Knowledge

Furstenberg's proof of the infinitude of primes

Source 📝

799: 687: 280: 891: 816:, 0) are closed. So, if there were only finitely many prime numbers, then the set on the right-hand side would be a finite union of closed sets, and hence closed. This would be a 922: 958: 852: 345: 152: 119: 1004: 706: 808:
Now, by the first topological property, the set on the left-hand side cannot be closed. On the other hand, by the second topological property, the sets
592: 195: 857: 829: 122: 1201: 75: 542:
Since any non-empty open set contains an infinite sequence, a finite non-empty set cannot be open; put another way, the
61:. When examined closely, the proof is less a statement about topology than a statement about certain properties of 17: 1355: 1350: 543: 896: 1360: 1254: 1039: 70: 481: 80: 1276: 1184: 1180: 1259: 1044: 1100: 1068: 66: 62: 1330: 941: 835: 328: 135: 102: 1303: 1218: 1196: 1154: 1104: 1096: 186: 162: 84: 46: 39: 971: 1146: 1088: 961: 925: 318: 96: 1295: 1264: 1210: 1136: 1080: 1049: 696:
The only integers that are not integer multiples of prime numbers are −1 and +1, i.e.
1230: 1226: 1188: 936: 1084: 158: 1321: 1344: 1307: 1176: 1158: 817: 794:{\displaystyle \mathbb {Z} \setminus \{-1,+1\}=\bigcup _{p\mathrm {\,prime} }S(p,0).} 35: 1239: 1108: 1024: 932: 58: 54: 1325: 31: 1334: 566: 547: 1268: 1150: 1092: 1053: 965: 182: 1283: 1141: 1124: 682:{\displaystyle S(a,b)=\mathbb {Z} \setminus \bigcup _{j=1}^{a-1}S(a,b+j).} 430:
The intersection of two (and hence finitely many) open sets is open: let
155: 43: 1222: 50: 275:{\displaystyle S(a,b)=\{an+b\mid n\in \mathbb {Z} \}=a\mathbb {Z} +b.} 1299: 126: 1277:
https://kconrad.math.uconn.edu/blurbs/ugradnumthy/primestopology.pdf
1214: 1113:
See discussion immediately prior to Lemma 3.2 or see Section 3.5.
1322:
Furstenberg's proof that there are infinitely many prime numbers
354:
Any union of open sets is open: for any collection of open sets
968:, which makes it clear that any finite subset of it, such as 886:{\displaystyle \mathbb {Z} \subset {\hat {\mathbb {Z} }}} 1284:"Some observations on the Furstenberg topological space" 974: 944: 899: 860: 838: 709: 595: 331: 198: 138: 105: 1240:"On Furstenberg's Proof of the Infinitude of Primes" 1025:"On Furstenberg's Proof of the Infinitude of Primes" 18:
Fürstenberg's proof of the infinitude of primes
998: 952: 916: 885: 846: 820:, so there must be infinitely many prime numbers. 793: 681: 339: 274: 146: 113: 569:: they are open by definition, and we can write 1331:Fürstenberg's proof of the infinitude of primes 581:) as the complement of an open set as follows: 189:(empty union) of arithmetic sequences), where 8: 993: 975: 736: 718: 249: 220: 1125:"Adic Topologies for the Rational Integers" 1069:"The Euclidean Criterion for Irreducibles" 538:This topology has two notable properties: 73:. The proof was published in 1955 in the 42:'s proof of the infinitude of primes is a 1258: 1140: 1043: 973: 946: 945: 943: 904: 903: 901: 900: 898: 873: 872: 870: 869: 862: 861: 859: 854:is the topology induced by the inclusion 840: 839: 837: 751: 750: 746: 711: 710: 708: 640: 629: 618: 617: 594: 333: 332: 330: 259: 258: 245: 244: 197: 140: 139: 137: 107: 106: 104: 1199:(1955). "On the infinitude of primes". 