Knowledge (XXG)

Erdős–Woods number

Source 📝

2934: 687:
that the prime-partitionable numbers appeared to be the same as the Erdős–Woods numbers, and this was proven in the same year by Christopher Hunt Gribble. The same equivalence was also shown by Hasler and Mathar in 2015, together with an equivalence between two definitions of the prime-partitionable
629:
implied that such an element exists for every interval of at most 16 integers; thus, no Erdős–Woods number can be less than 16. In his 1981 thesis, Alan R. Woods independently conjectured that whenever
1036: 852: 718: 684: 350: 334: 683:, and they used a computer search to find several odd prime-partitionable numbers, including 15395 and 397197. In 2014, M. F. Hasler observed on the 1029: 972:
Hasler, Maximilian F.; Mathar, Richard J. (27 October 2015). "Corrigendum to "Paths and circuits in finite groups", Discr. Math. 22 (1978) 263".
817: 887: 1836: 1022: 622: 1831: 1846: 1826: 2539: 2119: 1841: 738: 2625: 883:"On the amplitude of intervals of natural numbers whose every element has a common prime divisor with at least an extremity" 1941: 667:
Meanwhile, the prime-partitionable numbers had been defined by Holsztyński and Strube in 1978, following which Erdős and
2291: 1610: 1403: 621:
considered intervals of integers containing an element coprime to both endpoints. They observed that earlier results of
2326: 2296: 1971: 1961: 2467: 1881: 1615: 1595: 676: 2157: 2321: 2963: 2416: 2039: 1796: 1605: 1587: 1481: 1471: 1461: 2544: 2089: 1710: 1496: 1491: 1486: 1476: 1453: 671:
proved in 1978 that they form an infinite sequence. Erdős and Trotter applied these results to generate pairs of
1529: 1786: 2655: 2620: 2406: 2316: 2190: 2165: 2074: 2064: 1676: 1658: 1578: 932: 86: 2958: 2915: 2185: 2059: 1690: 1466: 1246: 1173: 2170: 2024: 1951: 1106: 2879: 2519: 794:
Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971)
2812: 2706: 2670: 2411: 2134: 2114: 1931: 1600: 1388: 1360: 2534: 2398: 2393: 2361: 2124: 2099: 2094: 2069: 1999: 1995: 1926: 1816: 1648: 1444: 1413: 2933: 826: 2937: 2691: 2686: 2600: 2574: 2472: 2451: 2223: 2104: 2054: 1976: 1946: 1886: 1653: 1633: 1564: 1277: 973: 916: 668: 343:
903, 2545, 4533, 5067, 8759, 9071, 9269, 10353, 11035, 11625, 11865, 13629, 15395, ... (sequence
340:
Although all of these initial numbers are even, odd Erdős–Woods numbers also exist. They include
1821: 2831: 2776: 2630: 2605: 2579: 2356: 2034: 2029: 1956: 1936: 1921: 1643: 1625: 1544: 1534: 1519: 1297: 1282: 680: 657: 2867: 2660: 2246: 2218: 2208: 2200: 2084: 2049: 2044: 2011: 1705: 1668: 1559: 1554: 1549: 1539: 1511: 1398: 1350: 1345: 1302: 1241: 941: 896: 861: 747: 24: 953: 801: 759: 2843: 2732: 2665: 2591: 2514: 2488: 2306: 2019: 1876: 1811: 1781: 1771: 1766: 1432: 1340: 1287: 1131: 1071: 949: 797: 755: 626: 2848: 2716: 2701: 2565: 2529: 2504: 2380: 2351: 2336: 2213: 2109: 2079: 1806: 1761: 1638: 1236: 1231: 1226: 1198: 1183: 1096: 1081: 1059: 1046: 782: 672: 618: 901: 882: 2952: 2771: 2755: 2696: 2650: 2346: 2331: 2241: 1966: 1524: 1393: 1355: 1312: 1193: 1178: 1168: 1126: 1116: 1091: 920: 778: 751: 661: 614: 62: 20: 641:
to both endpoints. It was only later that he found the first counterexample, , with
2807: 2796: 2711: 2549: 2524: 2441: 2341: 2311: 2286: 2270: 2175: 2142: 1891: 1865: 1776: 1715: 1292: 1188: 1121: 1101: 1076: 362: 361:
The Erdős–Woods numbers can be characterized in terms of certain partitions of the
324: 320: 316: 144: 736:
Holsztyński, W.; Strube, R. F. E. (1978). "Paths and circuits in finite groups".
