Knowledge (XXG)

Equivalence of categories

Source šŸ“

27: 100:
structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.
760:
are not both full and faithful, then we may view their adjointness relation as expressing a "weaker form of equivalence" of categories. Assuming that the natural transformations for the adjunctions are given, all of these formulations allow for an explicit construction of the necessary data, and no
99:
that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these
550:
in the underlying set theory), the missing data is not completely specified, and often there are many choices. It is a good idea to specify the missing constructions explicitly whenever possible. Due to this circumstance, a functor with these properties is sometimes called a
2140:. Conversely, for any topology the clopen (i.e. closed and open) subsets yield a Boolean algebra. One obtains a duality between the category of Boolean algebras (with their homomorphisms) and 1672:
to itself. Hence, given the information that the identity functors form an equivalence of categories, in this example one still can choose between two natural isomorphisms for each direction.
1759: 1027: 1073: 2480:. On the other hand, any equivalence between additive categories is necessarily additive. (Note that the latter statement is not true for equivalences between preadditive categories.) 2083: 1466: 1915: 1670: 1621: 653: 621: 1839: 2390:
Dualities "turn all concepts around": they turn initial objects into terminal objects, monomorphisms into epimorphisms, kernels into cokernels, limits into colimits etc.
2540: 1545: 981: 947: 758: 721: 589: 1866: 1592: 1493: 1267: 1180: 913: 886: 839: 2138: 2114: 2056: 2036: 1998: 1970: 1935: 1886: 1807: 1787: 1704: 1641: 1565: 1513: 1421: 1401: 1378: 1358: 1334: 1314: 1290: 1240: 1220: 1200: 1153: 1133: 1113: 1093: 859: 812: 792: 126:
in an algebraic setting, the composite of the functor and its "inverse" is not necessarily the identity mapping. Instead it is sufficient that each object be
2511:
under composition if we consider two auto-equivalences that are naturally isomorphic to be identical. This group captures the essential "symmetries" of
2583: 132:
to its image under this composition. Thus one may describe the functors as being "inverse up to isomorphism". There is indeed a concept of
2145: 48: 2671: 2641: 70: 122:
between the involved categories, which is required to have an "inverse" functor. However, in contrast to the situation common for
503: 2621: 530:
This is a quite useful and commonly applied criterion, because one does not have to explicitly construct the "inverse"
2616: 2094: 1707: 41: 35: 1719: 2204: 986: 2661: 2375: 2345: 1032: 133: 52: 2666: 2611: 2353: 2341: 2317: 2074: 2063: 1426: 128: 104: 96: 2472:
may be turned into a preadditive category (or additive category, or abelian category) in such a way that
2216:
As a rule of thumb, an equivalence of categories preserves all "categorical" concepts and properties. If
2155:
the category of spatial locales is known to be equivalent to the dual of the category of sober spaces.
1891: 1646: 1597: 626: 594: 2457: 1762: 1812: 765:
of an adjunction is an isomorphism if and only if the right adjoint is a full and faithful functor.
136:
where a strict form of inverse functor is required, but this is of much less practical use than the
2508: 2004: 2524: 2159: 2152: 1973: 1941: 1518: 952: 918: 737: 700: 568: 319:) if there exists an equivalence (respectively duality) between them. Furthermore, we say that 2637: 2629: 2579: 2574:
Lutz Schrƶder (2001). "Categories: a free tour". In JĆ¼rgen Koslowski and Austin Melton (ed.).
2528: 2461: 1766: 2477: 2465: 2365: 2170: 1949: 1676: 563: 431: 1844: 1570: 1471: 1245: 1158: 891: 864: 817: 2598: 2264: 2245: 2015: 556: 547: 84: 542:
and the identity functors. On the other hand, though the above properties guarantee the
303:
One often does not specify all the above data. For instance, we say that the categories
2260: 2253: 2241: 2123: 2117: 2099: 2070: 2041: 2021: 1983: 1955: 1920: 1871: 1792: 1772: 1689: 1626: 1550: 1498: 1406: 1386: 1363: 1343: 1319: 1299: 1275: 1225: 1205: 1185: 1138: 1118: 1098: 1078: 844: 797: 777: 761:
choice principles are needed. The key property that one has to prove here is that the
2655: 2089: 2059: 2012: 1945: 2282: 1713: 359: 2148:
stating a duality between finite partial orders and finite distributive lattices.
