Knowledge

Fuchsian model

Source đź“ť

553: 468: 900: 265: 1130: 1057: 347: 824: 555:
and endow this set with the topology of pointwise convergence (sometimes called "algebraic convergence"). In this particular case this topology can most easily be defined as follows: the group
742: 1259: 201: 443: 293: 950: 678: 643: 93:
which is not isomorphic to either the Riemann sphere (the elliptic case) or a quotient of the complex plane by a discrete subgroup (the parabolic case) must be a quotient of the
1083: 1323: 1000: 116: 1213: 771: 573: 415: 136: 1291: 1177: 1150: 978: 597: 463: 395: 367: 313: 91: 66: 829: 548:{\displaystyle A(\Gamma )=\{\rho \colon \Gamma \to \mathrm {PSL} _{2}(\mathbb {R} )\colon \rho {\text{ is faithful and discrete }}\}} 218: 1092: 1005: 318: 776: 139: 1367: 154: 150: 683: 1218: 160: 420: 270: 1372: 910: 576: 58: 920: 648: 602: 1062: 1156: 1296: 1344: 70: 983: 99: 1182: 957: 212: 747: 1132:
and lift it to the hyperbolic plane. Taking a diffeomorphism yields quasi-conformal map since
62: 558: 400: 121: 94: 45:. Every hyperbolic Riemann surface admits such a representation. The concept is named after 35: 1264: 208: 28: 1355:
Matsuzaki, K.; Taniguchi, M.: Hyperbolic manifolds and Kleinian groups. Oxford (1998).
1335: 1162: 1135: 963: 582: 448: 380: 352: 298: 76: 42: 1361: 953: 46: 909:(this is not standard terminology and this result is not directly related to the 1339: 143: 20: 204: 1325:
is a quasiconformal homeomorphism modulo a natural equivalence relation.
1179:: the set of discrete faithful representations of the fundamental group 1155:
This result can be seen as the equivalence between two models for
895:{\displaystyle \rho \mapsto (\rho (g_{1}),\ldots ,\rho (g_{r}))} 315:. Such a group is called a Fuchsian group, and the isomorphism 260:{\displaystyle \Gamma \subset \mathrm {PSL} _{2}(\mathbb {R} )} 1114: 427: 331: 277: 73:. More precisely this theorem states that a Riemann surface 207:, and the uniformization theorem means that there exists a 1125:{\displaystyle R\to \rho (\Gamma )\backslash \mathbb {H} } 1052:{\displaystyle h\circ \gamma \circ h^{-1}=\rho (\gamma )} 1261:
modulo conjugacy and the set of marked Riemann surfaces
1299: 1267: 1221: 1185: 1165: 1138: 1095: 1065: 1008: 986: 966: 923: 832: 779: 750: 686: 651: 605: 585: 561: 471: 451: 423: 403: 383: 355: 342:{\displaystyle R\cong \Gamma \backslash \mathbb {H} } 321: 301: 273: 221: 163: 124: 102: 79: 819:{\displaystyle \mathrm {PSL} _{2}(\mathbb {R} )^{r}} 579:since it is isomorphic to the fundamental group of 1317: 1285: 1253: 1207: 1171: 1144: 1124: 1089:The proof is very simple: choose an homeomorphism 1077: 1051: 994: 972: 944: 894: 818: 765: 736: 672: 637: 591: 567: 547: 457: 437: 409: 389: 361: 341: 307: 287: 259: 195: 130: 110: 85: 737:{\displaystyle \rho (g_{1}),\ldots ,\rho (g_{r})} 1254:{\displaystyle \mathrm {PSL} _{2}(\mathbb {R} )} 196:{\displaystyle \mathrm {PSL} _{2}(\mathbb {R} )} 438:{\displaystyle \Gamma \backslash \mathbb {H} } 288:{\displaystyle \Gamma \backslash \mathbb {H} } 8: 542: 487: 902:. Then we give it the subspace topology. 