2766: 2641: 2446: 1910: 1801: 1756: 1751: 1501: 1408: 1307: 1136: 1111: 1086: 1008: 708: 308: 304: 300: 296: 292: 288: 284: 280: 276: 272: 268: 264: 260: 256: 252: 248: 136: 648:. The existence of this counterexample shows that 16 is an Erdős–Woods number. 2903: 2884: 2180: 1791: 1004: 866: 847: 1014: 2509: 2436: 2428: 2233: 2147: 1265: 1000:
sequence A059757 (Initial terms of smallest Erdos-Woods intervals)
924: 786: 945: 2610: 39: 2615: 2274: 638: 369:
is an Erdős–Woods number if and only if the prime numbers less than
978: 34:
if it has the following property: there exists a positive integer
996: 381:
with the following property: for every pair of positive integers
139:
is an Erdős–Woods number because the 15 numbers between 2184 and
61:
of consecutive integers, each of the elements has a non-trivial
2901: 2865: 2829: 2793: 2753: 2378: 2267: 1993: 1908: 1863: 1740: 1430: 1377: 1329: 1263: 1215: 1153: 1057: 1018: 819:
Some problems in logic and number theory, and their connections
652:
proved that there are infinitely many Erdős–Woods numbers, and
925:"When the Cartesian product of directed cycles is Hamiltonian" 881:
Cégielski, Patrick; Heroult, François; Richard, Denis (2003).
312: 958:
See correction to the list of prime-partitionable numbers in
848:"On the existence of sequences of co-prime pairs of integers" 796:. Winnipeg, Manitoba: University of Manitoba. pp. 1–14. 764:
See correction to the list of prime-partitionable numbers in
69:
is an Erdős–Woods number if there exists a positive integer
999: 825:(PhD). University of Manchester. p. 88. Archived from 712: 345: 329: 653: 155:
These 15 numbers and their shared prime factor(s) are:
2725: 2679: 2639: 2590: 2564: 2497: 2481: 2460: 2427: 2392: 2232: 2199: 2156: 2133: 2010: 1698: 1689: 1667: 1624: 1586: 1577: 1510: 1452: 1443: 688:numbers from the two earlier works on the subject. 419:. For this reason, these numbers are also called 787:"Complete prime subsets of consecutive integers" 853:Journal of the Australian Mathematical Society 1030: 426:For instance, 16 is prime-partitionable with 8: 959: 765: 65:with one of the endpoints. In other words, 2898: 2862: 2826: 2790: 2750: 2424: 2389: 2375: 2264: 2007: 1990: 1905: 1860: 1737: 1695: 1583: 1449: 1440: 1427: 1374: 1331:Possessing a specific set of other numbers 1326: 1260: 1212: 1150: 1054: 1037: 1023: 1015: 977: 900: 865: 719:On-Line Encyclopedia of Integer Sequences 685:On-Line Encyclopedia of Integer Sequences 637:, the interval always includes a number 461: 158: 697: 654:Cégielski, Heroult & Richard (2003) 841: 839: 703: 701: 7: 731: 729: 649: 450:and corresponding prime divisors in 373:can be partitioned into two subsets 149:2184 = 2 · 3 · 7 · 13 245:The first Erdős–Woods numbers are 14: 2932: 2540:Perfect digit-to-digit invariant 440:}. The representations of 16 as 1: 1379:Expressible via specific sums 902:10.1016/S0304-3975(02)00444-9 888:Theoretical Computer Science 752:10.1016/0012-365X(78)90059-6 153:2200 = 2 · 5 · 11. 