Knowledge (XXG)

Fusion energy gain factor

Source 📝

328:, or ICF. The magnetic approaches, MCF for short, are generally designed to operate in the (quasi) steady state. That is, the plasma is maintained in fusion conditions for time scales much longer than the fusion reactions, on the order of seconds or minutes. The goal is to allow most of the fuel time to undergo a fusion reaction. In contrast, ICF reactions last only for a time on the order of dozens of fusion reactions, and instead attempt to ensure the conditions are such that the much of fuel will undergo fusion even in this very short time span. To do so, ICF devices compress the fuel to extreme conditions, where the self-heating reactions occur very rapidly. 3103: 3466: 3346: 3768: 2971: 3934: 3242: 3975: 3739: 3599: 3358: 4002: 3831: 3780: 3722: 3682: 3641: 3587: 3404: 2983: 1392:= 1.25 running on D-D fuel, thus reaching extrapolated breakeven. This measurement was based on the JET definition of Q*. Using this definition, JET had also reached extrapolated breakeven some time earlier. If one considers the energy balance in these conditions, and the analysis of previous machines, it is argued the original definition should be used, and thus both machines remain well below break-even of any sort. 3195: 3441: 3322: 3207: 3183: 3540: 3922: 3230: 3071: 3506: 3283: 3963: 3946: 3670: 3334: 3266: 3054: 3899: 3629: 3528: 3478: 3300: 3159: 3142: 20: 506:. Neutrons are electrically neutral and will travel out of any plasma before they can deposit energy back into it. This means that only the charged particles from the reactions can be captured within the fuel mass and give rise to self-heating. If the fraction of the energy being released in the charged particles is 868: 369:, that is, all the energy being fed into the system, then ICF devices are hopelessly inefficient. For instance, the NIF uses over 400 MJ of electrical power to produce an output of 3.15 MJ. In contrast to MCF, this energy has to be supplied to spark every reaction, not just get the system up and running. 1068:
As the temperature of the plasma increases, the rate of fusion reactions grows rapidly, and with it, the rate of self-heating. In contrast, non-capturable energy losses like x-rays do not grow at the same rate. Thus, in overall terms, the self-heating process becomes more efficient as the temperature
449:
The records for extrapolated breakeven are slightly higher than the records for scientific breakeven. Both JET and JT-60 have reached values around 1.25 (see below for details) while running on D-D fuel. When running on D-T, only possible in JET, the maximum performance is about half the extrapolated
372:
ICF proponents point out that alternative "drivers" could be used that would improve this ratio at least ten times. If one is attempting to understand improvements in the performance of an ICF system, then it is not the performance of the drivers that is interesting, but the performance of the fusion
1146:
Most fusion reactor designs being studied as of 2017 are based on the D-T reaction, as this is by far the easiest to ignite, and is energy-dense. This reaction gives off most of its energy in the form of a single highly energetic neutron, and only 20% of the energy in the form of an alpha. Thus, for
335:
devices requires very little energy to run. Once set up, the steady state is maintained by injecting heat into the plasma with a variety of devices. These devices represent the vast majority of the energy needed to keep the system running. They are also relatively efficient, with perhaps as much as
1238:
There is an additional complication. During the heating phase when the system is being brought up to operational conditions, some of the energy released by the fusion reactions will be used to heat the surrounding fuel, and thus not be released to the environment. This is no longer true when the
1133:
Commercial breakeven relies on factors outside the technology of the reactor itself, and it is possible that even a reactor with a fully ignited plasma operating well beyond engineering breakeven will not generate enough electricity rapidly enough to pay for itself. Whether any of the mainline
277:, is lost through a variety of mechanisms, mostly convection of the fuel to the walls of the reactor chamber and various forms of radiation that cannot be captured to generate power. In order to keep the reaction going, the system has to provide heating to make up for these losses, where 1239:
plasma reaches its operational temperature and enters thermal equilibrium. Thus, if one averages over the entire cycle, this energy will be included as part of the heating term, that is, some of the energy that was captured for heating would otherwise have been released in P
483:
depending on the source, considers the need to extract the energy from the reactor, turn that into electrical energy, and feed some of that back into the heating system. This closed loop sending electricity from the fusion back into the heating system is known as
1479:
to be only the amount energy delivered to "the hottest portion of the fuel", calculating that only 10 kJ of the original laser energy reached the part of the fuel that was undergoing fusion reactions. This release has been heavily criticized in the field.
746: 103:
Over time, several related terms have entered the fusion lexicon. Energy that is not captured within the fuel can be captured externally to produce electricity. That electricity can be used to heat the plasma to operational temperatures. A system that is
1214:
system while using the compression from the confinement as the heating source. Lawson defined breakeven in this context as the total energy released by the entire reaction cycle compared to the total energy supplied to the machine during the same cycle.
343:
in the steady state is something fairly close to all of the energy being fed into the reactor, and the efficiency of the heating systems is generally ignored. When the total efficiency is considered then it is generally not part of the calculation of
1198:= 0.4, ITER (in theory) could produce as much as 112 MW of heating. This means ITER would operate at engineering breakeven. However, ITER is not equipped with power-extraction systems, so this remains theoretical until follow-on machines like 256:. Expanding on all of these, Lawson's paper made detailed predictions for the amount of power that would be lost through various mechanisms, and compared that to the energy needed to sustain the reaction. This balance is today known as the 1084:. In the case of D-T fuel, where only 20% of the energy is released as alphas that give rise to self-heating, this cannot occur until the plasma is releasing at least five times the power needed to keep it at its working temperature. 1106:. More importantly, this number is more likely to be near-constant, meaning that further improvements in plasma performance will result in more energy that can be directly used for commercial generation, as opposed to recirculation. 1317: 1079:
reaches zero, that is, all of the energy needed to keep the plasma at the operational temperature is being supplied by self-heating, and the amount of external energy that needs to be added drops to zero. This point is known as
581:
is typically on the order of 1.1 to 1.3, meaning it produces a small amount of energy as well. The net result, the total amount of energy released to the environment and thus available for energy production, is referred to as
243:
was the first to explore the energy balance mechanisms in detail, initially in classified works but published openly in a now-famous 1957 paper. In this paper he considered and refined work by earlier researchers, notably
1098:
drops to zero as the other power sinks in the system, like the magnets and cooling systems, still need to be powered. Generally, however, these are much smaller than the energy in the heaters, and require a much smaller
921:
is self-supplied. We need a total of 10 MW of heating and get 4 of that through alphas, so we need another 6 MW of power. Of the original 20 MW of output, 4 MW are left in the fuel, so we have 16 MW of net output. Using
1230:
may be quite high while the system is being set up, and then drop to zero when it is fully developed, so one may be tempted to pick an instant in time when it is operating at its best to determine a high, or infinite,
112:. Operating above engineering breakeven, a machine would produce more electricity than it uses and could sell that excess. One that sells enough electricity to cover its operating costs is sometimes known as 1189:
Using these values and considering ITER, the reactor produces 500 MW of fusion power for 50 MW of supply. If 20% of the output is self-heating, that means 400 MW escape. Assuming the same
984:= 4 one needs 5 MW of heating, 4 of which come from the fusion, leaving 1 MW of external power required, which can easily be generated by the 18.4 MW net output. Thus for this theoretical design the 217:, in normal operating conditions. For those designs that do not run in the steady state, but are instead pulsed, the same calculation can be made by summing all of the fusion energy produced in 604:
and generators. That electricity is then fed back into the heating system. Each of these steps in the generation chain has an efficiency to consider. In the case of the plasma heating systems,
1370: 1487:
value of 0.7, producing 1.35 MJ of energy from a fuel capsule by focusing 1.9 MJ of laser energy on the capsule. The result was an eight-fold increase over any prior energy output.
1052: 3418: 1656:
Nuckolls, John; Wood, Lowell; Thiessen, Albert; Zimmerman, George (15 September 1972). "Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications".