2290: 2286: 2268: 2249: 2141: 1977: 1710: 1680: 123: 88: 2545: 2008: 1937:
to the corresponding linear maps is full, faithful and essentially surjective.
1340:
isomorphic in that there are no morphisms between them. Thus any functor from
425: 671:
are equivalent (as defined above in that there are natural isomorphisms from
335:
and the natural isomorphisms: there may be many choices (see example below).
2349: 497: 2357: 2078: 2038:
is associated with the algebra of continuous complex-valued functions on
546:
of a categorical equivalence (given a sufficiently strong version of the
355:
yields an equivalence of categories if and only if it is simultaneously:
327:
and natural isomorphisms as above exist. Note however that knowledge of
2058:, and every commutative C*-algebra is associated with the space of its 119: 1316:
with two objects and only two identity morphisms. The two objects in
2379: 1594:
in place of the required natural isomorphisms between the functor
2602: 2228:
is an equivalence, then the following statements are all true:
2011:
with identity is contravariantly equivalent to the category of
2000:
associates to every affine scheme its ring of global sections.
20: 2144:(with continuous mappings). Another case of Stone duality is 2087:, which is a special instance within the general scheme of 1679:
is equivalent to but not isomorphic with the category of
2081:. Probably the most well-known theorem of this kind is 323:"is" an equivalence of categories if an inverse functor 2519:
is not a small category, then the auto-equivalences of
2077:
that connect certain classes of lattices to classes of
2297:
is a monomorphism (or epimorphism, or isomorphism) in
1567:
is equivalent to itself, which can be shown by taking
555:. (Unfortunately this conflicts with terminology from 2578:. Springer Science & Business Media. p. 10. 2126: 2102: 2044: 2024: 2018:. Under this duality, every compact Hausdorff space 1986: 1958: 1923: 1894: 1874: 1847: 1815: 1795: 1775: 1722: 1692: 1649: 1629: 1600: 1573: 1553: 1521: 1501: 1474: 1429: 1409: 1389: 1366: 1346: 1322: 1302: 1278: 1248: 1228: 1208: 1188: 1161: 1141: 1121: 1101: 1081: 1035: 989: 955: 921: 894: 867: 847: 820: 800: 780: 740: 703: 629: 597: 571: 1765:(the latter category is explained in the article on 2084:
Stone's representation theorem for Boolean algebras
288:, assigning each object and morphism to itself. If 2132: 2108: 2050: 2030: 1992: 1964: 1929: 1909: 1880: 1860: 1833: 1801: 1781: 1753: 1698: 1664: 1635: 1615: 1586: 1559: 1539: 1507: 1487: 1460: 1415: 1395: 1372: 1352: 1328: 1308: 1284: 1261: 1234: 1214: 1194: 1174: 1147: 1127: 1107: 1087: 1067: 1021: 975: 941: 907: 880: 853: 833: 806: 786: 752: 715: 647: 615: 583: 2541:Equivalent definitions of mathematical structures 562:There is also a close relation to the concept of 2116:is mapped to a specific topology on the set of 1754:{\displaystyle D=\mathrm {Mat} (\mathbb {R} )} 1292:with a single object and a single morphism is 8: 2073:, there are a number of dualities, based on 1022:{\displaystyle \alpha \colon d_{1}\to d_{2}} 1623:and itself. However, it is also true that 1068:{\displaystyle \beta \colon d_{2}\to d_{1}} 915:and four morphisms: two