2468:Multiplicative digital root 677:Cartesian product of graphs 421:prime-partitionable numbers 415:is divisible by a prime in 407:is divisible by a prime in 73:such that for each integer 2980: 960:Hasler & Mathar (2015) 766:Hasler & Mathar (2015) 709:Sloane, N. J. A. 660:of Erdős–Woods numbers is 2928: 2911: 2897: 2875: 2861: 2839: 2825: 2803: 2789: 2762: 2749: 2545:Perfect digital invariant 2388: 2374: 2282: 2263: 2120:Superior highly composite 2006: 1989: 1917: 1904: 1872: 1859: 1747: 1736: 1439: 1426: 1384: 1373: 1336: 1325: 1273: 1259: 1222: 1211: 1164: 1149: 1067: 1053: 867:10.1017/S1446788700031220 2158:Euler's totient function 1942:Euler–Jacobi pseudoprime 1217:Other polynomial numbers 87:greatest common divisors 16:Type of positive integer 1972:Somer–Lucas pseudoprime 1962:Lucas–Carmichael number 1797:Lazy caterer's sequence 933:Journal of Graph Theory 917:Trotter, William T. Jr. 846:Dowe, David L. (1989). 816:Woods, Alan R. (1981). 713:"Sequence A059756" 1847:Wedderburn–Etherington 1247:Lucky numbers of Euler 946:10.1002/jgt.3190020206 85:, at least one of the 2135:Prime omega functions 1952:Frobenius pseudoprime 1742:Combinatorial numbers 1611:Centered dodecahedral 1404:Primary pseudoperfect 2594:-composition related 2394:Arithmetic functions 1996:Arithmetic functions 1932:Elliptic pseudoprime 1616:Centered icosahedral 1596:Centered tetrahedral 739:Discrete Mathematics 2520:Kaprekar's constant 2040:Colossally abundant 1927:Catalan pseudoprime 1827:Schröder–Hipparchus 1606:Centered octahedral 1482:Centered heptagonal 1472:Centered pentagonal 1462:Centered triangular 1062:and related numbers 1005:Erdős-Woods numbers 679:does not contain a 2938:Mathematics portal 2880:Aronson's sequence 2626:Smarandache–Wellin 2383:-dependent numbers 2090:Primitive abundant 1977:Strong pseudoprime 1967:Perrin pseudoprime 1947:Fermat pseudoprime 1887:Wolstenholme prime 1711:Squared triangular 1497:Centered decagonal 1492:Centered nonagonal 1487:Centered octagonal 1477:Centered hexagonal 722:. OEIS Foundation. 669:William T. Trotter 32:Erdős–Woods number 2964:Integer sequences 2946: 2945: 2924: 2923: 2893: 2892: 2857: 2856: 2821: 2820: 2785: 2784: 2745: 2744: 2741: 2740: 2560: 2559: 2370: 2369: 2259: 2258: 2255: 2254: 2201:Aliquot sequences 2012:Divisor functions 1985: 1984: 1957:Lucas pseudoprime 1937:Euler pseudoprime 1922:Carmichael number 1900: 1899: 1855: 1854: 1732: 1731: 1728: 1727: 1724: 1723: 1685: 1684: 1573: 1572: 1530:Square triangular 1422: 1421: 1369: 1368: 1321: 1320: 1255: 1254: 1207: 1206: 1145: 1144: 681:Hamiltonian cycle 635: > 1 613:In a 1971 paper, 605: 604: 242: 241: 38:such that in the 30:is said to be an 2971: 2936: 2899: 2868:Natural language 2863: 2827: 2795:Generated via a 2791: 2751: 2656:Digit-reassembly 2621:Self-descriptive 2425: 2390: 2376: 2327:Lucas–Carmichael 2317:Harmonic divisor 2265: 2191:Sparsely totient 2166:Highly cototient 2075:Multiply perfect 2065:Highly composite 2008: 1991: 1906: 1861: 1842:Telephone number 1738: 1696: 1677:Square pyramidal 1659:Stella octangula 1584: 1450: 1441: 1433:Figurate numbers 1428: 1375: 1327: 1261: 1213: 1151: 1055: 1039: 1032: 1025: 1016: 998: 984: 983: 981: 969: 963: 957: 929: 913: 907: 906: 904: 878: 872: 871: 869: 843: 834: 833: 831: 824: 813: 807: 805: 791: 783:Selfridge, J. L. 775: 769: 763: 733: 724: 723: 705: 