4028: 1605: 863:{\displaystyle Q_{E}\equiv {\frac {P_{\text{fus}}}{P_{\text{heat}}}}={\frac {1}{\eta _{\text{heat}}\cdot f_{\text{recirc}}\cdot \eta _{\text{elec}}\cdot (1-f_{\text{ch}})}}} 92:
increases past this point, increasing self-heating eventually removes the need for external heating. At this point the reaction becomes self-sustaining, a condition called
1253: 678: 638: 967: 711: 1118:, which occurs when the economic value of any net electricity left over after recirculation is enough to pay for the reactor. This value depends both on the reactor's 3063: 1025: 435:
In order to lower costs, many experimental machines are designed to run on test fuels of hydrogen or deuterium alone, leaving out the tritium. In this case, the term
1414:
as the energy delivered by the driver to the capsule, as opposed to the energy put into the driver by an external power source. This definition produces much higher
897: 738: 84: = 1 will cool without external heating. With typical fuels, self-heating in fusion reactors is not expected to match the external sources until at least 3112: 1235:. A better solution in these cases is to use the original Lawson definition averaged over the reaction to produce a similar value as the original definition. 1226:
that run for several minutes. In this case, the definition of "the entire reaction cycle" becomes blurred. In the case of an ignited plasma, for instance, P
391:
of 1.5. This is, ultimately, the same definition as the one used in MCF, but the upstream losses are smaller in those systems and no distinction is needed.
1432:= 1. On occasion, they referred to this definition as "scientific breakeven". This term was not universally used; other groups adopted the redefinition of 446:, is used to define the expected performance of the machine running on D-T fuel based on the performance when running on hydrogen or deuterium alone. 3168: 540:
is captured in the fuel, that means the power available for generating electricity is the power that is not released in that form, or (1 − 
2975: 1684: 3433: 3372: 3731: 3691: 3046: 2465: 1400: 557:
In the case of neutrons carrying most of the practical energy, as is the case in the D-T fuel, this neutron energy is normally captured in a "
3107: 2288: 2061: 1381:
is the power applied to raise the internal energy of the plasma. It is this definition that was used when reporting JET's record 0.67 value.
2280: 3350: 3019: 1498:≥ 1 milestone on 5 December 2022. This was achieved by producing 3.15 MJ after delivering 2.05 MJ to the target, for an equivalent 994:
Considering real-world losses and efficiencies, Q values between 5 and 8 are typically listed for magnetic confinement devices to reach
2217: 1322: 380:
for ICF devices as the amount of driver energy actually hitting the fuel, about 2 MJ in the case of NIF. Using this definition of
2836: 1491: 2513: 2434: 2155: 1855: 358:
In contrast, in ICF devices the energy needed to create the required conditions is enormous, and the devices that do so, typically
2302: 1736: 1597: 80:. Most fusion reactions release at least some of their energy in a form that cannot be captured within the plasma, so a system at 3367: 2793: 2102:
Ahlstrom, H. G. (June 1981). "Laser fusion experiments, facilities, and diagnostics at Lawrence Livermore National Laboratory".
432:, and highly mobile, it represents a significant safety concern and adds to the cost of designing and operating such a reactor. 65: = 1, when the power being released by the fusion reactions is equal to the required heating power, is referred to as 4033: 3875: 3009: 1218:
Over time, as performance increased by orders of magnitude, the reaction times have extended from microseconds to seconds, and
1453:
On 7 October 2013, LLNL announced that roughly one week earlier, on 29 September, it had achieved scientific breakeven in the
3423: 1800: 428:
as their primary fuel; other fuels have attractive features but are much harder to ignite. As tritium is radioactive, highly
2191: 324:
Over time, new types of fusion devices were proposed with different operating systems. Of particular note is the concept of
1182:= 0.2 approximately. Lower would be better but will be hard to achieve. Using these values we find for a practical reactor 3362: 3270: 1175:= 0.4 (40%). The purpose of a fusion reactor is to produce power, not to recirculate it, so a practical reactor must have 3850: 2697: 128:. A reactor running on these fuels that reaches the conditions for breakeven if tritium was introduced is said to be at 3804: 3726: 3696: 3036: 3029: 2916: 2821: 2808: 2689: 1211: 325: 188:= 1.54 with a 3.15 MJ output from a 2.05 MJ laser heating, which remains the record for any fusion scheme as of 2023. 181: 1829: 1464:
was approximately 14 kJ, while the laser output was 1.8 MJ. By their previous definition, this would be a
3860: 3408: 3275: 3014: 2905: 2881: 2508: 2503: 2458: 1454: 240: 177: 4068: 3784: 3633: 2947: 1199: 2326: 2261: 96:, and is generally regarded as highly desirable for practical reactor designs. Ignition corresponds to infinite 3789: 3701: 3603: 3309: 2798: 3554: 2645: 4011: 3757: 3686: 3645: 3413: 2785: 2670: 2601: 3572: 2952: 2719: 2665: 2650: 1210:
Many early fusion devices operated for microseconds, using some sort of pulsed power source to feed their
1693: 1030: 4058: 3608: 3304: 3024: 2886: 2869: 2451: 3075: 3618: 3487: 3234: 2729: 2660: 2613: 2561: 2392: 2111: 1766: 144: 3428: 3251: 2891: 680:
around 35 to 40%. Combining these we get a net efficiency of the power conversion loop as a whole,
429: 263:
In a successful fusion reactor design, the fusion reactions generate an amount of power designated
2065: 647: 607: 3510: 3211: 2992: 2724: 2371: 2016: 1782: 1154:= 0.2. This means that self-heating does not become equal to the external heating until at least 939: 683: 158:(the theoretical Q value of D-T fusion as extrapolated from D-D results) in a tokamak is held by 3950: 1952: 331:
In an MCF device, the initial plasma is set up and maintained by large magnets, which in modern
3549: 2775: 2756: 2623: 2523: 2518: 2430: 2151: 2127: 1737:"Lessons from fusion ignition and the implications for fusion energy science and engineering" 1563:
was used to denote the total energy released by the individual fusion reactions, in MeV, and
1483:
On 17 August 2021, the NIF announced that in early August 2021, an experiment had achieved a
997: 231:. However, there are several definitions of breakeven that consider additional power losses. 3938: 3674: 3515: 3146: 3004: 2826: 2702: 2571: 2556: 2400: 2363: 2225: 2199: 2119: 1774: 1665: 914:
is 10 MW. Of that original 20 MW about 20% is alphas, so assuming complete capture, 4 MW of
558: 257: 2239: 1598:"DOE National Laboratory Makes History by Achieving Fusion Ignition | Department of Energy" 875: 743:
Thus, the fusion energy gain factor required to reach engineering breakeven is defined as:
716: 31:
was the first device able to achieve fusion energy gain factor significantly larger than 1.
4063: 3855: 3659: 3520: 3246: 3187: 3151: 2997: 2707: 2655: 2541: 1063: 336:
half of the electricity fed into them ending up as energy in the plasma. For this reason,
332: 249: 1863: 1602:
DOE National Laboratory Makes History by Achieving Fusion Ignition | Department of Energy
76:
The energy given off by the fusion reactions may be captured within the fuel, leading to
2396: 2172: 2115: 1770: 3772: 3338: 3256: 3080: 2590: 2546: 2498: 2490: 1123: 597: 503: 54: 50: 2443: 1250:
Operators of the JET reactor argued that this input should be removed from the total:
4052: 4006: 3840: 3794: 3287: 3058: 2987: 2816: 2608: 2536: 2404: 2375: 1786: 1312:{\displaystyle Q^{*}\equiv {\frac {P_{\text{fus}}}{P_{\text{heat}}-P_{\text{temp}}}}} 641: 601: 593: 245: 28: 1755:"The Mirror Fusion Test Facility: An Intermediate Device to a Mirror Fusion Reactor" 420:
Since the 1950s, most commercial fusion reactor designs have been based on a mix of
3979: 3967: 3870: 3591: 2638: 2628: 2474: 1119: 253: 200: 58: 46: 2383:
Lawson, John (1957). "Some Criteria for a Power Producing Thermonuclear Reactor".