identity morphisms 296:are contravariant functors one speaks of a 118:An equivalence of categories consists of a 1115:are equivalent; we can (for example) have 2125: 2101: 2043: 2023: 1985: 1972:associates to every commutative ring its 1957: 1922: 1901: 1897: 1896: 1893: 1873: 1852: 1846: 1814: 1794: 1774: 1744: 1743: 1729: 1721: 1691: 1656: 1651: 1648: 1628: 1607: 1602: 1599: 1578: 1572: 1552: 1520: 1500: 1479: 1473: 1434: 1428: 1408: 1388: 1365: 1345: 1321: 1301: 1277: 1253: 1247: 1227: 1207: 1187: 1166: 1160: 1140: 1120: 1100: 1080: 1059: 1046: 1034: 1013: 1000: 988: 965: 960: 954: 931: 926: 920: 899: 893: 872: 866: 846: 825: 819: 799: 779: 739: 702: 628: 596: 570: 107:of another category then one speaks of a 71:Learn how and when to remove this message 2636:. New York: Springer. pp. xii+314. 2634:Categories for the working mathematician 2452:is an equivalence of categories, and if 34:This article includes a list of general 2557: 514:is isomorphic to an object of the form 111:, and says that the two categories are 234:denote the respective compositions of 2405:is an equivalence of categories, and 534:and the natural isomorphisms between 331:is usually not enough to reconstruct 7: 1461:{\displaystyle 1_{c},f\colon c\to c} 1380:will not be essentially surjective. 103:If a category is equivalent to the 2203:Any category is equivalent to its 1944:is the duality of the category of 1736: 1733: 1730: 1643:yields a natural isomorphism from 184:, and two natural isomorphisms Īµ: 40:it lacks sufficient corresponding 14: 2386:is cartesian closed (or a topos). 2146:Birkhoff's representation theorem 18:Abstract mathematics relationship 1910:{\displaystyle \mathbb {R} ^{n}} 1665:{\displaystyle \mathbf {I} _{C}} 1652: 1616:{\displaystyle \mathbf {I} _{C}} 1603: 648:{\displaystyle G:D\rightarrow C} 616:{\displaystyle F:C\rightarrow D} 25: 2564:Mac Lane (1998), Theorem IV.4.1 148:Formally, given two categories 2360:, we see that the equivalence 1834:{\displaystyle G\colon D\to C} 1825: 1748: 1740: 1452: 1052: 1006: 639: 607: 553:weak equivalence of categories 504:essentially surjective (dense) 1: 2352:among others. Applying it to 1940:One of the central themes of 339:Alternative characterizations 2007:the category of commutative 1976:, the scheme defined by the 1809:are equivalent: The functor 1495:be the identity morphism on 2617:Encyclopedia of Mathematics 2612:"Equivalence of categories" 2503:. The auto-equivalences of 2324:if and only if the functor 1296:equivalent to the category 434:, i.e. for any two objects 362:, i.e. for any two objects 2690: 2437:are naturally isomorphic. 1980:of the ring. Its adjoint 1683:and point-preserving maps. 1540:{\displaystyle f\circ f=1} 1272:By contrast, the category 95:is a relation between two 2672:Equivalence (mathematics) 2599:equivalence of categories 2376:cartesian closed category 2340:. This can be applied to 1675:The category of sets and 976:{\displaystyle 1_{d_{2}}} 942:{\displaystyle 1_{d_{1}}} 753:{\displaystyle F\dashv G} 716:{\displaystyle F\dashv G} 584:{\displaystyle F\dashv G} 158:equivalence of categories 134:isomorphism of categories 93:equivalence of categories 2576:Categorical Perspectives 659:is the right adjoint of 2336:has limit (or colimit) 2075:representation theorems 794:having a single object 731:are full and faithful. 