656:showed that the 647: 636: 601: 593: 588: 580: 572: 567: 559: 549: 541: 533: 525: 517: 512: 502: 494: 486: 478: 470: 462: 457: 453: 449: 439: 432: 418: 414: 410: 406: 402: 388: 384: 380: 376: 372: 368: 357:Prime partitions 348: 332: 159: 154: 150: 142: 141:2200 = 2184 + 16 127: 124:is greater than 123: 103: 84: 80: 76: 72: 68: 60: 37: 29: 25:positive integer 2979: 2978: 2974: 2973: 2972: 2970: 2969: 2968: 2949: 2948: 2947: 2942: 2920: 2916:Strobogrammatic 2907: 2889: 2871: 2853: 2835: 2817: 2799: 2781: 2758: 2737: 2721: 2680:Divisor-related 2675: 2635: 2586: 2556: 2493: 2477: 2456: 2423: 2396: 2384: 2366: 2278: 2277:related numbers 2251: 2228: 2195: 2186:Perfect totient 2152: 2129: 2060:Highly abundant 2002: 1981: 1913: 1896: 1868: 1851: 1837:Stirling second 1743: 1720: 1681: 1663: 1620: 1569: 1506: 1467:Centered square 1435: 1418: 1380: 1365: 1332: 1317: 1269: 1268:defined numbers 1251: 1218: 1203: 1174:Double Mersenne 1160: 1141: 1063: 1049: 1047:natural numbers 1043: 1011:, June 30, 2024 993: 988: 987: 971: 970: 966: 927: 915: 914: 910: 880: 879: 875: 845: 844: 837: 829: 822: 815: 814: 810: 789: 777: 776: 772: 735: 734: 727: 707: 706: 699: 694: 673:directed cycles 646: = 16 642: 631: 627:George Szekeres 611: 606: 599: 597: 591: 589: 586: 584: 578: 576: 570: 568: 565: 563: 557: 555: 547: 545: 539: 537: 531: 529: 523: 521: 515: 513: 510: 508: 500: 498: 492: 490: 484: 482: 476: 474: 468: 466: 455: 451: 441: 434: 427: 416: 412: 408: 404: 390: 386: 382: 378: 374: 370: 366: 359: 354: 344: 338: 328: 243: 237: 232: 227: 222: 217: 210: 205: 200: 195: 190: 183: 178: 173: 168: 163: 152: 148: 140: 134: 125: 105: 89: 82: 78: 74: 70: 66: 42: 35: 27: 17: 12: 11: 5: 2977: 2975: 2967: 2966: 2961: 2951: 2950: 2944: 2943: 2941: 2940: 2929: 2926: 2925: 2922: 2921: 2919: 2918: 2912: 2909: 2908: 2902: 2895: 2894: 2891: 2890: 2888: 2887: 2882: 2876: 2873: 2872: 2866: 2859: 2858: 2855: 2854: 2852: 2851: 2849:Sorting number 2846: 2844:Pancake number 2840: 2837: 2836: 2830: 2823: 2822: 2819: 2818: 2816: 2815: 2810: 2804: 2801: 2800: 2794: 2787: 2786: 2783: 2782: 2780: 2779: 2774: 2769: 2763: 2760: 2759: 2756:Binary numbers 2754: 2747: 2746: 2743: 2742: 2739: 2738: 2736: 2735: 2729: 2727: 2723: 2722: 2720: 2719: 2714: 2709: 2704: 2699: 2694: 2689: 2683: 2681: 2677: 2676: 2674: 2673: 2668: 2663: 2658: 2653: 2647: 2645: 2637: 2636: 2634: 2633: 2628: 2623: 2618: 2613: 2608: 2603: 2597: 2595: 2588: 2587: 2585: 2584: 2583: 2582: 2571: 2569: 2566:P-adic numbers 2562: 2561: 2558: 2557: 2555: 2554: 2553: 2552: 2542: 2537: 2532: 2527: 2522: 2517: 2512: 2507: 2501: 2499: 2495: 2494: 2492: 2491: 2485: 2483: 2482:Coding-related 2479: 2478: 2476: 2475: 2470: 2464: 2462: 2458: 2457: 2455: 2454: 2449: 2444: 2439: 2433: 2431: 2422: 2421: 2420: 2419: 2417:Multiplicative 2414: 2403: 2401: 2386: 2385: 2381:Numeral system 2379: 2372: 2371: 2368: 2367: 2365: 2364: 2359: 2354: 2349: 2344: 2339: 2334: 2329: 2324: 2319: 2314: 2309: 2304: 2299: 2294: 2289: 2283: 2280: 2279: 2268: 2261: 2260: 2257: 2256: 2253: 2252: 2250: 2249: 2244: 2238: 2236: 2230: 2229: 2227: 2226: 2221: 2216: 2211: 2205: 2203: 2197: 2196: 2194: 2193: 2188: 2183: 2178: 2173: 2171:Highly