1806: 362:, are extremely inefficient, about 1%. If one were to use a similar definition of 2424: 2145: 3880: 3845: 3835: 3482: 3386: 2746: 2734: 2712: 570: 1754: 488:. In this case, the basic definition changes by adding additional terms to the 394:
To make this distinction clear, modern works often refer to this definition as
3865: 2367: 2203: 1127: 566: 1997: 3903: 3544: 3041: 2761: 2680: 2675: 2618: 565:
that produces more tritium that is used to fuel the reactor. Due to various
421: 125: 2131: 1069:
increases, and less energy is needed from external sources to keep it hot.
2413: 1778: 1384:
Some debate over this definition continues. In 1998, the operators of the
640:
is on the order of 60 to 70%, while modern generator systems based on the
120:, are very expensive, so many experiments run on various test gasses like 3955: 2849: 2281:"With explosive new result, laser-powered fusion effort nears 'ignition'" 2123: 1550:
in Lawson's original paper, but changed here to match modern terminology.
121: 24: 3743: 3314: 2927: 2766: 2751: 2739: 2566: 1717: 562: 499: 425: 140: 117: 2091:(Technical report). Lawrence Livermore National Laboratory. p. 2. 1161:
Efficiency values depend on design details but may be in the range of
3326: 3292: 3134: 1669: 2303:"DOE National Laboratory Makes History by Achieving Fusion Ignition" 348:, but instead included in the calculation of engineering breakeven, 19: 3173: 3926: 3532: 3470: 3445: 3199: 3163: 3129: 3124: 2874: 2844: 1385: 1054:
and thus require much higher Q values, on the order of 50 to 100.
359: 159: 18: 3117: 2942: 2633: 2044: 2042: 1219: 1135: 2447: 1968: 1966: 1964: 2415:
Q, Break-even and the nτE Diagram for Transient Fusion Plasmas
1571:
to refer to the power balance, as it is used in this article.
1027:, while inertial devices have dramatically lower values for 2218:"Latest Fusion Results from the National Ignition Facility" 533:. If this self-heating process is perfect, that is, all of 2150:. National Academies Press. July 2013. pp. 45, 53. 1923: 1921: 1919: 1917: 1915: 899:
is used, consider a reactor operating at 20 MW and
2354:
Entler, Slavomir (June 2015). "Engineering Breakeven".
2192:"Laser fusion experiment extracts net energy from fuel" 1494:
announced that NIF had exceeded the previously elusive
1418:
values, and changes the definition of breakeven to be
1403:(LLNL), the leader in ICF research, uses the modified 713:, of around 0.20 to 0.25. That is, about 20 to 25% of 495:
side to consider the efficiencies of these processes.
224:
and all of the energy expended producing the pulse in
2327:"National Ignition Facility achieves fusion ignition" 2062:"JT-60U Reaches 1.25 of Equivalent Fusion Power Gain" 1627: 1625: 1623: 1325: 1256: 1033: 1000: 942: 878: 749: 719: 686: 650: 610: 573:
reactions, the blanket may have a power gain factor M
203:
being released by the fusion reactions in a reactor,
1890: 1888: 1886: 1884: 1882: 1880: 1830:"Fusion reactors: Not what they're cracked up to be" 1087:
Ignition, by definition, corresponds to an infinite
4029:
International Fusion Materials Irradiation Facility
3992: 3912: 3889: 3821: 3814: 3803: 3756: 3712: 3658: 3617: 3571: 3496: 3454: 3394: 3385: 3220: 3091: 2961: 2935: 2926: 2915: 2904: 2862: 2835: 2807: 2784: 2688: 2600: 2589: 2580: 2489: 2482: 1468:of 0.0077. For this press release, they re-defined 1138:can reach this goal is being debated in the field. 1364: 1311: 1243:and is therefore not indicative of an operational 1046: 1019: 961: 891: 862: 732: 705: 672: 632: 143:(as recorded during actual D-T fusion) was set by 2418:. 17th IEEE/NPSS Symposium on Fusion Engineering. 2147:Assessment of Inertial Confinement Fusion Targets 1365:{\displaystyle P_{\text{temp}}={\frac {dWp}{dt}}} 16:Ratio of energy in to out in a fusion power plant 2262:"Fusion "Breakthrough" at NIF? Uh, Not Really …" 1567:referred to the power balance. Later works used 210:, to the constant heating power being supplied, 1534:In this case, "heat" is somewhat of a misnomer. 502:and a smaller amount as charged particles like 2385:Proceedings of the Physical Society, Section B 2048: 2033: 1984: 1972: 1686:An Introduction to Inertial Confinement Fusion 498:D-T reactions release most of their energy as 373:process itself. Thus, it is typical to define 53:reactor to the power required to maintain the 2459: 1122:and any financing costs related to that, its 8: 2173:"Nuclear fusion milestone passed at US lab" 1692:. CRC Press. pp. 13–24. Archived from 980:= 2 cannot reach engineering breakeven. At 3818: 3811: 3577: 3391: 2932: 2923: 2912: 2597: 2586: 2486: 2466: 2452: 2444: 1957:. Department of Energy. 1981. p. 8.5. 2017:"Fusion Research: Time to Set a New Path" 1339: 1330: 1324: 1300: 1287: 1276: 1270: 1261: 1255: 1038: 1032: 1005: 999: 947: 941: 883: 877: 848: 826: 813: 800: 790: 779: 769: 763: 754: 748: 724: 718: 691: 685: 655: 649: 615: 609: 116:. Additionally, fusion fuels, especially 108:in this way is referred to as running at 2240:"Scientific Breakeven for Fusion Energy" 1126:including fuel and maintenance, and the 2423:McCracken, Garry; Stott, Peter (2005). 1849: 1847: 1845: 1843: 1718:"ITER Applauds NIF Fusion Breakthrough" 1589: 1511: 589:, the net power output of the reactor. 