1298: 1266: 1244: 1243: 1234: 1223: 1220: 1190: 1184: 1164: 1137: 1118: 1117: 1094: 1064: 1025: 1007: 988: 987: 985: 965: 922: 880: 852: 831: 810: 802: 801: 792: 781: 778: 749: 725: 697: 685: 650: 629: 610: 604: 584: 560: 537: 524: 523: 514: 503: 470: 450: 431: 430: 422: 402: 382: 354: 335: 334: 320: 300: 281: 280: 272: 250: 249: 240: 229: 220: 186: 185: 176: 165: 162: 123: 104: 103: 101: 78: 16:Group representation of a Riemann surface 397:be a closed hyperbolic surface and let 153:for the hyperbolic plane the group of 913:) then has the following statement: 373:Fuchsian models and TeichmĂĽller space 7: 539: is faithful and discrete  27:is a representation of a hyperbolic 945:{\displaystyle \rho \in A(\Gamma )} 673:{\displaystyle \rho \in A(\Gamma )} 638:{\displaystyle g_{1},\ldots ,g_{r}} 1230: 1227: 1224: 1108: 1078:{\displaystyle \gamma \in \Gamma } 1072: 936: 788: 785: 782: 757: 664: 562: 510: 507: 504: 496: 478: 424: 404: 328: 274: 236: 233: 230: 222: 172: 169: 166: 125: 61:, every Riemann surface is either 14: 1338:, an analogous construction for 349:is called a Fuchsian model for 1318:{\displaystyle f\colon R\to X} 1309: 1280: 1268: 1248: 1240: 1202: 1196: 1111: 1105: 1099: 1046: 1040: 939: 933: 889: 886: 873: 858: 845: 839: 836: 807: 798: 760: 754: 731: 718: 703: 690: 680:is determined by the elements 667: 661: 645:be a generating set: then any 528: 520: 499: 481: 475: 267:such that the Riemann surface 254: 246: 190: 182: 1: 155:biholomorphic transformations 995:{\displaystyle \mathbb {H} } 417:be a Fuchsian group so that 111:{\displaystyle \mathbb {H} } 1208:{\displaystyle \pi _{1}(R)} 907:Nielsen isomorphism theorem 1389: 766:{\displaystyle A(\Gamma )} 151:PoincarĂ© half-plane model 53:A more precise definition 980:of the upper half-plane 445:is a Fuchsian model for 140:properly discontinuously 744:and so we can identify 568:{\displaystyle \Gamma } 410:{\displaystyle \Gamma } 131:{\displaystyle \Gamma } 1319: 1287: 1255: 1209: 1173: 1146: 1126: 1079: 1053: 996: 974: 946: 896: 820: 767: 738: 674: 639: 593: 569: 549: 459: 439: 411: 391: 363: 343: 309: 289: 261: 197: 132: 112: 87: 59:uniformization theorem 1320: 1288: 1286:{\displaystyle (X,f)} 1256: 1210: 1174: 1147: 1127: 1080: 1054: 997: 975: 947: 897: 821: 768: 739: 675: 640: 594: 570: 550: 460: 440: 412: 392: 364: 344: 310: 290: 262: 198: 133: 113: 88: 34:as a quotient of the 1297: 1265: 1219: 1183: 1163: 1136: 1093: 1063: 1006: 984: 964: 952:there exists a self- 921: 911:Dehn–Nielsen theorem 830: 777: 748: 684: 649: 603: 583: 559: 469: 449: 421: 401: 381: 353: 319: 299: 271: 219: 161: 122: 100: 77: 1368:Hyperbolic geometry 1345:Fundamental polygon 1315: 1283: 1251: 1205: 1169: 1142: 1122: 1075: 1049: 992: 970: 958:quasiconformal map 942: 892: 816: 763: 734: 670: 635: 589: 577:finitely