623:is the left adjoint of 87:, a branch of abstract 55:more precise citations. 2134: 2110: 2064:Gelfand representation 2052: 2032: 1994: 1966: 1931: 1911: 1882: 1862: 1841:which maps the object 1835: 1803: 1783: 1755: 1700: 1686:Consider the category 1666: 1637: 1617: 1588: 1561: 1541: 1509: 1489: 1462: 1417: 1397: 1374: 1354: 1330: 1310: 1286: 1263: 1236: 1216: 1196: 1176: 1149: 1129: 1109: 1089: 1069: 1023: 977: 943: 909: 882: 855: 835: 814:and a single morphism 808: 788: 774:Consider the category 754: 734:When adjoint functors 717: 649: 617: 585: 160:consists of a functor 2135: 2111: 2053: 2033: 1995: 1967: 1932: 1912: 1883: 1863: 1861:{\displaystyle A_{n}} 1836: 1804: 1784: 1756: 1701: 1667: 1638: 1618: 1589: 1587:{\displaystyle 1_{c}} 1562: 1542: 1510: 1490: 1488:{\displaystyle 1_{c}} 1463: 1418: 1398: 1375: 1355: 1331: 1311: 1287: 1264: 1262:{\displaystyle 1_{c}} 1242:and all morphisms to 1237: 1217: 1197: 1177: 1175:{\displaystyle d_{1}} 1150: 1130: 1110: 1090: 1070: 1024: 983:and two isomorphisms 978: 944: 910: 908:{\displaystyle d_{2}} 883: 881:{\displaystyle d_{1}} 856: 836: 834:{\displaystyle 1_{c}} 809: 789: 755: 718: 650: 618: 586: 298:duality of categories 109:duality of categories 2458:preadditive category 2419:are two inverses of 2124: 2100: 2042: 2022: 1984: 1956: 1948:and the category of 1921: 1917:and the matrices in 1892: 1888:to the vector space 1872: 1845: 1813: 1793: 1773: 1720: 1690: 1647: 1627: 1598: 1571: 1551: 1519: 1499: 1472: 1427: 1423:, and two morphisms 1407: 1387: 1383:Consider a category 1364: 1344: 1320: 1300: 1276: 1246: 1226: 1206: 1202:map both objects of 1186: 1159: 1139: 1119: 1099: 1079: 1033: 987: 953: 919: 892: 865: 845: 818: 798: 778: 738: 701: 627: 595: 591:, where we say that 569: 129:naturally isomorphic 2005:functional analysis 1767:additive categories 1716:, and the category 841:, and the category 506:, i.e. each object 2630:Mac Lane, Saunders 2523:may form a proper 2515:. (One caveat: if 2491:is an equivalence 2293:), if and only if 2277:the morphism Ī± in 2188:is equivalent to ( 2153:pointless topology 2130: 2106: 2079:topological spaces 2048: 2028: 1990: 1962: 1942:algebraic geometry 1927: 1907: 1878: 1858: 1831: 1799: 1779: 1751: 1696: 1662: 1633: 1613: 1584: 1557: 1537: 1505: 1485: 1458: 1413: 1393: 1370: 1350: 1326: 1306: 1282: 1259: 1232: 1212: 1192: 1172: 1145: 1125: 1105: 1085: 1075:. The categories 1065: 1019: 973: 939: 905: 878: 851: 831: 804: 784: 750: 713: 645: 613: 581: 105:opposite (or dual) 2585:978-0-8176-4186-3 2462:additive category 2382:) if and only if 2133:{\displaystyle B} 2109:{\displaystyle B} 2051:{\displaystyle X} 2031:{\displaystyle X} 1993:{\displaystyle F} 1965:{\displaystyle G} 1950:commutative rings 1930:{\displaystyle D} 1881:{\displaystyle D} 1802:{\displaystyle D} 1782:{\displaystyle C} 1699:{\displaystyle C} 1677:partial functions 1636:{\displaystyle f} 1560:{\displaystyle C} 1508:{\displaystyle c} 1416:{\displaystyle c} 1396:{\displaystyle C} 1373:{\displaystyle E} 1353:{\displaystyle C} 1329:{\displaystyle E} 1309:{\displaystyle E} 