513:, then the power in these particles is 169:= 1.25, slightly besting JET's earlier 2002:Lawrence Livermore National Laboratory 1939: 1927: 1906: 1643: 1631: 1401:Lawrence Livermore National Laboratory 1894: 1559:In Lawson's original paper, the term 1114:The final definition of breakeven is 412:, to contrast it with similar terms. 7: 39:, usually expressed with the symbol 1735:Hurricane, Omar (24 October 2023). 1608:from the original on April 22, 2024 1047:{\displaystyle \eta _{\text{heat}}} 592:The blanket is then cooled and the 2224:. 13 February 2014. Archived from 1802:17th IAEA Fusion Energy Conference 1753:Karpenko, V. N. (September 1983). 1492:United States Department of Energy 14: 2260:Clery, Daniel (10 October 2013). 2190:Ball, Philip (12 February 2014). 1834:Bulletin of the Atomic Scientists 1805:. 19 October 1998. Archived from 291:to maintain thermal equilibrium. 4000: 3973: 3961: 3944: 3932: 3920: 3897: 3829: 3778: 3766: 3737: 3720: 3680: 3668: 3639: 3627: 3597: 3585: 3538: 3526: 3504: 3476: 3464: 3439: 3402: 3356: 3344: 3332: 3320: 3298: 3281: 3264: 3240: 3228: 3205: 3193: 3181: 3157: 3140: 3101: 3069: 3052: 2981: 2969: 2279:Clery, Daniel (17 August 2021). 1828:Jassby, Daniel (19 April 2017). 929:of 1.15 for the blanket, we get 199:is simply the comparison of the 4034:ITER Neutral Beam Test Facility 2171:Rincon, Paul (7 October 2013). 2064:. 7 August 1998. Archived from 1472:once again, this time equating 936:about 18.4 MW. Assuming a good 151:= 0.67 in 1997. The record for 135:The current record for highest 2015:Hirsch, Robert (Summer 2015). 854: 835: 270:. Some amount of this energy, 176:= 1.14. In December 2022, the 1: 969:of 0.25, that requires 24 MW 294:The most basic definition of 2698:Field-reversed configuration 2412:Meade, Dale (October 1997). 2087:Moses, Edward (4 May 2007). 1091:, but it does not mean that 673:{\displaystyle \eta _{elec}} 633:{\displaystyle \eta _{heat}} 2023:. Vol. 31, no. 4. 1954:Laser Program Annual Report 1759:Nuclear Technology - Fusion 1457:(NIF). In this experiment, 1396:Scientific breakeven at NIF 962:{\displaystyle \eta _{NPC}} 706:{\displaystyle \eta _{NPC}} 326:inertial confinement fusion 4087: 2405:10.1088/0370-1301/70/1/303 2049:McCracken & Stott 2005 2034:McCracken & Stott 2005 1985:McCracken & Stott 2005 1973:McCracken & Stott 2005 1455:National Ignition Facility 1436:but continued to refer to 1061: 907:= 2 at 20 MW implies that 252:, and a review article by 178:National Ignition Facility 4024: 3580: 2552:Fusion energy gain factor 2368:10.1007/s10894-014-9830-2 2204:10.1038/nature.2014.14710 2089:Status of the NIF Project 1490:On 13 December 2022, the 37:fusion energy gain factor 2356:Journal of Fusion Energy 1987:, pp. 43, 130, 166. 1388:claimed to have reached 2477:, processes and devices 1206:Transient vs. continual 1020:{\displaystyle Q_{E}=1} 1366: 1313: 1048: 1021: 963: 893: 864: 734: 707: 674: 634: 458:Another related term, 437:extrapolated breakeven 416:Extrapolated breakeven 130:extrapolated breakeven 69:, or in some sources, 32: 1779:10.13182/FST83-A22885 1683:Pfalzner, S. (2006). 1604:. December 13, 2022. 1450:simply as breakeven. 1367: 1314: 1130:of electrical power. 1062:Further information: 1049: 1022: 964: 894: 892:{\displaystyle Q_{E}} 865: 740:can be recirculated. 735: 733:{\displaystyle P_{R}} 708: 675: 635: 600:driving conventional 460:engineering breakeven 454:Engineering breakeven 110:engineering breakeven 23:The explosion of the 22: 2614:Triple-alpha process 2562:Magnetohydrodynamics 2514:List of technologies 2124:10.1364/AO.20.001902 2021:Issues in Technology 1502: of 1.54. 1323: 1254: 1222:is designed to have 1212:magnetic confinement 1116:commercial breakeven 1110:Commercial breakeven 1031: 998: 991:is between 2 and 4. 940: 876: 747: 717: 684: 648: 608: 396:scientific breakeven 320:Scientific breakeven 182:inertial confinement 71:scientific breakeven 3692:Lockheed Martin CFR 2646:Proton–proton chain 2509:List of experiments 2397:1957PPSB...70....6L 2116:1981ApOpt..20.1902A 2036:, pp. 33, 186. 1942:, pp. 514–515. 1856:"Plasma Dictionary" 1809:on 15 December 2018 1771:1983NucTF...4..308K 1724:. 12 December 2022. 387:, one arrives at a 88: ≈ 5. If 61:. The condition of 27:hydrogen bomb. The 2725:Dense plasma focus 2429:. Academic Press. 1362: 1309: 1147:the D-T reaction, 1044: 1017: 976:, so a reactor at 959: 889: 872:To understand how 860: 730: 703: 670: 630: 184:facility, reached 114:economic breakeven 45:, is the ratio of 33: 4046: 4045: 4042: 4041: 4020: 4019: 3988: 3987: 3939:Asterix IV (PALS) 3752: 3751: 3654: 3653: 3567: 3566: 3381: 3380: 2900: 2899: 2858: 2857: 2817:Bubble (acoustic) 2799:Magnetized target 2776:Toroidal solenoid 2532: 2531: 2068:on 6 January 2013 1860:Nagoya University 1664:(5368): 139–142. 