generated 565: 545: 455: 435: 407: 387: 359: 339: 305: 285: 257: 193: 128: 108: 83: 1172:{\displaystyle R} 1157:TeichmĂĽller space 1145:{\displaystyle R} 973:{\displaystyle h} 773:with a subset of 592:{\displaystyle R} 540: 458:{\displaystyle R} 390:{\displaystyle R} 362:{\displaystyle R} 308:{\displaystyle R} 295:is isomorphic to 86:{\displaystyle R} 1380: 1373:Riemann surfaces 1324: 1322: 1321: 1316: 1292: 1290: 1289: 1284: 1260: 1258: 1257: 1252: 1247: 1239: 1238: 1233: 1214: 1212: 1211: 1206: 1195: 1194: 1178: 1176: 1175: 1170: 1151: 1149: 1148: 1143: 1131: 1129: 1128: 1123: 1121: 1084: 1082: 1081: 1076: 1058: 1056: 1055: 1050: 1033: 1032: 1001: 999: 998: 993: 991: 979: 977: 976: 971: 951: 949: 948: 943: 901: 899: 898: 893: 885: 884: 857: 856: 825: 823: 822: 817: 815: 814: 805: 797: 796: 791: 772: 770: 769: 764: 743: 741: 740: 735: 730: 729: 702: 701: 679: 677: 676: 671: 644: 642: 641: 636: 634: 633: 615: 614: 598: 596: 595: 590: 574: 572: 571: 566: 554: 552: 551: 546: 541: 538: 527: 519: 518: 513: 464: 462: 461: 456: 444: 442: 441: 436: 434: 416: 414: 413: 408: 396: 394: 393: 388: 368: 366: 365: 360: 348: 346: 345: 340: 338: 314: 312: 311: 306: 294: 292: 291: 286: 284: 266: 264: 263: 258: 253: 245: 244: 239: 202: 200: 199: 194: 189: 181: 180: 175: 137: 135: 134: 129: 117: 115: 114: 109: 107: 95:hyperbolic plane 92: 90: 89: 84: 36:upper half-plane 1388: 1387: 1383: 1382: 1381: 1379: 1378: 1377: 1358: 1357: 1353: 1331: 1295: 1294: 1263: 1262: 1222: 1217: 1216: 1186: 1181: 1180: 1161: 1160: 1134: 1133: 1091: 1090: 1087: 1061: 1060: 1021: 1004: 1003: 982: 981: 962: 961: 919: 918: 876: 848: 828: 827: 806: 780: 775: 774: 746: 745: 721: 693: 682: 681: 647: 646: 625: 606: 601: 600: 581: 580: 557: 556: 502: 467: 466: 447: 446: 419: 418: 399: 398: 379: 378: 375: 351: 350: 317: 316: 297: 296: 269: 268: 228: 217: 216: 164: 159: 158: 120: 119: 98: 97: 75: 74: 55: 29:Riemann surface 17: 12: 11: 5: 1386: 1384: 1376: 1375: 1370: 1360: 1359: 1352: 1349: 1348: 1347: 1342: 1336:Kleinian model 1330: 1327: 1314: 1311: 1308: 1305: 1302: 1282: 1279: 1276: 1273: 1270: 1250: 1246: 1242: 1237: 1232: 1229: 1226: 1204: 1201: 1198: 1193: 1189: 1168: 1141: 1120: 1116: 1113: 1110: 1107: 1104: 1101: 1098: 1074: 1071: 1068: 1048: 1045: 1042: 1039: 1036: 1031: 1028: 1024: 1020: 1017: 1014: 1011: 990: 969: 941: 938: 935: 932: 929: 926: 915: 891: 888: 883: 879: 875: 872: 869: 866: 863: 860: 855: 851: 847: 844: 841: 838: 835: 813: 809: 804: 800: 795: 790: 787: 784: 762: 759: 756: 753: 733: 728: 724: 720: 717: 714: 711: 708: 705: 700: 696: 692: 689: 669: 666: 663: 660: 657: 654: 632: 628: 624: 621: 618: 613: 609: 588: 564: 544: 536: 533: 530: 526: 522: 517: 512: 509: 506: 501: 498: 495: 492: 489: 486: 483: 480: 477: 474: 454: 433: 429: 426: 406: 386: 374: 371: 358: 337: 333: 330: 327: 324: 304: 283: 279: 276: 256: 252: 248: 243: 238: 235: 232: 227: 224: 192: 188: 184: 179: 174: 171: 168: 127: 118:by a subgroup 106: 82: 54: 51: 43:Fuchsian group 25:Fuchsian model 15: 13: 10: 9: 6: 4: 3: 2: 1385: 1374: 1371: 1369: 1366: 1365: 1363: 1356: 1350: 1346: 1343: 1341: 1337: 1333: 1332: 1328: 1326: 1312: 1306: 1303: 1300: 1277: 1274: 1271: 1235: 1199: 1191: 1187: 1166: 1158: 1153: 1152:is compact. 