionization 822: 349:Probe (WMAP) 283: 280:Reionization 279: 261: 233: 207: 175: 158: 155:Hubble's law 146: 125: 97: 60: 5640:Experiments 5575:Dark matter 5565:Dark energy 5503:FLRW metric 5239:Quark epoch 4911:: 433–434. 4694:: 107–112. 3850:1404.2958v1 3741:(3): 5004. 3419:17 December 3289:(1): 1–11. 2033:(1): 1–17. 1759:ultraviolet 1690:temperature 1658:searches). 1651:Lyman alpha 1512:wavelengths 1498:of distant 1353:theory and 899:Vertebrates 641:This box: 304:Experiments 237:Dark matter 230:Dark energy 172:FLRW metric 109:Backgrounds 5742:Categories 5570:Dark fluid 5558:Components 5427:History of 5391:Background 5317:Big Bounce 5312:Big Crunch 5054:1504.01734 5047:(2): 139. 4649:2309.02219 4587:2301.02816 4535:2207.05771 4475:2203.15649 4468:(2): 126. 4409:2201.11800 4349:2201.11716 4294:2103.01514 4235:1909.01368 4184:1805.09865 4133:1711.11449 4082:1605.05160 4009:1601.03068 3883:2103.01505 3793:(2): L19. 3748:2304.14469 3689:2208.01612 3624:1509.06764 3243:2101.10204 3183:2001.00873 3176:(1): L10. 3064:2105.12191 2941:(2): 119. 2712:(2): 132. 2514:1807.06209 2247:2205.04569 1993:Pea galaxy 1863:luminosity 1681:21-cm line 1670:21-cm line 1597:anisotropy 1528:absorption 1448:scattering 1444:ionization 1411:Background 985:black hole 384:Copernicus 362:Scientists 217:Components 5732:Astronomy 5657:BOOMERanG 5482:Inflation 5384:Cosmology 5322:Big Slurp 5272:Dark ages 5229:Reheating 5138:LOFAR EoR 4763:119339804 4620:255546596 4612:0004-6361 4554:0035-8711 4502:0004-637X 4442:246411216 4434:0004-6361 4376:0067-0049 4313:0035-8711 4262:1538-4357 4228:(1): 57. 4203:0035-8711 4152:0035-8711 4101:0035-8711 4034:0028-0836 3977:118617426 3950:1309.0207 3916:232092358 3908:0004-6361 3825:119294145 3800:1406.4413 3716:0067-0049 3649:1538-4357 3617:(1): 69. 3591:118856513 3566:1105.2038 3559:(1): L5. 3534:119094218 3374:118436837 3349:1007.0001 3268:2397-3366 3210:2041-8205 3150:0035-8711 3123:0704.2239 3091:0004-637X 3057:(1): 36. 3031:0004-637X 3006:1007.2961 2973:0004-637X 2948:1104.2330 2915:0004-637X 2890:1009.1144 2858:0004-637X 2801:1538-4357 2776:1405.4869 2744:0004-637X 2719:1107.1376 2675:1003.5244 2643:0004-637X 2586:0004-637X 2539:119335614 2380:119360903 2274:0004-637X 2240:(2): 76. 2214:1365-2966 2195:1407.4850 2065:0004-637X 2040:0711.1542 1902:Supernova 1888:. During 1712:(LOFAR), 1708:(PAPER), 1686:forbidden 1436:electrons 1371:dark ages 1355:cosmology 979:Earliest 813:Dark Ages 514:Zeldovich 414:Friedmann 389:de Sitter 316:BOOMERanG 245:Structure 210:Structure 94:Inflation 5748:Big Bang 5528:Redshift 5413:Universe 5403:Big Bang 5206:Big Bang 5129:Archived 5079:18471887 5023:12753436 4970:17737785 4890:17808828 4580:: A155. 4342:(1): 1. 4042:26762455 3876:: A138. 3682:(1): 5. 3657:73567045 3477:17932350 2769:(1): 5. 2433:15253442 2327:11253251 2159:14117521 1961:Big Bang 1955:See also 1941:hydrogen 1771:galaxies 1728:(LEDA). 