1543:This was denoted 1360: 1333: 1307: 1303: 1290: 1279: 1142:Practical example 1041: 858: 851: 829: 816: 803: 785: 782: 772: 4076: 4069:Energy economics 4005: 4004: 4003: 3978: 3977: 3976: 3966: 3965: 3964: 3949: 3948: 3947: 3937: 3936: 3935: 3925: 3924: 3923: 3902: 3901: 3900: 3834: 3833: 3832: 3819: 3812: 3783: 3782: 3781: 3771: 3770: 3769: 3758:Magneto-inertial 3742: 3741: 3740: 3725: 3724: 3723: 3685: 3684: 3683: 3673: 3672: 3671: 3644: 3643: 3642: 3632: 3631: 3630: 3602: 3601: 3600: 3590: 3589: 3588: 3578: 3558: 3543: 3542: 3541: 3531: 3530: 3529: 3516:Wendelstein 7-AS 3509: 3508: 3507: 3481: 3480: 3479: 3469: 3468: 3467: 3444: 3443: 3442: 3407: 3406: 3405: 3392: 3361: 3360: 3359: 3349: 3348: 3347: 3337: 3336: 3335: 3325: 3324: 3323: 3303: 3302: 3301: 3286: 3285: 3284: 3269: 3268: 3267: 3260: 3245: 3244: 3243: 3233: 3232: 3231: 3210: 3209: 3208: 3198: 3197: 3196: 3186: 3185: 3184: 3177: 3162: 3161: 3160: 3145: 3144: 3143: 3106: 3105: 3104: 3084: 3074: 3073: 3072: 3057: 3056: 3055: 3010:Electric Tokamak 2986: 2985: 2984: 2974: 2973: 2972: 2933: 2924: 2913: 2794:Magnetized liner 2786:Magneto-inertial 2703:Levitated dipole 2598: 2587: 2557:Lawson criterion 2487: 2468: 2461: 2454: 2445: 2440: 2419: 2408: 2379: 2341: 2340: 2338: 2337: 2323: 2317: 2316: 2314: 2313: 2299: 2293: 2292: 2276: 2270: 2269: 2257: 2251: 2250: 2244: 2236: 2230: 2229: 2228:on 24 June 2021. 2214: 2208: 2207: 2187: 2181: 2180: 2168: 2162: 2161: 2142: 2136: 2135: 2099: 2093: 2092: 2084: 2078: 2077: 2075: 2073: 2058: 2052: 2046: 2037: 2031: 2025: 2024: 2012: 2006: 2005: 1994: 1988: 1982: 1976: 1970: 1959: 1958: 1949: 1943: 1937: 1931: 1925: 1910: 1904: 1898: 1892: 1875: 1874: 1872: 1871: 1862:. Archived from 1851: 1838: 1837: 1825: 1819: 1818: 1816: 1814: 1797: 1791: 1790: 1765:(2P2): 308–315. 1750: 1744: 1743: 1741: 1732: 1726: 1725: 1714: 1708: 1707: 1705: 1704: 1698: 1691: 1680: 1674: 1673: 1670:10.1038/239139a0 1653: 1647: 1641: 1635: 1629: 1618: 1617: 1615: 1613: 1594: 1572: 1557: 1551: 1541: 1535: 1532: 1526: 1518:Or very rarely, 1516: 1371: 1369: 1368: 1363: 1361: 1359: 1351: 1340: 1335: 1334: 1331: 1318: 1316: 1315: 1310: 1308: 1306: 1305: 1304: 1301: 1292: 1291: 1288: 1281: 1280: 1277: 1271: 1266: 1265: 1168:= 0.7 (70%) and 1053: 1051: 1050: 1045: 1043: 1042: 1039: 1026: 1024: 1023: 1018: 1010: 1009: 968: 966: 965: 960: 958: 957: 898: 896: 895: 890: 888: 887: 869: 867: 866: 861: 859: 857: 853: 852: 849: 831: 830: 827: 818: 817: 814: 805: 804: 801: 791: 786: 784: 783: 780: 774: 773: 770: 764: 759: 758: 739: 737: 736: 731: 729: 728: 712: 710: 709: 704: 702: 701: 679: 677: 676: 671: 669: 668: 639: 637: 636: 631: 629: 628: 258:Lawson criterion 4086: 4085: 4079: 4078: 4077: 4075: 4074: 4073: 4049: 4048: 4047: 4038: 4016: 4001: 3999: 3984: 3974: 3972: 3962: 3960: 3945: 3943: 3933: 3931: 3921: 3919: 3908: 3898: 3896: 3885: 3830: 3828: 3806: 3799: 3779: 3777: 3767: 3765: 3748: 3738: 3736: 3721: 3719: 3708: 3681: 3679: 3669: 3667: 3650: 3640: 3638: 3628: 3626: 3613: 3598: 3596: 3586: 3584: 3563: 3552: 3539: 3537: 3527: 3525: 3521:Wendelstein 7-X 3505: 3503: 3492: 3477: 3475: 3465: 3463: 3456: 3450: 3440: 3438: 3403: 3401: 3377: 3357: 3355: 3345: 3343: 3333: 3331: 3321: 3319: 3299: 3297: 3282: 3280: 3265: 3263: 3254: 3241: 3239: 3229: 3227: 3216: 3206: 3204: 3194: 3192: 3182: 3180: 3171: 3158: 3156: 3141: 3139: 3102: 3100: 3093: 3087: 3078: 3070: 3068: 3053: 3051: 2982: 2980: 2970: 2968: 2957: 2918: 2907: 2896: 2854: 2831: 2803: 2780: 2708:Magnetic mirror 2684: 2671:Silicon-burning 2656:Lithium burning 2593: 2582: 2576: 2542:Nuclear reactor 2528: 2478: 2472: 2437: 2422: 2411: 2382: 2362:(3): 513–518}. 2353: 2350: 2345: 2344: 2335: 2333: 2325: 2324: 2320: 2311: 2309: 2301: 2300: 2296: 2278: 2277: 2273: 2259: 2258: 2254: 2242: 2238: 2237: 2233: 2216: 2215: 2211: 2189: 2188: 2184: 2170: 2169: 2165: 2158: 2144: 2143: 2139: 2110:(11): 1902–24. 2101: 2100: 2096: 2086: 2085: 2081: 2071: 2069: 2060: 2059: 2055: 2047: 2040: 2032: 2028: 2014: 2013: 2009: 1996: 1995: 1991: 1983: 1979: 1971: 1962: 1951: 1950: 1946: 1938: 1934: 1926: 1913: 1905: 1901: 1893: 1878: 1869: 1867: 1853: 1852: 1841: 1827: 1826: 1822: 1812: 1810: 1799: 1798: 1794: 1752: 1751: 1747: 1739: 1734: 1733: 1729: 1716: 1715: 1711: 1702: 1700: 1696: 1689: 1682: 1681: 1677: 1655: 1654: 1650: 1646:, pp. 8–9. 1642: 1638: 1630: 1621: 1611: 1609: 1596: 1595: 1591: 1586: 1581: 1576: 1575: 1558: 1554: 1549: 1542: 1538: 1533: 1529: 1524: 1517: 1513: 1508: 1478: 1463: 1449: 1442: 1431: 1424: 1413: 1398: 1380: 1352: 1341: 1326: 1321: 1320: 1296: 1283: 1282: 1272: 1257: 1252: 1251: 1242: 1229: 1208: 1197: 1193: 1181: 1174: 1167: 1153: 1144: 1124:operating costs 1112: 1105: 1097: 1078: 1066: 1064:Fusion ignition 1060: 1034: 1029: 1028: 1001: 996: 995: 989: 974: 943: 938: 937: 934: 927: 920: 913: 879: 874: 873: 844: 822: 809: 796: 795: 775: 765: 750: 745: 744: 720: 715: 714: 687: 682: 681: 651: 646: 645: 611: 606: 605: 588: 580: 576: 553: 546: 539: 532: 526: 519: 512: 504:alpha particles 494: 482: 475: 468: 456: 445: 418: 411: 404: 386: 379: 368: 354: 342: 333:superconducting 322: 315: 308: 290: 283: 276: 269: 250:Peter Thonemann 237: 230: 223: 216: 209: 194: 175: 168: 157: 17: 12: 11: 5: 4084: 4083: 4080: 4072: 4071: 4066: 4061: 4051: 4050: 4044: 4043: 4040: 4039: 4037: 4036: 4031: 4025: 4022: 4021: 4018: 4017: 4015: 4014: 4009: 3996: 3994: 3990: 3989: 3986: 3985: 3983: 3982: 3970: 3958: 3953: 3941: 3929: 3916: 3914: 3910: 3909: 3907: 3906: 3893: 3891: 3887: 3886: 3884: 3883: 3878: 3873: 3868: 3863: 3858: 3853: 3848: 3843: 3838: 3825: 3823: 3816: 3809: 3801: 3800: 3798: 3797: 3792: 3787: 3775: 3762: 3760: 3754: 3753: 3750: 3749: 3747: 3746: 3734: 3729: 3716: 3714: 3710: 3709: 3707: 3706: 3705: 3704: 3694: 3689: 3677: 3664: 3662: 3656: 3655: 3652: 3651: 3649: 3648: 3636: 3623: 3621: 3615: 3614: 3612: 3611: 3606: 3594: 3581: 3575: 3569: 3568: 3565: 3564: 3562: 3561: 3560: 3559: 3535: 3523: 3518: 3513: 3500: 3498: 3494: 3493: 3491: 3490: 3485: 3473: 3460: 3458: 3452: 3451: 3449: 