totient 2168: 2162: 2160: 2154: 2153: 2151: 2150: 2145: 2139: 2137: 2131: 2130: 2128: 2127: 2122: 2117: 2112: 2107: 2102: 2097: 2092: 2087: 2082: 2077: 2072: 2067: 2062: 2057: 2052: 2047: 2042: 2037: 2032: 2027: 2025:Almost perfect 2022: 2016: 2014: 2004: 2003: 1994: 1987: 1986: 1983: 1982: 1980: 1979: 1974: 1969: 1964: 1959: 1954: 1949: 1944: 1939: 1934: 1929: 1924: 1918: 1915: 1914: 1909: 1902: 1901: 1898: 1897: 1895: 1894: 1889: 1884: 1879: 1873: 1870: 1869: 1864: 1857: 1856: 1853: 1852: 1850: 1849: 1844: 1839: 1834: 1832:Stirling first 1829: 1824: 1819: 1814: 1809: 1804: 1799: 1794: 1789: 1784: 1779: 1774: 1769: 1764: 1759: 1754: 1748: 1745: 1744: 1741: 1734: 1733: 1730: 1729: 1726: 1725: 1722: 1721: 1719: 1718: 1713: 1708: 1702: 1700: 1693: 1687: 1686: 1683: 1682: 1680: 1679: 1673: 1671: 1665: 1664: 1662: 1661: 1656: 1651: 1646: 1641: 1636: 1630: 1628: 1622: 1621: 1619: 1618: 1613: 1608: 1603: 1598: 1592: 1590: 1581: 1575: 1574: 1571: 1570: 1568: 1567: 1562: 1557: 1552: 1547: 1542: 1537: 1532: 1527: 1522: 1516: 1514: 1508: 1507: 1505: 1504: 1499: 1494: 1489: 1484: 1479: 1474: 1469: 1464: 1458: 1456: 1447: 1437: 1436: 1431: 1424: 1423: 1420: 1419: 1417: 1416: 1411: 1406: 1401: 1396: 1391: 1385: 1382: 1381: 1378: 1371: 1370: 1367: 1366: 1364: 1363: 1358: 1353: 1348: 1343: 1337: 1334: 1333: 1330: 1323: 1322: 1319: 1318: 1316: 1315: 1310: 1305: 1300: 1295: 1290: 1285: 1280: 1274: 1271: 1270: 1264: 1257: 1256: 1253: 1252: 1250: 1249: 1244: 1239: 1234: 1229: 1223: 1220: 1219: 1216: 1209: 1208: 1205: 1204: 1202: 1201: 1196: 1191: 1186: 1181: 1176: 1171: 1165: 1162: 1161: 1154: 1147: 1146: 1143: 1142: 1140: 1139: 1134: 1129: 1124: 1119: 1114: 1109: 1104: 1099: 1094: 1089: 1084: 1079: 1074: 1068: 1065: 1064: 1058: 1051: 1050: 1044: 1042: 1041: 1034: 1027: 1019: 1013: 1012: 1002: 992: 991:External links 989: 986: 985: 964: 940:(2): 137–142. 908: 873: 835: 832:on 2019-06-08. 808: 770: 746:(3): 263–272. 725: 696: 695: 693: 690: 619:John Selfridge 610: 607: 603: 602: 594: 581: 573: 560: 551: 550: 542: 534: 526: 518: 504: 503: 495: 487: 479: 471: 460: 358: 355: 342: 247: 240: 239: 234: 229: 224: 219: 213: 212: 207: 202: 197: 192: 186: 185: 180: 175: 170: 165: 157: 133: 130: 15: 13: 10: 9: 6: 4: 3: 2: 2976: 2965: 2962: 2960: 2957: 2956: 2954: 2939: 2935: 2931: 2930: 2927: 2917: 2914: 2913: 2910: 2905: 2900: 2896: 2886: 2883: 2881: 2878: 2877: 2874: 2869: 2864: 2860: 2850: 2847: 2845: 2842: 2841: 2838: 2833: 2828: 2824: 2814: 2811: 2809: 2806: 2805: 2802: 2798: 2792: 2788: 2778: 2775: 2773: 2770: 2768: 2765: 2764: 2761: 2757: 2752: 2748: 2734: 2731: 2730: 2728: 2724: 2718: 2715: 2713: 2710: 2708: 2707:Polydivisible 2705: 2703: 2700: 2698: 2695: 2693: 2690: 2688: 2685: 2684: 2682: 2678: 2672: 2669: 2667: 2664: 2662: 2659: 2657: 2654: 2652: 2649: 2648: 2646: 2643: 2638: 2632: 2629: 2627: 2624: 2622: 2619: 2617: 2614: 2612: 2609: 2607: 2604: 2602: 2599: 2598: 2596: 2593: 2589: 2581: 2578: 2577: 2576: 2573: 2572: 2570: 2567: 2563: 2551: 2548: 2547: 2546: 2543: 2541: 2538: 2536: 2533: 2531: 2528: 2526: 2523: 2521: 2518: 2516: 2513: 2511: 2508: 2506: 2503: 2502: 2500: 2496: 2490: 2487: 2486: 2484: 2480: 2474: 2471: 2469: 