1468:radiated 1464:universe 1429:redshift 1398:hydrogen 1367:universe 1351:Big Bang 575:Category 494:Suntzeff 454:Lemaître 404:Einstein 369:Aaronson 162:Redshift 64:Universe 57:Big Bang 5307:Big Rip 5108:17 June 5059:Bibcode 5003:Bibcode 4950:Bibcode 4913:Bibcode 4870:Bibcode 4816:5758398 4796:Bibcode 4743:Bibcode 4696:Bibcode 4654:Bibcode 4592:Bibcode 4480:Bibcode 4414:Bibcode 4402:: A59. 4354:Bibcode 4240:Bibcode 4050:3033749 4014:Bibcode 3955:Bibcode 3888:Bibcode 3805:Bibcode 3753:Bibcode 3694:Bibcode 3629:Bibcode 3571:Bibcode 3514:Bibcode 3457:Bibcode 3394:1 March 3354:Bibcode 3321:7343629 3301:Bibcode 3248:Bibcode 3188:Bibcode 3128:Bibcode 3069:Bibcode 3011:Bibcode 2953:Bibcode 2895:Bibcode 2838:Bibcode 2781:Bibcode 2724:Bibcode 2623:Bibcode 2566:Bibcode 2564:: 868. 2519:Bibcode 2486:1386346 2466:Bibcode 2413:Bibcode 2360:Bibcode 2307:Bibcode 2252:Bibcode 2139:Bibcode 2092:Bibcode 2045:Bibcode 1998:Quasars 1974:Haro 11 1945:planets 1921:in the 1894:lithium 1843:Quasars 1838:Quasars 1805:Haro 11 1716:(MWA), 1694:photons 1526:(IGM), 1500:quasars 1496:spectra 1440:protons 1287:← 1267:← 1247:← 1223:← 1203:← 1183:← 1163:← 1143:← 1123:← 1099:← 1079:← 1059:← 1039:← 1019:← 999:← 972:← 952:← 932:← 912:← 798:– 788:– 778:– 768:– 758:– 748:– 738:– 728:– 718:– 708:– 698:– 688:– 678:– 499:Sunyaev 484:Schmidt 474:Penzias 469:Penrose 444:Huygens 434:Hawking 419:Galileo 5718:Portal 5677:Planck 5146:, the 5077:  5021:  4968:  4888:  4814:  4761:  4642:: A3. 4618:  4610:  4552:  4500:  4440:  4432:  4374:  4311:  4260:  4201:  4150:  4099:  4048:  4040:  4032:  3996:Nature 3975:  3914:  3906:  3823:  3714:  3655:  3647:  3589:  3532:  3475:  3372:  3319:  3266:  3208:  3148:  3089:  3029:  2971:  2913:  2856:  2799:  2742:  2641:  2584:  2537:  2507:: A6. 2484:  2431:  2378:  2325:  2272:  2212:  2157:  2063:  1933:= 6.60 1926:galaxy 1886:helium 1855:energy 1629:Planck 1472:plasma 1394:helium 1298:humans 1234:plants 981:quasar 573:  509:Wilson 504:Tolman 464:Newton 459:Mather 449:Kepler 439:Hubble 399:Ehlers 379:Alpher 374:Alfvén 282:  260:  232:  174:  157:  149:Future 124:  96:  59:  5075:S2CID 5049:arXiv 5019:S2CID 4993:arXiv 4966:S2CID 4940:arXiv 4886:S2CID 4860:arXiv 4831:arXiv 4812:S2CID 4786:arXiv 4759:S2CID 4733:arXiv 4644:arXiv 4616:S2CID 4582:arXiv 4530:arXiv 4470:arXiv 4438:S2CID 4404:arXiv 4344:arXiv 4289:arXiv 4230:arXiv 4179:arXiv 4128:arXiv 4077:arXiv 4046:S2CID 4004:arXiv 3973:S2CID 3945:arXiv 3912:S2CID 3878:arXiv 3845:arXiv 3821:S2CID 3795:arXiv 3743:arXiv 3684:arXiv 3653:S2CID 3619:arXiv 3587:S2CID 3561:arXiv 3530:S2CID 3504:arXiv 3473:S2CID 3447:arXiv 3370:S2CID 3344:arXiv 3317:S2CID 3291:arXiv 3238:arXiv 3178:arXiv 3118:arXiv 3059:arXiv 3001:arXiv 2943:arXiv 2885:arXiv 2828:arXiv 2771:arXiv 2714:arXiv 2670:arXiv 2613:arXiv 2535:S2CID 2509:arXiv 2482:S2CID 2456:arXiv 2429:S2CID 2403:arXiv 2376:S2CID 2350:arXiv 2323:S2CID 2297:arXiv 2242:arXiv 2190:arXiv 2155:S2CID 2129:arXiv 2035:arXiv 1767:stars 