3448: 3436: 3431: 3426: 3421: 3416: 3411: 3398: 3396: 3389: 3383: 3382: 3379: 3378: 3376: 3375: 3370: 3365: 3353: 3341: 3329: 3317: 3312: 3307: 3295: 3290: 3278: 3273: 3261: 3249: 3237: 3224: 3222: 3218: 3217: 3215: 3214: 3202: 3190: 3178: 3166: 3154: 3149: 3137: 3132: 3127: 3122: 3121: 3120: 3110: 3097: 3095: 3089: 3088: 3086: 3085: 3066: 3061: 3049: 3044: 3039: 3034: 3033: 3032: 3027: 3017: 3012: 3007: 3002: 3001: 3000: 2990: 2978: 2965: 2963: 2959: 2958: 2956: 2955: 2950: 2945: 2939: 2937: 2930: 2921: 2910: 2902: 2901: 2898: 2897: 2895: 2894: 2889: 2887:Muon-catalyzed 2884: 2879: 2878: 2877: 2870:Colliding beam 2866: 2864: 2860: 2859: 2856: 2855: 2853: 2852: 2847: 2841: 2839: 2833: 2832: 2830: 2829: 2824: 2819: 2813: 2811: 2805: 2804: 2802: 2801: 2796: 2790: 2788: 2782: 2781: 2779: 2778: 2773: 2772: 2771: 2770: 2769: 2759: 2749: 2744: 2743: 2742: 2737: 2732: 2730:Reversed field 2727: 2717: 2716: 2715: 2705: 2700: 2694: 2692: 2686: 2685: 2683: 2678: 2673: 2668: 2666:Oxygen-burning 2663: 2658: 2653: 2651:Carbon-burning 2648: 2643: 2642: 2641: 2631: 2626: 2621: 2616: 2611: 2606: 2604: 2595: 2584: 2578: 2577: 2575: 2574: 2569: 2564: 2559: 2554: 2549: 2547:Atomic nucleus 2544: 2539: 2533: 2530: 2529: 2527: 2526: 2521: 2516: 2511: 2506: 2501: 2499:Burning plasma 2495: 2493: 2491:Nuclear fusion 2484: 2480: 2479: 2473: 2471: 2470: 2463: 2456: 2448: 2442: 2441: 2435: 2420: 2409: 2380: 2349: 2346: 2343: 2342: 2318: 2294: 2271: 2252: 2231: 2209: 2182: 2163: 2156: 2137: 2104:Applied Optics 2094: 2079: 2053: 2051:, p. 166. 2038: 2026: 2007: 1989: 1977: 1960: 1944: 1932: 1930:, p. 514. 1911: 1909:, p. 513. 1899: 1876: 1854:Razzak, M. A. 1839: 1820: 1792: 1745: 1727: 1709: 1675: 1648: 1636: 1619: 1588: 1587: 1585: 1582: 1580: 1577: 1574: 1573: 1552: 1547: 1536: 1527: 1522: 1510: 1509: 1507: 1504: 1476: 1461: 1447: 1440: 1429: 1422: 1411: 1397: 1394: 1378: 1358: 1355: 1350: 1347: 1344: 1338: 1329: 1299: 1295: 1286: 1275: 1269: 1264: 1260: 1240: 1227: 1207: 1204: 1195: 1191: 1179: 1172: 1165: 1151: 1143: 1140: 1134:concepts like 1111: 1108: 1103: 1095: 1076: 1059: 1056: 1037: 1016: 1013: 1008: 1004: 987: 972: 956: 953: 950: 946: 932: 925: 918: 911: 886: 882: 856: 847: 843: 840: 837: 834: 825: 821: 812: 808: 799: 794: 789: 778: 768: 762: 757: 753: 727: 723: 700: 697: 694: 690: 667: 664: 661: 658: 654: 627: 624: 621: 618: 614: 602:steam turbines 598:heat exchanger 586: 578: 574: 551: 544: 537: 530: 524: 517: 510: 492: 480: 473: 466: 455: 452: 443: 417: 414: 409: 402: 384: 377: 366: 352: 340: 321: 318: 313: 306: 302:= 1, that is, 288: 281: 274: 267: 236: 233: 228: 221: 214: 207: 193: 190: 173: 166: 155: 51:nuclear fusion 49:produced in a 15: 13: 10: 9: 6: 4: 3: 2: 4082: 4081: 4070: 4067: 4065: 4062: 4060: 4057: 4056: 4054: 4035: 4032: 4030: 4027: 4026: 4023: 4013: 4010: 4008: 3998: 3997: 3995: 3991: 3981: 3971: 3969: 3959: 3957: 3954: 3952: 3942: 3940: 3930: 3928: 3918: 3917: 3915: 3911: 3905: 3895: 3894: 3892: 3888: 3882: 3879: 3877: 3874: 3872: 3869: 3867: 3864: 3862: 3859: 3857: 3854: 3852: 3849: 3847: 3844: 3842: 3839: 3837: 3827: 3826: 3824: 3820: 3817: 3813: 3810: 3808: 3802: 3796: 3795:Fusion Engine 3793: 3791: 3790:FRX-L – FRCHX 3788: 3786: 3776: 3774: 3764: 3763: 3761: 3759: 3755: 3745: 3735: 3733: 3730: 3728: 3718: 3717: 3715: 3711: 3703: 3700: 3699: 3698: 3695: 3693: 3690: 3688: 3678: 3676: 3666: 3665: 3663: 3661: 3657: 3647: 3637: 3635: 3625: 3624: 3622: 3620: 3616: 3610: 3607: 3605: 3595: 3593: 3583: 3582: 3579: 3576: 3574: 3570: 3556: 3551: 3548: 3547: 3546: 3536: 3534: 3524: 3522: 3519: 3517: 3514: 3512: 3502: 3501: 3499: 3495: 3489: 3486: 3484: 3474: 3472: 3462: 3461: 3459: 3453: 3447: 3437: 3435: 3432: 3430: 3427: 3425: 3422: 3420: 3417: 3415: 3412: 3410: 3400: 3399: 3397: 3393: 3390: 3388: 3384: 3374: 3371: 3369: 3366: 3364: 3354: 3352: 3342: 3340: 3330: 3328: 3318: 3316: 3313: 3311: 3308: 3306: 3296: 3294: 3291: 3289: 3288:ASDEX Upgrade 3279: 3277: 3274: 3272: 3262: 3258: 3253: 3250: 3248: 3238: 3236: 3226: 3225: 3223: 3219: 3213: 3203: 3201: 3191: 3189: 3179: 3175: 3170: 3167: 3165: 3155: 3153: 3150: 3148: 3138: 3136: 3133: 3131: 3128: 3126: 3123: 3119: 3116: 3115: 3114: 3111: 3109: 3099: 3098: 3096: 3090: 3082: 3077: 3067: 3065: 3062: 3060: 3050: 3048: 3045: 3043: 3040: 3038: 3035: 3031: 3028: 3026: 3023: 3022: 3021: 3018: 3016: 3013: 3011: 3008: 3006: 3003: 2999: 2996: 2995: 2994: 2991: 2989: 2988:Alcator C-Mod 2979: 2977: 2967: 2966: 2964: 2960: 2954: 2951: 2949: 2946: 2944: 2941: 2940: 2938: 2936:International 2934: 2931: 2929: 2925: 2922: 2920: 2914: 2911: 2909: 2903: 2893: 2890: 2888: 2885: 2883: 2882:Metal lattice 2880: 2876: 2873: 2872: 2871: 2868: 2867: 2865: 2861: 2851: 2848: 2846: 2843: 2842: 2840: 2838: 2837:Electrostatic 2834: 2828: 2825: 2823: 2820: 2818: 2815: 2814: 2812: 2810: 2806: 2800: 2797: 2795: 2792: 2791: 2789: 2787: 2783: 2777: 2774: 2768: 2765: 2764: 2763: 2760: 2758: 2755: 2754: 2753: 2750: 2748: 2745: 2741: 2738: 2736: 2733: 2731: 2728: 2726: 2723: 2722: 2721: 2718: 2714: 2711: 2710: 2709: 2706: 2704: 2701: 2699: 2696: 2695: 2693: 2691: 2687: 2682: 2679: 2677: 2674: 2672: 2669: 2667: 2664: 2662: 2659: 2657: 2654: 2652: 2649: 2647: 2644: 2640: 2637: 2636: 2635: 2632: 2630: 2627: 2625: 2622: 2620: 2617: 2615: 2612: 2610: 2609:Alpha process 2607: 2605: 2603: 2602:Gravitational 2599: 2596: 2592: 2588: 2585: 2579: 