2466: 2465: 2463: 2461:Digit product 2459: 2453: 2450: 2448: 2445: 2443: 2440: 2438: 2435: 2434: 2432: 2430: 2426: 2418: 2415: 2413: 2410: 2409: 2408: 2405: 2404: 2402: 2400: 2395: 2391: 2387: 2382: 2377: 2373: 2363: 2360: 2358: 2355: 2353: 2350: 2348: 2345: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2303: 2300: 2298: 2297:Erdős–Nicolas 2295: 2293: 2290: 2288: 2285: 2284: 2281: 2276: 2272: 2266: 2262: 2248: 2245: 2243: 2240: 2239: 2237: 2235: 2231: 2225: 2222: 2220: 2217: 2215: 2212: 2210: 2207: 2206: 2204: 2202: 2198: 2192: 2189: 2187: 2184: 2182: 2179: 2177: 2174: 2172: 2169: 2167: 2164: 2163: 2161: 2159: 2155: 2149: 2146: 2144: 2141: 2140: 2138: 2136: 2132: 2126: 2123: 2121: 2118: 2116: 2115:Superabundant 2113: 2111: 2108: 2106: 2103: 2101: 2098: 2096: 2093: 2091: 2088: 2086: 2083: 2081: 2078: 2076: 2073: 2071: 2068: 2066: 2063: 2061: 2058: 2056: 2053: 2051: 2048: 2046: 2043: 2041: 2038: 2036: 2033: 2031: 2028: 2026: 2023: 2021: 2018: 2017: 2015: 2013: 2009: 2005: 2001: 1997: 1992: 1988: 1978: 1975: 1973: 1970: 1968: 1965: 1963: 1960: 1958: 1955: 1953: 1950: 1948: 1945: 1943: 1940: 1938: 1935: 1933: 1930: 1928: 1925: 1923: 1920: 1919: 1916: 1912: 1907: 1903: 1893: 1890: 1888: 1885: 1883: 1880: 1878: 1875: 1874: 1871: 1867: 1862: 1858: 1848: 1845: 1843: 1840: 1838: 1835: 1833: 1830: 1828: 1825: 1823: 1820: 1818: 1815: 1813: 1810: 1808: 1805: 1803: 1800: 1798: 1795: 1793: 1790: 1788: 1785: 1783: 1780: 1778: 1775: 1773: 1770: 1768: 1765: 1763: 1760: 1758: 1755: 1753: 1750: 1749: 1746: 1739: 1735: 1717: 1714: 1712: 1709: 1707: 1704: 1703: 1701: 1697: 1694: 1692: 1691:4-dimensional 1688: 1678: 1675: 1674: 1672: 1670: 1666: 1660: 1657: 1655: 1652: 1650: 1647: 1645: 1642: 1640: 1637: 1635: 1632: 1631: 1629: 1627: 1623: 1617: 1614: 1612: 1609: 1607: 1604: 1602: 1601:Centered cube 1599: 1597: 1594: 1593: 1591: 1589: 1585: 1582: 1580: 1579:3-dimensional 1576: 1566: 1563: 1561: 1558: 1556: 1553: 1551: 1548: 1546: 1543: 1541: 1538: 1536: 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1517: 1515: 1513: 1509: 1503: 1500: 1498: 1495: 1493: 1490: 1488: 1485: 1483: 1480: 1478: 1475: 1473: 1470: 1468: 1465: 1463: 1460: 1459: 1457: 1455: 1451: 1448: 1446: 1445:2-dimensional 1442: 1438: 1434: 1429: 1425: 1415: 1412: 1410: 1407: 1405: 1402: 1400: 1397: 1395: 1392: 1390: 1389:Nonhypotenuse 1387: 1386: 1383: 1376: 1372: 1362: 1359: 1357: 1354: 1352: 1349: 1347: 1344: 1342: 1339: 1338: 1335: 1328: 1324: 1314: 1311: 1309: 1306: 1304: 1301: 1299: 1296: 1294: 1291: 1289: 1286: 1284: 1281: 1279: 1276: 1275: 1272: 1267: 1262: 1258: 1248: 1245: 1243: 1240: 1238: 1235: 1233: 1230: 1228: 1225: 1224: 1221: 1214: 1210: 1200: 1197: 1195: 1192: 1190: 1187: 1185: 1182: 1180: 1177: 1175: 1172: 1170: 1167: 1166: 1163: 1158: 1152: 1148: 1138: 1135: 1133: 1130: 1128: 1127:Perfect power 1125: 1123: 1120: 1118: 1117:Seventh power 1115: 1113: 1110: 1108: 1105: 1103: 1100: 1098: 1095: 1093: 1090: 1088: 1085: 1083: 1080: 1078: 1075: 1073: 1070: 1069: 1066: 1061: 1056: 1052: 1048: 1040: 1035: 1033: 1028: 1026: 1021: 1020: 1017: 1010: 1006: 1003: 1001: 995: 994: 990: 980: 975: 968: 965: 961: 955: 951: 947: 943: 939: 935: 934: 926: 922: 