1015: 715: 622: 546:of a finite non-empty set cannot be a 917:{\displaystyle {\hat {\mathbb {Z} }}} 351:(1, 0), and so is open as well. 7: 1101:10.4169/amer.math.monthly.124.3.198 1085:10.4169/amer.math.monthly.124.3.198 1123:Broughan, Kevin A. (August 2003). 928:ring with its profinite topology. 764: 761: 758: 755: 752: 25: 1073:The American Mathematical Monthly 289:is open if and only if for every 27:Proof of the infinitude of primes 1129:Canadian Journal of Mathematics 297:there is some non-zero integer 79:while Furstenberg was still an 1187:(Document). Berlin, New York: 908: 877: 830:evenly spaced integer topology 785: 773: 673: 655: 611: 599: 476:establishing membership). Set 214: 202: 123:evenly spaced integer topology 1: 1247:American Mathematical Monthly 1202:American Mathematical Monthly 1032:American Mathematical Monthly 325:∅ is open by definition, and 76:American Mathematical Monthly 1282:Lovas, R.; Mező, I. (2015). 953:{\displaystyle \mathbb {Q} } 847:{\displaystyle \mathbb {Z} } 340:{\displaystyle \mathbb {Z} } 147:{\displaystyle \mathbb {Z} } 114:{\displaystyle \mathbb {Z} } 69:, Furstenberg's proof is a 1377: 1238:Mercer, Idris D. (2009). 1023:Mercer, Idris D. (2009). 999:{\displaystyle \{-1,+1\}} 1269:10.4169/193009709X470218 1054:10.4169/193009709X470218 185:(which can be seen as a 165:of arithmetic sequences 67:Euclid's classical proof 1288:Elemente der Mathematik 1067:Clark, Pete L. (2017). 1185:"Proofs from The Book" 1142:10.4153/CJM-2003-030-3 1000: 954: 918: 887: 848: 824:Topological properties 795: 683: 651: 341: 276: 181: ≠ 0, or is 148: 115: 71:proof by contradiction 1001: 955: 919: 888: 849: 796: 684: 625: 482:least common multiple 444:be open sets and let 371:, any of the numbers 347:is just the sequence 342: 321:are easily verified: 319:axioms for a topology 277: 149: 116: 90: 81:undergraduate student 972: 942: 897: 858: 836: 707: 593: 567:both open and closed 329: 196: 136: 103: 63:arithmetic sequences 964:inherited from the 91:Furstenberg's proof 1197:Furstenberg, Harry 1181:Ziegler, Günter M. 1006:, cannot be open. 996: 950: 914: 883: 844: 791: 769: 679: 337: 272: 144: 111: 85:Yeshiva University 40:Hillel Furstenberg 34:, particularly in 962:subspace topology 926:profinite integer 911: 880: 742: 125:, by declaring a 16:(Redirected from 1368: 1356:General topology 1311: 1272: 1262: 1244: 1234: 1192: 1163: 1162: 1144: 1120: 1114: 1112: 1064: 1058: 1057: 1047: 1029: 1020: 1005: 1003: 1002: 997: 959: 957: 956: 951: 949: 937:rational numbers 923: 921: 920: 915: 913: 912: 907: 902: 892: 890: 889: 884: 882: 881: 876: 871: 865: 853: 851: 850: 845: 843: 800: 798: 797: 792: 768: 767: 714: 688: 686: 685: 680: 650: 639: 621: 406:also shows that 346: 344: 343: 338: 336: 281: 279: 278: 273: 262: 248: 153: 151: 150: 145: 143: 120: 118: 117: 112: 110: 99:on the integers 21: 1376: 1375: 1371: 1370: 1369: 1367: 1366: 1365: 1341: 1340: 1318: 1281: 1260:10.1.1.559.9528 1242: 1237: 1215:10.2307/2307043 1195: 1189:Springer-Verlag 1175: 1172: 1167: 1166: 1122: 1121: 1117: 1066: 1065: 1061: 1045:10.1.1.559.9528 1027: 1022: 1021: 1017: 1012: 970: 969: 940: 939: 895: 894: 856: 855: 834: 833: 826: 705: 704: 591: 590: 553:The basis sets 533: 522: 497: 490: 475: 468: 461: 454: 443: 436: 418: 405: 392: 379: 367:in their union 362: 327: 326: 194: 193: 134: 133: 101: 100: 93: 28: 23: 22: 15: 12: 11: 5: 1374: 1372: 1364: 1363: 1358: 1353: 1351:Article proofs 1343: 1342: 1339: 1338: 1328: 1317: 1316:External links 1314: 1313: 1312: 1300:10.4171/EM/283 1294:(3): 103–116. 