1285:{\displaystyle C} 1235:{\displaystyle c} 1215:{\displaystyle D} 1195:{\displaystyle G} 1148:{\displaystyle c} 1128:{\displaystyle F} 1108:{\displaystyle D} 1088:{\displaystyle C} 861:with two objects 854:{\displaystyle D} 807:{\displaystyle c} 787:{\displaystyle C} 697:) if and only if 317:dually equivalent 278:identity functors 113:dually equivalent 81: 80: 73: 2679: 2662:Adjoint functors 2647: 2625: 2590: 2589: 2571: 2565: 2562: 2485:auto-equivalence 2478:additive functor 2466:abelian category 2171:product category 2139: 2137: 2136: 2131: 2115: 2113: 2112: 2107: 2057: 2055: 2054: 2049: 2037: 2035: 2034: 2029: 2016:Hausdorff spaces 1999: 1997: 1996: 1991: 1971: 1969: 1968: 1963: 1936: 1934: 1933: 1928: 1916: 1914: 1913: 1908: 1906: 1905: 1900: 1887: 1885: 1884: 1879: 1867: 1865: 1864: 1859: 1857: 1856: 1840: 1838: 1837: 1832: 1808: 1806: 1805: 1800: 1788: 1786: 1785: 1780: 1760: 1758: 1757: 1752: 1747: 1739: 1705: 1703: 1702: 1697: 1671: 1669: 1668: 1663: 1661: 1660: 1655: 1642: 1640: 1639: 1634: 1622: 1620: 1619: 1614: 1612: 1611: 1606: 1593: 1591: 1590: 1585: 1583: 1582: 1566: 1564: 1563: 1558: 1546: 1544: 1543: 1538: 1514: 1512: 1511: 1506: 1494: 1492: 1491: 1486: 1484: 1483: 1467: 1465: 1464: 1459: 1439: 1438: 1422: 1420: 1419: 1414: 1403:with one object 1402: 1400: 1399: 1394: 1379: 1377: 1376: 1371: 1359: 1357: 1356: 1351: 1335: 1333: 1332: 1327: 1315: 1313: 1312: 1307: 1291: 1289: 1288: 1283: 1268: 1266: 1265: 1260: 1258: 1257: 1241: 1239: 1238: 1233: 1221: 1219: 1218: 1213: 1201: 1199: 1198: 1193: 1181: 1179: 1178: 1173: 1171: 1170: 1154: 1152: 1151: 1146: 1134: 1132: 1131: 1126: 1114: 1112: 1111: 1106: 1094: 1092: 1091: 1086: 1074: 1072: 1071: 1066: 1064: 1063: 1051: 1050: 1028: 1026: 1025: 1020: 1018: 1017: 1005: 1004: 982: 980: 979: 974: 972: 971: 970: 969: 948: 946: 945: 940: 938: 937: 936: 935: 914: 912: 911: 906: 904: 903: 887: 885: 884: 879: 877: 876: 860: 858: 857: 852: 840: 838: 837: 832: 830: 829: 813: 811: 810: 805: 793: 791: 790: 785: 759: 757: 756: 751: 722: 720: 719: 714: 654: 652: 651: 646: 622: 620: 619: 614: 590: 588: 587: 582: 564:adjoint functors 76: 69: 65: 62: 56: 51:this article by 42:inline citations 29: 28: 21: 2689: 2688: 2682: 2681: 2680: 2678: 2677: 2676: 2667:Category theory 2652: 2651: 2650: 2644: 2628: 2610: 2594: 2593: 2586: 2573: 2572: 2568: 2563: 2559: 2554: 2537: 2436: 2429: 2418: 2411: 2265:terminal object 2246:terminal object 2214: 2122: 2121: 2098: 2097: 2095:Boolean algebra 2062:. This is the 2040: 2039: 2020: 2019: 1982: 1981: 1954: 1953: 1952:. The functor 1919: 1918: 1895: 1890: 1889: 1870: 1869: 1848: 1843: 1842: 1811: 1810: 1791: 1790: 1771: 1770: 1718: 1717: 1688: 1687: 1650: 1645: 1644: 1625: 1624: 1601: 1596: 1595: 1574: 1569: 1568: 1549: 1548: 1517: 1516: 1497: 1496: 1475: 1470: 1469: 1430: 1425: 1424: 1405: 1404: 1385: 1384: 1362: 1361: 1342: 1341: 1318: 1317: 1298: 1297: 1274: 1273: 1249: 1244: 1243: 1224: 1223: 1204: 1203: 1184: 1183: 1162: 1157: 1156: 1137: 1136: 1117: 1116: 1097: 1096: 1077: 1076: 1055: 1042: 1031: 1030: 1009: 996: 985: 984: 961: 956: 951: 950: 927: 922: 917: 916: 895: 890: 889: 868: 863: 862: 843: 842: 821: 816: 815: 796: 795: 776: 775: 771: 736: 735: 699: 698: 692: 683: 