1139: 1102: 1096: 1086: 1069: 1066: 1043: 1037: 1034: 1029: 1026: 1022: 1018: 1015: 1012: 1009: 967: 959: 955: 954:homeomorphism 930: 927: 924: 914: 912: 908: 903: 881: 877: 870: 867: 864: 861: 853: 849: 842: 833: 811: 793: 751: 726: 722: 715: 712: 709: 706: 698: 694: 687: 658: 655: 652: 630: 626: 622: 619: 616: 611: 607: 586: 578: 534: 531: 515: 493: 490: 484: 472: 452: 384: 372: 370: 356: 325: 322: 302: 241: 225: 214: 210: 206: 177: 157:is the group 156: 152: 147: 145: 141: 96: 80: 72: 68: 64: 60: 52: 50: 48: 47:Lazarus Fuchs 44: 40: 37: 33: 30: 26: 22: 1354: 1154: 1088: 916: 906: 904: 376: 213:torsion-free 205:homographies 148: 56: 38: 31: 24: 18: 1340:3-manifolds 956:(in fact a 826:by the map 21:mathematics 1362:Categories 1351:References 1002:such that 203:acting by 71:hyperbolic 1310:→ 1304:: 1188:π 1115:∖ 1109:Γ 1103:ρ 1100:→ 1073:Γ 1070:∈ 1067:γ 1044:γ 1038:ρ 1027:− 1019:∘ 1016:γ 1013:∘ 937:Γ 928:∈ 925:ρ 871:ρ 865:… 843:ρ 837:↦ 834:ρ 758:Γ 716:ρ 710:… 688:ρ 665:Γ 656:∈ 653:ρ 620:… 563:Γ 535:ρ 532:: 500:→ 497:Γ 494:: 491:ρ 479:Γ 428:∖ 425:Γ 405:Γ 332:∖ 329:Γ 326:≅ 278:∖ 275:Γ 226:⊂ 223:Γ 215:subgroup 126:Γ 67:parabolic 1329:See also 1059:for all 917:For any 209:discrete 63:elliptic 465:. Let 149:In the 138:acting 57:By the 1293:where 599:. Let 144:freely 1215:into 41:by a 1334:the 905:The 377:Let 142:and 23:, a 1159:of 575:is 146:. 69:or 19:In 1364:: 960:) 369:. 211:, 65:, 49:. 1313:X 1307:R 1301:f 1281:) 1278:f 1275:, 1272:X 1269:( 1249:) 1245:R 1241:( 1236:2 1231:L 1228:S 1225:P 1203:) 1200:R 1197:( 1192:1 1167:R 1140:R 1119:H 1112:) 1106:( 1097:R 1085:. 1047:) 1041:( 1035:= 1030:1 1023:h 1010:h 989:H 968:h 940:) 934:( 931:A 890:) 887:) 882:r 878:g 874:( 868:, 862:, 859:) 854:1 850:g 846:( 840:( 812:r 808:) 803:R 799:( 794:2 789:L 786:S 783:P 761:) 755:( 752:A 732:) 727:r 723:g 719:( 713:, 707:, 704:) 699:1 695:g 691:( 668:) 662:( 659:A 631:r 627:g 623:, 617:, 612:1 608:g 587:R 543:} 529:) 525:R 521:( 516:2 511:L 508:S 505:P 488:{ 485:= 482:) 476:( 473:A 453:R 432:H 385:R 357:R 336:H 323:R 303:R 282:H 255:) 251:R 247:( 242:2 237:L 234:S 231:P 191:) 187:R 183:( 178:2 173:L 170:S 167:P 105:H 81:R 39:H 32:R

Index

mathematics
Riemann surface
upper half-plane
Fuchsian group
Lazarus Fuchs
uniformization theorem
elliptic
parabolic
hyperbolic
hyperbolic plane
properly discontinuously
freely
Poincaré half-plane model
biholomorphic transformations
homographies
discrete
torsion-free
finitely generated
Dehn–Nielsen theorem
homeomorphism
quasiconformal map
TeichmĂĽller space
Kleinian model
3-manifolds
Fundamental polygon
Categories
Hyperbolic geometry
Riemann surfaces

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