1279: 1273: 1253:(4): 355–356. 1235: 1193: 1177:Aigner, Martin 1171: 1168: 1165: 1164: 1135:(4): 711–723. 1115: 1079:(3): 198–216. 1059: 1038:(4): 355–356. 1014: 1013: 1011: 1008: 995: 992: 989: 986: 983: 980: 977: 948: 910: 906: 879: 875: 868: 864: 842: 825: 822: 806: 805: 804: 803: 802: 801: 790: 787: 784: 781: 778: 775: 772: 766: 763: 760: 757: 754: 749: 745: 741: 738: 735: 732: 729: 726: 723: 720: 717: 713: 694: 693: 692: 691: 690: 689: 678: 675: 672: 669: 666: 663: 660: 657: 654: 649: 646: 643: 638: 635: 632: 628: 624: 620: 616: 613: 610: 607: 604: 601: 598: 583: 582: 551: 536: 535: 531: 527:) ⊆  518: 510:) ⊆  495: 488: 473: 466: 462:(with numbers 459: 452: 441: 434: 428: 423:) ⊆  414: 401: 397:) ⊆  388: 375: 358: 352: 335: 313:) ⊆  285:Equivalently, 283: 282: 271: 268: 265: 261: 257: 254: 251: 247: 243: 240: 237: 234: 231: 228: 225: 222: 219: 216: 213: 210: 207: 204: 201: 159:if and only if 142: 109: 92: 89: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1373: 1362: 1361:Prime numbers 1359: 1357: 1354: 1352: 1349: 1348: 1346: 1336: 1332: 1329: 1327: 1323: 1320: 1319: 1315: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1280: 1278: 1275:Keith Conrad 1274: 1270: 1266: 1261: 1256: 1252: 1248: 1241: 1236: 1232: 1228: 1224: 1220: 1216: 1212: 1208: 1204: 1203: 1198: 1194: 1190: 1186: 1182: 1178: 1174: 1173: 1169: 1160: 1156: 1152: 1148: 1143: 1138: 1134: 1130: 1126: 1119: 1116: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1074: 1070: 1063: 1060: 1055: 1051: 1046: 1041: 1037: 1033: 1026: 1019: 1016: 1009: 1007: 990: 987: 984: 981: 978: 967: 963: 938: 934: 929: 927: 866: 831: 823: 821: 819: 818:contradiction 815: 811: 788: 782: 779: 776: 770: 747: 743: 739: 733: 730: 727: 724: 721: 703: 702: 701: 700: 699: 698: 697: 676: 670: 667: 664: 661: 658: 652: 647: 644: 641: 636: 633: 630: 626: 614: 608: 605: 602: 596: 589: 588: 587: 586: 585: 584: 580: 576: 572: 568: 564: 560: 556: 552: 549: 545: 541: 540: 539: 530: 526: 521: 517: 513: 509: 505: 501: 494: 487: 483: 479: 472: 465: 458: 455: ∩  451: 448: ∈  447: 440: 433: 429: 426: 422: 417: 413: 409: 404: 400: 396: 391: 387: 383: 378: 374: 370: 366: 361: 357: 353: 350: 324: 323: 322: 320: 316: 312: 308: 304: 300: 296: 292: 288: 269: 266: 263: 255: 252: 241: 238: 235: 232: 229: 226: 223: 217: 211: 208: 205: 199: 192: 191: 190: 188: 187:nullary union 184: 180: 176: 172: 168: 164: 160: 157: 132: ⊆  131: 128: 124: 121:, called the 98: 88: 86: 82: 78: 77: 72: 68: 64: 60: 59:prime numbers 56: 52: 48: 45: 41: 37: 36:number theory 33: 19: 1291: 1287: 1250: 1246: 1206: 1200: 1132: 1128: 1118: 1076: 1072: 1062: 1035: 1031: 1018: 933:homeomorphic 930: 827: 813: 809: 807: 695: 578: 574: 570: 562: 558: 554: 537: 528: 524: 519: 515: 511: 507: 503: 499: 492: 485: 477: 470: 463: 456: 449: 445: 438: 431: 424: 420: 415: 411: 407: 402: 398: 394: 389: 385: 381: 376: 372: 368: 364: 359: 355: 348: 314: 310: 306: 302: 298: 294: 290: 286: 284: 178: 174: 170: 166: 129: 94: 74: 29: 1326:Everything2 44:topological 32:mathematics 1345:Categories 1335:PlanetMath 1209:(5): 353. 