655:, or likewise, 625: 624: 593: 592: 567: 566: 557:homotopy theory 548:axiom of choice 491: 484: 477: 471: 464: 457: 447: 440: 419: 412: 405: 399: 392: 385: 375: 368: 341: 267: 250: 205: 196: 146: 85:category theory 77: 66: 60: 57: 47:Please help to 46: 30: 26: 19: 12: 11: 5: 2687: 2686: 2683: 2675: 2674: 2669: 2664: 2654: 2653: 2649: 2648: 2642: 2626: 2608: 2595: 2592: 2591: 2584: 2566: 2556: 2555: 2553: 2550: 2549: 2548: 2543: 2536: 2533: 2527:rather than a 2487:of a category 2434: 2427: 2416: 2409: 2388: 2387: 2369: 2302: 2275: 2261:initial object 2254:if and only if 2242:initial object 2213: 2210: 2209: 2208: 2201: 2156: 2149: 2129: 2105: 2071:lattice theory 2067: 2060:maximal ideals 2047: 2027: 2001: 1989: 1961: 1946:affine schemes 1938: 1926: 1904: 1899: 1877: 1855: 1851: 1830: 1827: 1824: 1821: 1818: 1798: 1778: 1750: 1746: 1742: 1738: 1735: 1732: 1728: 1725: 1695: 1684: 1673: 1659: 1654: 1632: 1610: 1605: 1581: 1577: 1556: 1547:. Of course, 1536: 1533: 1530: 1527: 1524: 1504: 1482: 1478: 1457: 1454: 1451: 1448: 1445: 1442: 1437: 1433: 1412: 1392: 1381: 1369: 1349: 1325: 1305: 1281: 1270: 1256: 1252: 1231: 1211: 1191: 1169: 1165: 1144: 1124: 1104: 1084: 1062: 1058: 1054: 1049: 1045: 1041: 1038: 1016: 1012: 1008: 1003: 999: 995: 992: 968: 964: 959: 934: 930: 925: 902: 898: 875: 871: 850: 828: 824: 803: 783: 770: 767: 749: 746: 743: 712: 709: 706: 688: 679: 644: 641: 638: 635: 632: 612: 609: 606: 603: 600: 580: 577: 574: 528: 527: 501: 489: 482: 473: 469: 462: 453: 445: 438: 429: 417: 410: 401: 397: 390: 381: 373: 366: 340: 337: 315:(respectively 263: 246: 201: 192: 145: 142: 79: 78: 33: 31: 24: 17: 13: 10: 9: 6: 4: 3: 2: 2685: 2684: 2673: 2670: 2668: 2665: 2663: 2660: 2659: 2657: 2645: 2643:0-387-98403-8 2639: 2635: 2631: 2627: 2623: 2619: 2618: 2613: 2609: 2607: 2605: 2600: 2597: 2596: 2587: 2581: 2577: 2570: 2567: 2561: 2558: 2551: 2547: 2544: 2542: 2539: 2538: 2534: 2532: 2530: 2526: 2522: 2518: 2514: 2510: 2506: 2502: 2498: 2494: 2490: 2486: 2481: 2479: 2475: 2471: 2467: 2463: 2459: 2455: 2451: 2447: 2443: 2438: 2433: 2426: 2422: 2415: 2408: 2404: 2400: 2396: 2391: 2385: 2381: 2377: 2373: 2370: 2367: 2366:exact functor 2363: 2359: 2355: 2351: 2347: 2343: 2339: 2335: 2331: 2327: 2323: 2320:(or colimit) 2319: 2315: 2311: 2307: 2303: 2300: 2296: 2292: 2288: 2284: 2280: 2276: 2274: 2270: 2266: 2262: 2258: 2255: 2251: 2247: 2243: 2239: 2235: 2231: 2230: 2229: 2227: 2223: 2219: 2211: 2206: 2202: 2199: 2195: 2191: 2187: 2183: 2179: 2175: 2172: 2168: 2164: 2161: 2157: 2154: 2150: 2147: 2143: 2127: 2119: 2103: 2096: 2092: 2091: 2090:Stone duality 2086: 2085: 2080: 2076: 2072: 2068: 2065: 2061: 2045: 2025: 2017: 2014: 2010: 2006: 2002: 1987: 1979: 1975: 1959: 1951: 1947: 1943: 1939: 1924: 1902: 1875: 1853: 1849: 1828: 1822: 1819: 1816: 1796: 1776: 1768: 1764: 1726: 1723: 1715: 1714:vector spaces 1712: 1709: 1693: 1685: 1682: 1678: 1674: 1657: 1630: 1608: 1579: 1575: 1554: 1534: 1531: 1528: 1525: 1522: 1502: 1480: 1476: 1455: 1449: 1446: 1443: 1440: 1435: 1431: 1410: 1390: 1382: 1367: 1347: 1339: 1323: 1303: 1295: 1279: 1271: 1254: 1250: 1229: 1209: 1189: 1167: 1163: 1142: 1122: 1102: 1082: 1060: 1056: 1047: 1043: 1039: 1036: 1014: 1010: 1001: 997: 