2573: 2570: 2568: 2565: 2563: 2560: 2558: 2555: 2553: 2550: 2548: 2545: 2543: 2540: 2538: 2537:Nuclear power 2535: 2534: 2525: 2522: 2520: 2517: 2515: 2512: 2510: 2507: 2505: 2502: 2500: 2497: 2496: 2494: 2492: 2488: 2485: 2481: 2476: 2469: 2464: 2462: 2457: 2455: 2450: 2449: 2446: 2438: 2436:9780123846563 2432: 2428: 2427: 2421: 2417: 2416: 2410: 2406: 2402: 2398: 2394: 2390: 2386: 2381: 2377: 2373: 2369: 2365: 2361: 2357: 2352: 2351: 2347: 2332: 2328: 2322: 2319: 2308: 2304: 2298: 2295: 2290: 2286: 2282: 2275: 2272: 2267: 2263: 2256: 2253: 2248: 2241: 2235: 2232: 2227: 2223: 2219: 2213: 2210: 2205: 2201: 2197: 2193: 2186: 2183: 2178: 2174: 2167: 2164: 2159: 2157:9780309270625 2153: 2149: 2148: 2141: 2138: 2133: 2129: 2125: 2121: 2117: 2113: 2109: 2105: 2098: 2095: 2090: 2083: 2080: 2067: 2063: 2057: 2054: 2050: 2045: 2043: 2039: 2035: 2030: 2027: 2022: 2018: 2011: 2008: 2003: 1999: 1993: 1990: 1986: 1981: 1978: 1975:, p. 42. 1974: 1969: 1967: 1965: 1961: 1956: 1955: 1948: 1945: 1941: 1936: 1933: 1929: 1924: 1922: 1920: 1918: 1916: 1912: 1908: 1903: 1900: 1896: 1891: 1889: 1887: 1885: 1883: 1881: 1877: 1866:on 2018-10-03 1865: 1861: 1857: 1850: 1848: 1846: 1844: 1840: 1835: 1831: 1824: 1821: 1808: 1804: 1803: 1796: 1793: 1788: 1784: 1780: 1776: 1772: 1768: 1764: 1760: 1756: 1749: 1746: 1738: 1731: 1728: 1723: 1719: 1713: 1710: 1699:on 2021-01-09 1695: 1688: 1687: 1679: 1676: 1671: 1667: 1663: 1659: 1652: 1649: 1645: 1640: 1637: 1633: 1628: 1626: 1624: 1620: 1607: 1603: 1599: 1593: 1590: 1583: 1578: 1570: 1566: 1562: 1556: 1553: 1546: 1540: 1537: 1531: 1528: 1521: 1515: 1512: 1505: 1503: 1501: 1497: 1493: 1488: 1486: 1481: 1475: 1471: 1467: 1460: 1456: 1451: 1446: 1439: 1435: 1428: 1421: 1417: 1410: 1407:that defines 1406: 1402: 1395: 1393: 1391: 1387: 1382: 1377: 1372: 1356: 1353: 1348: 1345: 1342: 1336: 1327: 1297: 1293: 1284: 1273: 1267: 1262: 1258: 1248: 1246: 1236: 1234: 1225: 1221: 1216: 1213: 1205: 1203: 1201: 1187: 1185: 1178: 1171: 1164: 1159: 1157: 1150: 1141: 1139: 1137: 1131: 1129: 1125: 1121: 1117: 1109: 1107: 1102: 1094: 1090: 1085: 1083: 1075: 1070: 1065: 1057: 1055: 1035: 1014: 1011: 1006: 1002: 992: 990: 983: 979: 975: 954: 951: 948: 944: 935: 928: 917: 910: 906: 902: 884: 880: 870: 845: 841: 838: 832: 823: 819: 810: 806: 797: 792: 787: 776: 766: 760: 755: 751: 741: 725: 721: 698: 695: 692: 688: 665: 662: 659: 656: 652: 643: 642:Rankine cycle 625: 622: 619: 616: 612: 603: 599: 595: 594:cooling fluid 590: 585: 572: 568: 564: 560: 555: 550: 543: 536: 529: 523: 516: 509: 505: 501: 496: 491: 487: 486:recirculation 479: 472: 465: 461: 453: 451: 447: 442: 438: 433: 431: 427: 423: 415: 413: 408: 405:or sometimes 401: 397: 392: 390: 383: 376: 370: 365: 361: 356: 355:(see below). 351: 347: 339: 334: 329: 327: 319: 317: 312: 305: 301: 297: 292: 287: 280: 273: 266: 261: 259: 255: 251: 247: 246:Hans Thirring 242: 234: 232: 227: 220: 213: 206: 202: 198: 191: 189: 187: 183: 179: 172: 165: 161: 154: 150: 146: 142: 138: 133: 131: 127: 123: 119: 115: 111: 107: 101: 99: 95: 91: 87: 83: 79: 74: 72: 68: 64: 60: 56: 52: 48: 44: 43: 38: 30: 29:hydrogen bomb 26: 21: 4059:Fusion power 3592:Perhapsatron 2892:Pyroelectric 2822:Laser-driven 2661:Neon-burning 2629:Helium flash 2551: 2475:Fusion power 2425: 2414: 2388: 2384: 2359: 2355: 2348:Bibliography 2334:. Retrieved 2331:www.llnl.gov 2330: 2321: 2310:. Retrieved 2306: 2297: 2284: 2274: 2265: 2255: 2246: 2234: 2226:the original 2221: 2212: 2195: 2185: 2176: 2166: 2146: 2140: 2107: 2103: 2097: 2088: 2082: 2070:. Retrieved 2066:the original 2056: 2029: 2020: 2010: 2001: 1992: 1980: 1953: 1947: 1935: 1902: 1868:. Retrieved 1864:the original 1859: 1833: 1823: 1811:. Retrieved 1807:the original 1801: 1795: 1762: 1758: 1748: 1730: 1721: 1712: 1701:. Retrieved 1694:the original 1685: 1678: 1661: 1657: 1651: 1639: 1634:, p. 6. 1610:. Retrieved 1601: 1592: 1568: 1564: 1560: 1555: 1544: 1539: 1530: 1519: 1514: 1499: 1495: 1489: 1484: 1482: 1473: 1469: 1465: 1458: 1452: 1444: 1437: 1433: 1426: 1419: 1415: 1408: 1404: 1399: 1389: 1383: 1375: 1373: 1249: 1244: 1237: 1232: 1223: 1217: 1209: 1188: 1183: 1176: 1169: 1162: 1160: 1155: 1148: 1145: 1132: 1120:capital cost 1115: 1113: 1100: 1092: 1088: 1086: 1081: 1073: 1071: 1067: 993: 985: 981: 977: 970: 930: 923: 915: 908: 904: 900: 871: 742: 591: 583: 556: 548: 541: 534: 527: 521: 514: 507: 497: 489: 485: 477: 470: 463: 459: 457: 448: 440: 436: 434: 419: 406: 399: 395: 393: 388: 381: 374: 371: 363: 357: 349: 345: 337: 330: 323: 310: 303: 299: 295: 293: 285: 278: 271: 264: 262: 254:Richard Post 238: 225: 218: 211: 204: 196: 195: 185: 170: 163: 152: 148: 136: 134: 129: 113: 109: 105: 102: 97: 93: 89: 85: 81: 78:self-heating 77: 75: 70: 66: 62: 59:steady state 47:fusion power 41: 40: 36: 34: 3807:confinement 3553: [ 3483:Heliotron J 3387:Stellarator 3255: [ 3172: [ 3079: [ 2919:confinement 2908:experiments 2863:Other forms 2747:Stellarator 2713:Bumpy torus 2591:Confinement 2483:Core topics 2391:(6): 6–10. 