1170:References 548:closed set 544:complement 480:to be the 380:for which 301:such that 65:. Unlike 55:infinitely 1308:126337479 1255:CiteSeerX 1159:121286344 1151:0008-414X 1093:0002-9890 1040:CiteSeerX 979:− 966:real line 960:with the 909:^ 878:^ 867:⊂ 744:⋃ 722:− 716:∖ 645:− 627:⋃ 623:∖ 242:∈ 236:∣ 154:to be an 95:Define a 49:that the 1183:(1998). 1109:92986609 893:, where 577:,  561:,  523:,  506:,  419:,  393:,  309:,  173:,  161:it is a 156:open set 97:topology 53:contain 51:integers 1231:0068566 1223:2307043 935:to the 924:is the 498:. Then 1306:  1257:  1229:  1221:  1157:  1149:  1107:  1099:  1091:  1042:  931:It is 565:) are 317:. The 177:) for 127:subset 1304:S2CID 1243:(PDF) 1219:JSTOR 1155:S2CID 1105:S2CID 1097:JSTOR 1028:(PDF) 1010:Notes 183:empty 163:union 57:many 47:proof 1147:ISSN 1089:ISSN 828:The 491:and 469:and 437:and 363:and 1333:at 1324:at 1296:doi 1265:doi 1251:116 1211:doi 1137:doi 1081:doi 1077:124 1050:doi 1036:116 832:on 484:of 293:in 83:at 30:In 1347:: 1302:. 1292:70 1290:. 1286:. 1263:. 1249:. 1245:. 1227:MR 1225:. 1217:. 1207:62 1205:. 1179:; 1153:. 1145:. 1133:55 1131:. 1127:. 1103:. 1095:. 1087:. 1075:. 1071:. 1048:. 1034:. 1030:. 87:. 38:, 1337:. 1310:. 1298:: 1271:. 1267:: 1233:. 1213:: 1191:. 1161:. 1139:: 1111:. 1083:: 1056:. 1052:: 994:} 991:1 988:+ 985:, 982:1 976:{ 947:Q 905:Z 874:Z 863:Z 841:Z 814:p 812:( 810:S 789:. 786:) 783:0 780:, 777:p 774:( 771:S 765:e 762:m 759:i 756:r 753:p 748:p 740:= 737:} 734:1 731:+ 728:, 725:1 719:{ 712:Z 677:. 674:) 671:j 668:+ 665:b 662:, 659:a 656:( 653:S 648:1 642:a 637:1 634:= 631:j 619:Z 615:= 612:) 609:b 606:, 603:a 600:( 597:S 579:b 575:a 573:( 571:S 563:b 559:a 557:( 555:S 550:. 534:. 532:i 529:U 525:x 520:i 516:a 514:( 512:S 508:x 504:a 502:( 500:S 496:2 493:a 489:1 486:a 478:a 474:2 471:a 467:1 464:a 460:2 457:U 453:1 450:U 446:x 442:2 439:U 435:1 432:U 427:. 425:U 421:x 416:i 412:a 410:( 408:S 403:i 399:U 395:x 390:i 386:a 384:( 382:S 377:i 373:a 369:U 365:x 360:i 356:U 349:S 334:Z 315:U 311:x 307:a 305:( 303:S 299:a 295:U 291:x 287:U 270:. 267:b 264:+ 260:Z 256:a 253:= 250:} 246:Z 239:n 233:b 230:+ 227:n 224:a 221:{ 218:= 215:) 212:b 209:, 206:a 203:( 200:S 179:a 175:b 171:a 169:( 167:S 141:Z 130:U 108:Z 20:)

Index

Fürstenberg's proof of the infinitude of primes
mathematics
number theory
Hillel Furstenberg
topological
proof
integers
infinitely
prime numbers
arithmetic sequences
Euclid's classical proof
proof by contradiction
American Mathematical Monthly
undergraduate student
Yeshiva University
topology
evenly spaced integer topology
subset
open set
if and only if
union
empty
nullary union
axioms for a topology
least common multiple
complement
closed set
both open and closed
contradiction
evenly spaced integer topology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.