993: 990: 966: 962: 957: 932: 928: 923: 900: 896: 873: 869: 848: 826: 822: 801: 781: 773: 772: 768: 766: 764: 747: 744: 741: 732: 730: 726: 710: 707: 704: 696: 691: 687: 682: 678: 674: 670: 666: 662: 658: 642: 636: 633: 630: 610: 604: 601: 598: 578: 575: 572: 565: 560: 558: 554: 549: 545: 541: 537: 533: 525: 521: 517: 513: 509: 505: 502: 499: 495: 492:) induced by 488: 481: 476: 468: 461: 456: 452:, the map Hom 451: 444: 437: 433: 430: 427: 423: 420:) induced by 416: 409: 404: 396: 389: 384: 380:, the map Hom 379: 372: 365: 361: 358: 357: 356: 354: 350: 346: 338: 336: 334: 330: 326: 322: 318: 314: 310: 306: 301: 299: 295: 291: 287: 283: 279: 275: 271: 266: 262: 258: 254: 249: 245: 241: 237: 233: 229: 225: 221: 217: 213: 209: 204: 200: 197:and Ī· : 195: 191: 187: 183: 179: 175: 171: 167: 163: 159: 155: 151: 143: 141: 139: 135: 131: 130: 125: 121: 116: 114: 110: 106: 101: 98: 94: 90: 86: 75: 72: 64: 54: 50: 44: 43: 37: 32: 23: 22: 16: 2633: 2615: 2603: 2575: 2569: 2560: 2520: 2516: 2512: 2504: 2500: 2496: 2492: 2488: 2484: 2482: 2473: 2469: 2453: 2449: 2445: 2441: 2439: 2431: 2424: 2420: 2413: 2406: 2402: 2398: 2394: 2392: 2389: 2383: 2371: 2361: 2337: 2333: 2329: 2325: 2321: 2313: 2309: 2305: 2304:the functor 2298: 2294: 2283:monomorphism 2278: 2272: 2256: 2237: 2233: 2225: 2221: 2217: 2215: 2197: 2193: 2189: 2185: 2181: 2177: 2173: 2166: 2162: 2142:Stone spaces 2118:ultrafilters 2088: 2082: 1978:prime ideals 1761:of all real 1681:pointed sets 1337: 1293: 762: 733: 728: 724: 694: 689: 685: 680: 676: 672: 668: 664: 660: 656: 561: 552: 543: 539: 535: 531: 529: 523: 519: 515: 511: 507: 493: 486: 479: 474: 466: 459: 454: 449: 442: 435: 421: 414: 407: 402: 394: 387: 382: 377: 370: 363: 352: 348: 344: 342: 332: 328: 324: 320: 316: 312: 308: 304: 302: 297: 293: 289: 285: 281: 277: 273: 269: 264: 260: 256: 252: 247: 243: 239: 235: 231: 227: 223: 219: 215: 211: 207: 202: 198: 193: 189: 185: 181: 177: 173: 172:, a functor 169: 165: 161: 157: 153: 149: 147: 137: 127: 124:isomorphisms 117: 112: 108: 102: 92: 82: 67: 58: 39: 15: 2476:becomes an 2291:isomorphism 2287:epimorphism 2269:zero object 2250:zero object 2232:the object 2009:C*-algebras 1708:dimensional 276:denote the 138:equivalence 89:mathematics 53:introducing 2656:Categories 2552:References 2546:Anafunctor 2350:coproducts 2342:equalizers 2212:Properties 1706:of finite- 426:surjective 343:A functor 313:equivalent 144:Definition 97:categories 36:references 2622:EMS Press 2358:cokernels 1826:→ 1820:: 1769:). Then 1526:∘ 1453:→ 1447:: 1053:→ 1040:: 1037:β 1007:→ 994:: 991:α 745:⊣ 723:and both 708:⊣ 640:→ 608:→ 576:⊣ 544:existence 498:injective 300:instead. 140:concept. 61:June 2015 2632:(1998). 2535:See also 2495: : 2468:), then 2444: : 2397: : 2346:products 2328: : 2308: : 2220: : 2205:skeleton 2158:For two 2093:. Each 1974:spectrum 1763:matrices 1515:and set 769:Examples 663:. Then 432:faithful 347: : 176: : 164: : 2624:, 2001 2601:at the 2507:form a 2423:, then 2354:kernels 2013:compact 1468:. Let 472:) ā†’ Hom 400:) ā†’ Hom 210:. Here 120:functor 49:improve 2640:  2582:  2378:(or a 2364:is an 2259:is an 2240:is an 2169:, the 763:counit 518:, for 242:, and 38:, but 2525:class 2509:group 2464:, or 2456:is a 2380:topos 2374:is a 2318:limit 2289:, or 2281:is a 2271:) of 2267:, or 2248:, or 2160:rings 500:; and 156:, an 91:, an 2638:ISBN 2580:ISBN 2460:(or 2430:and 2412:and 2356:and 2348:and 2316:has 2285:(or 2263:(or 2244:(or 2165:and 1789:and 1711:real 1336:are 1182:and 1135:map 1095:and 1029:and 727:and 684:and 667:and 441:and 369:and 360:full 311:are 307:and 292:and 284:and 259:and 238:and 222:and 152:and 2606:Lab 2531:.) 