918: 912: 909: 903: 898: 894: 890: 889: 884: 877: 874: 868: 863: 859: 855: 854: 849: 842: 840: 836: 828: 821: 820: 812: 809: 803: 799: 795: 788: 784: 780: 774: 771: 767: 761: 757: 753: 749: 745: 741: 740: 732: 730: 726: 721: 720: 714: 710: 704: 702: 698: 691: 689: 686: 682: 678: 674: 670: 665: 663: 659: 655: 651: 645: 640: 634: 628: 624: 620: 616: 608: 595: 582: 574: 561: 553: 552: 543: 535: 527: 519: 506: 505: 496: 488: 480: 472: 464: 463: 459: 448: 444: 437: 430: 424: 422: 401: 397: 393: 364: 363:prime numbers 356: 352: 347: 341: 336: 331: 326: 322: 318: 314: 310: 306: 302: 298: 294: 290: 286: 282: 278: 274: 270: 266: 262: 258: 254: 250: 246: 235: 230: 225: 220: 215: 214: 208: 203: 198: 193: 188: 187: 181: 176: 171: 166: 161: 160: 156: 146: 143:each share a 138: 131: 129: 121: 117: 113: 109: 101: 97: 93: 88: 64: 63:common factor 58: 54: 50: 46: 41: 33: 26: 22: 21:number theory 2671:Transposable 2535:Narcissistic 2442:Digital root 2362:Super-Poulet 2322:Jordan–Pólya 2301: 2271:prime factor 2176:Noncototient 2143:Almost prime 2125:Superperfect 2100:Refactorable 2095:Quasiperfect 2070:Hyperperfect 1911:Pseudoprimes 1882:Wall–Sun–Sun 1817:Ordered Bell 1787:Fuss–Catalan 1699:non-centered 1649:Dodecahedral 1626:non-centered 1512:non-centered 1414:Wolstenholme 1159:× 2 ± 1 1156: 1155:Of the form 1122:Eighth power 1102:Fourth power 967: 937: 931: 911: 895:(1): 53–62. 892: 886: 876: 857: 851: 827:the original 818: 811: 793: 773: 743: 737: 716: 666: 643: 632: 623:S. S. Pillai 612: 514:2, 5 | 446: 442: 435: 428: 425: 420: 399: 395: 391: 360: 339: 327:… (sequence 244: 147:with one of 145:prime factor 135: 119: 115: 111: 107: 99: 95: 91: 56: 52: 48: 44: 31: 18: 2692:Extravagant 2687:Equidigital 2642:permutation 2601:Palindromic 2575:Automorphic 2473:Sum-product 2452:Sum-product 2407:Persistence 2302:Erdős–Woods 2224:Untouchable 2105:Semiperfect 2055:Hemiperfect 1716:Tesseractic 1654:Icosahedral 1634:Tetrahedral 1565:Dodecagonal 1266:Recursively 1137:Prime power 1112:Sixth power 1107:Fifth power 1087:Power of 10 1045:Classes of 1009:Numberphile 921:Erdős, Paul 650:Dowe (1989) 438:= {2, 5, 11 431:= {3, 7, 13 365:. A number 2959:Paul Erdős 2953:Categories 2904:Graphemics 2777:Pernicious 2631:Undulating 2606:Pandigital 2580:Trimorphic 2181:Nontotient 2030:Arithmetic 1644:Octahedral 1545:Heptagonal 1535:Pentagonal 1520:Triangular 1361:Sierpiński 1283:Jacobsthal 1082:Power of 3 1077:Power of 2 979:1510.07997 806:See p. 10. 692:References 615:Paul Erdős 577:13 | 499:11 | 2661:Parasitic 2510:Factorion 2437:Digit sum 2429:Digit sum 2247:Fortunate 2234:Primorial 2148:Semiprime 2085:Practical 2050:Descartes 2045:Deficient 2035:Betrothed 1877:Wieferich 1706:Pentatope 1669:pyramidal 1560:Decagonal 1555:Nonagonal 1550:Octagonal 1540:Hexagonal 1399:Practical 1346:Congruent 1278:Fibonacci 1242:Loeschian 860:: 84–89. 779:Erdős, P. 662:recursive 598:3 | 590:2 | 585:7 | 569:2 | 564:3 | 556:5 | 546:2 | 538:3 | 530:2 | 522:7 | 509:3 | 491:2 | 483:3 | 475:2 | 467:5 | 403:, either 2733:Friedman 2666:Primeval 2611:Repdigit 2568:-related 2515:Kaprekar 2489:Meertens 2412:Additive 2399:dynamics 2307:Friendly 2219:Sociable 2209:Amicable 2020:Abundant 2000:dynamics 1822:Schröder 1812:Narayana 1782:Eulerian 1772:Delannoy 1767:Dedekind 1588:centered 1454:centered 1341:Amenable 1298:Narayana 1288:Leonardo 1184:Mersenne 1132:Powerful 1072:Achilles 923:(1978). 