1508:atoms 1504:Earth 1106:Earth 489:Smoot 479:Rubin 424:Gamow 409:Ellis 394:Dicke 5687:WMAP 5682:SDSS 5662:COBE 5110:2015 4608:ISSN 4550:ISSN 4498:ISSN 4430:ISSN 4372:ISSN 4309:ISSN 4258:ISSN 4199:ISSN 4148:ISSN 4097:ISSN 4038:PMID 4030:ISSN 3904:ISSN 3712:ISSN 3645:ISSN 3421:2018 3396:2018 3264:ISSN 3206:ISSN 3146:ISSN 3087:ISSN 3027:ISSN 2969:ISSN 2911:ISSN 2854:ISSN 2797:ISSN 2740:ISSN 2639:ISSN 2582:ISSN 2270:ISSN 2210:ISSN 2061:ISSN 1949:life 1947:and 1851:mass 1832:JWST 1807:and 1769:and 1608:The 1438:and 889:life 661:edit 654:talk 647:view 429:Guth 5652:6dF 5647:2dF 5067:doi 5045:808 5011:doi 4989:639 4958:doi 4936:584 4909:267 4878:doi 4856:596 4804:doi 4782:486 4751:doi 4729:122 4704:doi 4692:321 4662:doi 4640:685 4600:doi 4578:672 4540:doi 4526:517 4488:doi 4466:930 4422:doi 4400:663 4362:doi 4340:260 4299:doi 4285:503 4248:doi 4226:885 4189:doi 4175:478 4138:doi 4124:474 4087:doi 4073:461 4022:doi 4000:529 3963:doi 3941:442 3896:doi 3874:646 3813:doi 3791:791 3761:doi 3739:527 3702:doi 3680:265 3637:doi 3615:814 3579:doi 3557:752 3522:doi 3500:349 3465:doi 3443:514 3362:doi 3340:723 3309:doi 3287:626 3256:doi 3196:doi 3174:891 3136:doi 3114:381 3077:doi 3055:927 3019:doi 2997:723 2961:doi 2939:734 2903:doi 2881:725 2846:doi 2824:617 2789:doi 2767:794 2732:doi 2710:743 2680:doi 2666:408 2631:doi 2609:497 2574:doi 2562:147 2527:doi 2505:641 2474:doi 2452:170 2421:doi 2399:148 2368:doi 2315:doi 2293:583 2260:doi 2238:932 2200:doi 2186:447 2147:doi 2125:122 2100:doi 2088:142 2053:doi 2031:681 1928:at 1853:to 1828:HST 1824:HST 1820:HST 1382:gas 1380:of 1373:". 837:era 5744:: 5264:, 5260:, 5231:, 5227:, 5099:. 5073:. 5065:. 5057:. 5043:. 5017:. 5009:. 5001:. 4987:. 4964:. 4956:. 4948:. 4934:. 4907:. 4884:. 4876:. 4868:. 4854:. 4810:. 4802:. 4794:. 4780:. 4757:. 4749:. 4741:. 4727:. 4702:. 4690:. 4686:. 4660:. 4652:. 4638:. 4614:. 4606:. 4598:. 4590:. 4576:. 4572:. 4548:. 4538:. 4524:. 4520:. 4496:. 4486:. 4478:. 4464:. 4460:. 4436:. 4428:. 4420:. 4412:. 4398:. 4394:. 4370:. 4360:. 4352:. 4338:. 4334:. 4321:^ 4307:. 4297:. 4283:. 4279:. 4256:. 4246:. 4238:. 4224:. 4220:. 4197:. 4187:. 4173:. 4169:. 4146:. 4136:. 4122:. 4118:. 4095:. 4085:. 4071:. 4067:. 4044:. 4036:. 4028:. 4020:. 4012:. 3998:. 3994:. 3971:. 3961:. 3953:. 3939:. 3933:. 3910:. 3902:. 3894:. 3886:. 3872:. 3868:. 3833:^ 3819:. 3811:. 3803:. 3789:. 3775:^ 3759:. 3751:. 3737:. 3733:. 3710:. 3700:. 3692:. 3678:. 3674:. 3651:. 3643:. 3635:. 3627:. 3613:. 3609:. 3585:. 3577:. 3569:. 3555:. 3542:^ 3528:. 3520:. 3512:. 3498:. 3494:. 3471:. 3463:. 3455:. 3441:. 3429:^ 3412:. 3368:. 3360:. 3352:. 3338:. 3315:. 3307:. 3299:. 3285:. 3262:. 3254:. 3246:. 3232:. 3228:. 3204:. 3194:. 3186:. 3172:. 3168:. 3144:. 3134:. 3126:. 3112:. 3108:. 3085:. 3075:. 3067:. 3053:. 3049:. 3025:. 3017:. 3009:. 2995:. 2991:. 2967:. 2959:. 2951:. 2937:. 2933:. 2909:. 2901:. 2893:. 2879:. 2875:. 2852:. 2844:. 2836:. 2822:. 2818:. 2795:. 