2529:set 2483:An 2440:If 2393:If 2252:), 2236:of 2198:Mod 2186:Mod 2178:Mod 2151:In 2120:of 2069:In 2003:In 1868:of 1360:to 1338:not 1294:not 1222:to 1155:to 693:to 675:to 559:.) 522:in 510:in 496:is 448:of 424:is 376:of 280:on 83:In 2658:: 2620:, 2614:, 2499:ā†’ 2448:ā†’ 2401:ā†’ 2344:, 2338:Fl 2332:ā†’ 2326:FH 2312:ā†’ 2295:FĪ± 2257:Fc 2224:ā†’ 2196:)- 949:, 888:, 695:GF 673:FG 540:GF 538:, 536:FG 516:Fc 487:Fc 480:Fc 415:Fc 408:Fc 351:ā†’ 268:: 251:: 226:: 224:GF 214:: 212:FG 208:GF 186:FG 180:ā†’ 168:ā†’ 115:. 2646:. 2604:n 2588:. 2521:C 2517:C 2513:C 2505:C 2501:C 2497:C 2493:F 2489:C 2474:F 2470:D 2454:C 2450:D 2446:C 2442:F 2435:2 2432:G 2428:1 2425:G 2421:F 2417:2 2414:G 2410:1 2407:G 2403:D 2399:C 2395:F 2384:D 2372:C 2368:. 2362:F 2334:D 2330:I 2322:l 2314:C 2310:I 2306:H 2301:. 2299:D 2279:C 2273:D 2238:C 2234:c 2226:D 2222:C 2218:F 2207:. 2200:. 2194:S 2192:Ɨ 2190:R 2184:- 2182:S 2180:Ɨ 2176:- 2174:R 2167:S 2163:R 2128:B 2104:B 2066:. 2046:X 2026:X 1988:F 1960:G 1925:D 1903:n 1898:R 1876:D 1854:n 1850:A 1829:C 1823:D 1817:G 1797:D 1777:C 1749:) 1745:R 1741:( 1737:t 1734:a 1731:M 1727:= 1724:D 1694:C 1658:C 1653:I 1631:f 1609:C 1604:I 1580:c 1576:1 1555:C 1535:1 1532:= 1529:f 1523:f 1503:c 1481:c 1477:1 1456:c 1450:c 1444:f 1441:, 1436:c 1432:1 1411:c 1391:C 1368:E 1348:C 1324:E 1304:E 1280:C 1269:. 1255:c 1251:1 1230:c 1210:D 1190:G 1168:1 1164:d 1143:c 1123:F 1103:D 1083:C 1061:1 1057:d 1048:2 1044:d 1015:2 1011:d 1002:1 998:d 967:2 963:d 958:1 933:1 929:d 924:1 901:2 897:d 874:1 870:d 849:D 827:c 823:1 802:c 782:C 748:G 742:F 729:G 725:F 711:G 705:F 690:C 686:I 681:D 677:I 669:D 665:C 661:F 657:G 643:C 637:D 634:: 631:G 611:D 605:C 602:: 599:F 579:G 573:F 532:G 526:. 524:C 520:c 512:D 508:d 494:F 490:2 485:, 483:1 478:( 475:D 470:2 467:c 465:, 463:1 460:c 458:( 455:C 450:C 446:2 443:c 439:1 436:c 428:; 422:F 418:2 413:, 411:1 406:( 403:D 398:2 395:c 393:, 391:1 388:c 386:( 383:C 378:C 374:2 371:c 367:1 364:c 353:D 349:C 345:F 333:G 329:F 325:G 321:F 309:D 305:C 294:G 290:F 286:D 282:C 274:D 272:ā†’ 270:D 265:D 261:I 257:C 255:ā†’ 253:C 248:C 244:I 240:G 236:F 232:C 230:ā†’ 228:C 220:D 218:ā†’ 216:D 206:ā†’ 203:C 199:I 194:D 190:I 188:ā†’ 182:C 178:D 174:G 170:D 166:C 162:F 154:D 150:C 74:) 68:( 63:) 59:( 45:.

Index

references
inline citations
improve
introducing
Learn how and when to remove this message
category theory
mathematics
categories
opposite (or dual)
functor
isomorphisms
naturally isomorphic
isomorphism of categories
full
surjective
faithful
injective
essentially surjective (dense)
axiom of choice
homotopy theory
adjoint functors
partial functions
pointed sets
dimensional
real
vector spaces
matrices
additive categories
algebraic geometry
affine schemes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