785:(1971). 132:Examples 77:between 51:+ 1, …, 40:sequence 2906:related 2870:related 2834:related 2832:Sorting 2717:Vampire 2702:Harshad 2644:related 2616:Repunit 2530:Lychrel 2505:Dudeney 2357:Størmer 2352:Sphenic 2337:Regular 2275:divisor 2214:Perfect 2110:Sublime 2080:Perfect 1807:Motzkin 1762:Catalan 1303:Padovan 1237:Leyland 1232:Idoneal 1227:Hilbert 1199:Woodall 954:0493392 802:0337828 760:0522721 711:(ed.). 639:coprime 609:History 349:in the 346:A111042 333:in the 330:A059756 191:2, 3, 5 2772:Odious 2697:Frugal 2651:Cyclic 2640:Digit- 2347:Smooth 2332:Pronic 2292:Cyclic 2269:Other 2242:Euclid 1892:Wilson 1866:Primes 1525:Square 1394:Polite 1356:Riesel 1351:Knödel 1313:Perrin 1194:Thabit 1179:Fermat 1169:Cullen 1092:Square 1060:Powers 952:  800:  758:  675:whose 596:15 + 1 583:14 + 2 575:13 + 3 562:12 + 4 554:11 + 5 544:10 + 6 507:6 + 10 497:5 + 11 489:4 + 12 481:3 + 13 473:2 + 14 465:1 + 15 433:} and 2813:Prime 2808:Lucky 2797:sieve 2726:Other 2712:Smith 2592:Digit 2550:Happy 2525:Keith 2498:Other 2342:Rough 2312:Giuga 1777:Euler 1639:Cubic 1293:Lucas 1189:Proth 974:arXiv 928:(PDF) 830:(PDF) 823:(PDF) 790:(PDF) 536:9 + 7 528:8 + 8 520:7 + 9 458:are: 411:, or 389:with 2767:Evil 2447:Self 2397:and 2287:Blum 1998:and 1802:Lobb 1757:Cake 1752:Bell 1502:Star 1409:Ulam 1308:Pell 1097:Cube 997:OEIS 717:The 625:and 617:and 454:and 385:and 377:and 351:OEIS 335:OEIS 236:2199 233:2, 7 231:2198 226:2197 223:2, 3 221:2196 216:2195 209:2194 204:2193 199:2192 194:2191 189:2190 182:2189 177:2188 172:2187 167:2186 162:2185 151:and 106:gcd( 90:gcd( 81:and 23:, a 2885:Ban 2273:or 1792:Lah 942:doi 897:doi 893:303 862:doi 748:doi 658:set 325:116 321:112 317:106 313:100 104:or 19:In 2955:: 1007:, 950:MR 948:. 936:. 930:. 919:; 891:. 885:. 858:47 856:. 850:. 838:^ 798:MR 792:. 781:; 756:MR 754:. 744:22 742:. 728:^ 715:. 700:^ 664:. 445:+ 423:. 398:= 394:+ 353:). 337:). 323:, 319:, 315:, 311:, 309:96 307:, 305:94 303:, 301:92 299:, 297:88 295:, 293:86 291:, 289:78 287:, 285:76 283:, 281:70 279:, 277:66 275:, 273:64 271:, 269:56 267:, 265:46 263:, 261:36 259:, 257:34 255:, 253:22 251:, 249:16 228:13 184:11 137:16 128:. 118:+ 114:, 110:+ 98:+ 94:, 55:+ 47:, 1157:a 1038:e 1031:t 1024:v 982:. 976:: 962:. 956:. 944:: 938:2 905:. 899:: 870:. 864:: 804:. 768:. 762:. 750:: 644:k 633:k 600:x 592:y 587:x 579:x 571:y 566:x 558:y 548:y 540:x 532:y 524:x 516:y 511:x 501:y 493:y 485:x 477:y 469:y 456:Y 452:X 447:y 443:x 436:Y 429:X 417:Y 413:y 409:X 405:x 400:k 396:y 392:x 387:y 383:x 379:Y 375:X 371:k 367:k 238:3 218:5 211:2 206:3 201:2 196:7 179:2 174:3 169:2 164:5 126:1 122:) 120:k 116:a 112:i 108:a 102:) 100:i 96:a 92:a 83:k 79:0 75:i 71:a 67:k 59:) 57:k 53:a 49:a 45:a 43:( 36:a 28:k

Index

number theory
positive integer
sequence
common factor
greatest common divisors
16
prime factor
16
22
34
36
46
56
64
66
70
76
78
86
88
92
94
96
100
106
112
116
A059756
OEIS
A111042

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.