1940:Entler 2015 1928:Entler 2015 1907:Entler 2015 1644:Lawson 1957 1632:Lawson 1957 1194:= 0.7 and η 1072:Eventually 571:endothermic 241:John Lawson 4053:Categories 2827:Ion-driven 2581:Processes, 2524:Aneutronic 2519:Commercial 2336:2022-12-13 2312:2022-12-13 2307:Energy.gov 2072:5 December 1998:"Glossary" 1895:Meade 1997 1870:2017-07-27 1813:13 October 1703:2018-10-13 1579:References 1128:spot price 596:used in a 567:exothermic 462:, denoted 4012:Z machine 3993:Non-laser 3904:GEKKO XII 3856:Long path 3550:Uragan-3M 3545:Uragan-2M 3042:Riggatron 2762:Spheromak 2757:Spherical 2681:S-process 2676:R-process 2619:CNO cycle 2376:189913715 1787:117938343 1584:Citations 1374:That is, 1294:− 1268:≡ 1263:∗ 1036:η 945:η 842:− 833:⋅ 824:η 820:⋅ 807:⋅ 798:η 761:≡ 689:η 653:η 613:η 430:bioactive 422:deuterium 296:breakeven 239:In 1955, 235:Breakeven 126:deuterium 67:breakeven 3956:LULI2000 3822:Americas 3805:Inertial 3395:Americas 2962:Americas 2917:Magnetic 2906:Devices, 2850:Polywell 2809:Inertial 2690:Magnetic 2639:remnants 2504:Timeline 2177:BBC News 2132:20332859 1606:Archived 1082:ignition 1058:Ignition 500:neutrons 298:is when 122:hydrogen 94:ignition 25:Ivy Mike 3841:Cyclops 3773:SPECTOR 3744:Trisops 3604:Sceptre 3457:Oceania 3429:Model C 3315:IGNITOR 3247:COMPASS 3094:Oceania 3076:Novillo 3037:Pegasus 2928:Tokamak 2767:Dynomak 2752:Tokamak 2583:methods 2567:Neutron 2393:Bibcode 2285:Science 2266:Science 2112:Bibcode 1767:Bibcode 1319:where: 563:lithium 559:blanket 450:value. 426:tritium 192:Concept 162:, with 141:tokamak 118:tritium 106:powered 4064:Energy 3980:Vulcan 3913:Europe 3687:Astron 3660:Mirror 3497:Europe 3363:MAST-U 3327:ISTTOK 3293:TEXTOR 3221:Europe 3147:ADITYA 3135:SUNIST 3005:DIII-D 2976:STOR-M 2572:Plasma 2433:  2426:Fusion 2374:  2196:Nature 2154:  2130:  1785:  1658:Nature 1612:May 1, 1186:= 22. 1180:recirc 1104:recirc 1096:recirc 815:recirc 410:plasma 360:lasers 55:plasma 4007:PACER 3968:ISKRA 3927:HiPER 3881:Shiva 3876:OMEGA 3846:Janus 3836:Argus 3815:Laser 3785:Linus 3713:Other 3573:Pinch 3557:] 3533:TJ-II 3471:H-1NF 3455:Asia, 3446:SCR-1 3419:HIDRA 3368:START 3259:] 3252:GOLEM 3200:KSTAR 3188:GLAST 3176:] 3169:QUEST 3164:JT-60 3152:SST-1 3130:HL-2M 3125:HL-2A 3108:CFETR 3092:Asia, 3083:] 3064:TCABR 2998:SPARC 2953:PROTO 2875:Migma 2845:Fusor 2735:Theta 2720:Pinch 2624:Fusor 2372:S2CID 2243:(PDF) 2222:HiPER 1783:S2CID 1740:(PDF) 1697:(PDF) 1690:(PDF) 1506:Notes 1448:laser 1430:laser 1386:JT-60 1224:shots 1158:= 5. 903:= 2. 644:have 561:" of 481:total 201:power 180:, an 160:JT-60 139:in a 104:self- 3890:Asia 3871:Nova 3866:Nike 3851:LIFE 3732:PFRC 3697:MFTF 3609:ZETA 3511:WEGA 3434:NCSX 3373:STEP 3339:T-15 3276:WEST 3212:TT-1 3118:HT-7 3113:EAST 3047:SSPX 3030:TFTR 3020:NSTX 2948:DEMO 2943:ITER 2740:Zeta 2634:Nova 2594:type 2431:ISBN 2289:AAAS 2247:FIRE 2152:ISBN 2128:PMID 2074:2016 1815:2018 1722:ITER 1614:2024 1477:heat 1412:heat 1379:temp 1332:temp 1302:temp 1289:heat 1228:heat 1220:ITER 1200:DEMO 1196:elec 1192:heat 1173:elec 1166:heat 1136:ITER 1077:heat 1040:heat 919:heat 912:heat 828:elec 802:heat 781:heat 569:and 424:and 385:heat 378:heat 367:heat 341:heat 314:heat 289:heat 282:loss 275:loss 229:heat 215:heat 3951:LMJ 3861:NIF 3727:LDX 3702:TMX 3675:GDT 3646:MST 3634:RFX 3619:RFP 3488:LHD 3424:HSX 3414:CTH 3409:CNT 3351:TCV 3310:FTU 3305:DTT 3271:TFR 3235:JET 3059:ETE 3025:PLT 3015:LTX 2993:ARC 2401:doi 2364:doi 2200:doi 2120:doi 1775:doi 1666:doi 1662:239 1523:fus 1462:fus 1441:fus 1423:fus 1278:fus 1241:fus 771:fus 577:. M 552:fus 531:fus 493:fus 476:or 474:eng 444:ext 403:sci 353:eng 307:fus 268:fus 222:fus 208:fus 174:ext 167:ext 156:ext 147:at 145:JET 124:or 57:in 4055:: 3555:uk 3257:cs 3174:ja 3081:es 2399:. 2389:70 2387:. 2370:. 2360:34 2358:. 2329:. 2305:. 2287:. 2283:. 2264:. 2245:. 2220:. 2198:. 2194:. 2175:. 2126:. 2118:. 2108:20 2106:. 2041:^ 2019:. 2000:. 1963:^ 1914:^ 1879:^ 1858:. 1842:^ 1832:. 1781:. 1773:. 1761:. 1757:. 1720:. 1660:. 1622:^ 1600:. 1443:= 1425:/ 1247:. 1202:. 1152:ch 850:ch 554:. 545:ch 538:ch 525:ch 520:= 518:ch 511:ch 469:, 439:, 398:, 316:. 309:= 284:= 260:. 248:, 132:. 100:. 73:. 35:A 2467:e 2460:t 2453:v 2439:. 2407:. 2403:: 2395:: 2378:. 2366:: 2339:. 2315:. 2291:. 2268:. 2249:. 2206:. 2202:: 2179:. 2160:. 2134:. 2122:: 2114:: 2076:. 2004:. 1897:. 1873:. 1836:. 1817:. 1789:. 1777:: 1769:: 1763:4 1742:. 1706:. 1672:. 1668:: 1616:. 1569:Q 1565:R 1561:Q 1548:R 1545:P 1525:. 1520:Q 1500:Q 1496:Q 1485:Q 1474:P 1470:Q 1466:Q 1459:P 1445:P 1438:P 1434:Q 1427:P 1420:P 1416:Q 1409:P 1405:Q 1390:Q 1376:P 1357:t 1354:d 1349:p 1346:W 1343:d 1337:= 1328:P 1298:P 1285:P 1274:P 1259:Q 1245:Q 1233:Q 1190:η 1184:Q 1177:f 1170:η 1163:η 1156:Q 1149:f 1101:f 1093:f 1089:Q 1074:P 1015:1 1012:= 1007:E 1003:Q 988:E 986:Q 982:Q 978:Q 973:R 971:P 955:C 952:P 949:N 933:R 931:P 926:R 924:M 916:P 909:P 905:Q 901:Q 885:E 881:Q 855:) 846:f 839:1 836:( 811:f 793:1 788:= 777:P 767:P 756:E 752:Q 726:R 722:P 699:C 696:P 693:N 666:c 663:e 660:l 657:e 626:t 623:a 620:e 617:h 587:R 584:P 579:R 575:R 549:P 547:) 542:f 535:P 528:P 522:f 515:P 508:f 490:P 478:Q 471:Q 467:E 464:Q 441:Q 407:Q 400:Q 389:Q 382:P 375:P 364:P 350:Q 346:Q 338:P 311:P 304:P 300:Q 286:P 279:P 272:P 265:P 226:P 219:P 212:P 205:P 197:Q 186:Q 171:Q 164:Q 153:Q 149:Q 137:Q 98:Q 90:Q 86:Q 82:Q 63:Q 42:Q

Index


Ivy Mike
hydrogen bomb
fusion power
nuclear fusion
plasma
steady state
tritium
hydrogen
deuterium
tokamak
JET
JT-60
National Ignition Facility
inertial confinement
power
John Lawson
Hans Thirring
Peter Thonemann
Richard Post
Lawson criterion
inertial confinement fusion
superconducting
lasers
deuterium
tritium
bioactive
neutrons
alpha particles
blanket

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.