2787:. 2779:. 2765:. 2761:. 2738:. 2730:. 2722:. 2708:. 2704:. 2678:. 2664:. 2660:. 2637:. 2629:. 2621:. 2607:. 2603:. 2580:. 2572:. 2560:. 2556:. 2533:. 2525:. 2517:. 2503:. 2480:. 2472:. 2464:. 2450:. 2427:. 2419:. 2411:. 2397:. 2374:. 2366:. 2358:. 2346:76 2344:. 2321:. 2313:. 2305:. 2291:. 2268:. 2258:. 2250:. 2236:. 2232:. 2208:. 2198:. 2184:. 2180:. 2153:. 2145:. 2137:. 2123:. 2098:. 2086:. 2082:. 2059:. 2051:. 2043:. 2029:. 2025:. 1755:nm 1751:eV 1640:re 1636:re 1543:. 1459:. 1357:, 1296:/ 1232:/ 1108:/ 983:/ 5720:: 5376:e 5369:t 5362:v 5268:) 5256:( 5235:) 5223:( 5182:e 5175:t 5168:v 5112:. 5081:. 5069:: 5061:: 5051:: 5025:. 5013:: 5005:: 4995:: 4972:. 4960:: 4952:: 4942:: 4919:. 4915:: 4892:. 4880:: 4872:: 4862:: 4839:. 4833:: 4818:. 4806:: 4798:: 4788:: 4765:. 4753:: 4745:: 4735:: 4712:. 4706:: 4698:: 4668:. 4664:: 4656:: 4646:: 4622:. 4602:: 4594:: 4584:: 4556:. 4542:: 4532:: 4504:. 4490:: 4482:: 4472:: 4444:. 4424:: 4416:: 4406:: 4378:. 4364:: 4356:: 4346:: 4315:. 4301:: 4291:: 4264:. 4250:: 4242:: 4232:: 4205:. 4191:: 4181:: 4154:. 4140:: 4130:: 4103:. 4089:: 4079:: 4052:. 4024:: 4016:: 4006:: 3979:. 3965:: 3957:: 3947:: 3918:. 3898:: 3890:: 3880:: 3853:. 3847:: 3827:. 3815:: 3807:: 3797:: 3769:. 3763:: 3755:: 3745:: 3718:. 3704:: 3696:: 3686:: 3659:. 3639:: 3631:: 3621:: 3593:. 3581:: 3573:: 3563:: 3536:. 3524:: 3516:: 3506:: 3479:. 3467:: 3459:: 3449:: 3423:. 3398:. 3376:. 3364:: 3356:: 3346:: 3323:. 3311:: 3303:: 3293:: 3270:. 3258:: 3250:: 3240:: 3234:5 3212:. 3198:: 3190:: 3180:: 3152:. 3138:: 3130:: 3120:: 3093:. 3079:: 3071:: 3061:: 3033:. 3021:: 3013:: 3003:: 2975:. 2963:: 2955:: 2945:: 2917:. 2905:: 2897:: 2887:: 2860:. 2848:: 2840:: 2830:: 2803:. 2791:: 2783:: 2773:: 2746:. 2734:: 2726:: 2716:: 2688:. 2682:: 2672:: 2645:. 2633:: 2625:: 2615:: 2588:. 2576:: 2568:: 2541:. 2529:: 2521:: 2511:: 2488:. 2476:: 2468:: 2458:: 2435:. 2423:: 2415:: 2405:: 2382:. 2370:: 2362:: 2352:: 2329:. 2317:: 2309:: 2299:: 2276:. 2262:: 2254:: 2244:: 2216:. 2202:: 2192:: 2161:. 2149:: 2141:: 2131:: 2108:. 2102:: 2094:: 2067:. 2055:: 2047:: 2037:: 1931:z 1622:z 1618:z 1614:z 1577:z 1573:z 1569:z 1565:z 1561:z 1557:z 1476:z 1432:z 1333:) 1329:( 1317:e 1315:f 1313:i 1311:L 614:e 607:t 600:v 284:· 262:· 234:· 208:· 176:· 159:· 147:· 126:· 98:· 61:· 20:)

Index

Epoch of Reionization
Physical cosmology
Full-sky image derived from nine years' WMAP data
Big Bang
Universe
Age of the universe
Chronology of the universe
Inflation
Nucleosynthesis
Gravitational wave (GWB)
Microwave (CMB)
Neutrino (CNB)
Hubble's law
Redshift
Expansion of the universe
FLRW metric
Friedmann equations
Inhomogeneous cosmology
Future of an expanding universe
Ultimate fate of the universe
Lambda-CDM model
Dark energy
Dark matter
Shape of the universe
Galaxy filament
Galaxy formation
Large quasar group
Large-scale structure
Reionization
Structure formation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.