Knowledge (XXG)

Secure Communications Interoperability Protocol

Source đź“ť

335:(FEC) to ensure reliable transmission. The receiving station acknowledges accurate receipt of data blocks and can ask for a block to be re-transmitted, if necessary. For voice, SCIP simply sends a stream of voice data frames (typically MELPe frames, but possibly G.729D or another codec if that has been negotiated between the terminals). To save power on voice calls, SCIP stops sending if there is no speech input. A synchronization block is sent roughly twice a second in place of a data frame. The low order 14 bits of the encryption counter are sent with every sync block. The 14 bits are enough to cover a fade out of more than six minutes. Part of the rest of the state vector are sent as well so that with receipt of three sync blocks, the entire state vector is recovered. This handles longer fades and allows a station with the proper TEK to join a multi station net and be synchronized within 1.5 seconds. 36: 1304: 181:(STE) which made assumptions about the underlying communication systems that prevented interoperability with more modern wireless systems. STE sets can be upgraded to work with SCIP, but STU-III cannot. This has led to some resistance since various government agencies already own over 350,000 STU-III telephones at a cost of several thousand dollars each. 350:
Prior to this, SCIP specifications were not widely diffused or easily accessible. This made the protocol for government use rather "opaque" outside governments or defense industries. No public implementation of the Type 1 security and transport protocols are available, precluding its security from
295:
The low-order two bits of the state vector are reserved for applications where the data frame is longer than the block cipher output. The next 42 bits are the counter. Four bits are used to represent the transmission mode. This allows more than one mode, e.g. voice and data, to operate at the same
263:
The security used by the multinational and national modes of SCIP is defined by the SCIP 23x family of documents. SCIP 231 defines AES based cryptography which can be used multinationally. SCIP 232 defines an alternate multinational cryptographic solution. Several nations have defined, or are
254:
2400 bit/s MELPe is the only mandatory voice coder required for SCIP. Other voice coders can be supported in terminals. These can be used if all terminals involved in the call support the same coder (agreed during the negotiation stage of call setup) and the network can support the required
247:, with additional preprocessing, analyzer and synthesizer capabilities for improved intelligibility and noise robustness. The old MELP and the new MELPe are interoperable and both operate at 2400 bit/s, sending a 54 bit data frame every 22.5 112:) project. SCIP supports a number of different modes, including national and multinational modes which employ different cryptography. Many nations and industries develop SCIP devices to support the multinational and national modes of SCIP. 315:, SCIP specifies that two data frames are encrypted with each cipher output bloc, the first beginning at bit 1, the second at bit 57 (i.e. the next byte boundary). At least one commercial grade implementation uses the 255:
throughput. G.729D is the most widely supported non-mandatory voice coder in SCIP terminals as it offers a good compromise between higher voice quality without dramatically increasing the required throughput.
300:, it is essential that the same state vector value never be used twice for a given TEK. At MELP data rates, a 42-bit counter allows a call over three thousand years long before the encryption repeats. 296:
time with the same TEK. The high-order 16 bits are a sender ID. This allows multiple senders on a single channel to all use the same TEK. Note that since overall SCIP encryption is effectively a
1284: 1114: 1342: 327:
The SCIP signalling plan is common to all national and multinational modes of SCIP. SCIP has two mandatory types of transmission. The mandatory data service uses an
526: 184:
There are several components to the SCIP standard: key management, voice compression, encryption and a signalling plan for voice, data and multimedia applications.
967: 205: 462:
SCIP-related documents are made available through the Information Assurance Directorate web site. Documents can be retrieved by typing "SCIP" into the
101: 491: 143:
in that once a connection is made, two SCIP phones first negotiate the parameters they need and then communicate in the best way possible.
272:
SCIP 230 defines the cryptography of the US national mode of SCIP. The rest of this section refers to SCIP 230. For security, SCIP uses a
57: 519: 162: 240: 960: 79: 1332: 223:
STEs use security tokens to limit use of the secure voice capability to authorized users while other SCIP devices only require a
442: 1163: 512: 343:
As of March 2011 a range of SCIP documents, including the SCIP-210 signalling standard, are publicly available from the
224: 288:) as input. If the cipher's block size is longer than 64 bits, a fixed filler is added. The output from the block cipher is 1347: 132: 953: 312: 1279: 1234: 1047: 50: 44: 1158: 492:
https://web.archive.org/web/20060530160027/http://www.hfindustry.com/Sept05/Sept2005_Presentations/HFIAbriefing.ppt
1274: 905: 824: 410: 178: 61: 1264: 1254: 1109: 589: 332: 328: 166: 147: 131:
standards. Therefore, it was designed to make no assumptions about the underlying channel other than a minimum
814: 420: 1259: 1249: 1052: 1012: 1005: 995: 990: 890: 614: 609: 549: 213: 120: 1337: 1000: 751: 170: 1307: 1153: 1099: 885: 880: 855: 660: 655: 1269: 1193: 918: 604: 564: 115:
SCIP has to operate over the wide variety of communications systems, including commercial land line
1032: 913: 799: 1138: 1122: 1069: 193: 128: 1198: 1188: 1059: 1133: 104:
one-to-one connections, not packet-switched networks. SCIP derived from the US Government
599: 446: 155: 1208: 1128: 1089: 1037: 1022: 700: 685: 650: 594: 554: 304: 217: 201: 151: 1326: 1289: 1244: 1203: 1183: 1079: 1042: 1017: 746: 541: 297: 124: 439: 212:
messaging system for key exchange. FIREFLY is an NSA key management system based on
1239: 1084: 1074: 1064: 1027: 976: 766: 360: 277: 273: 463: 1218: 804: 670: 415: 248: 1178: 1148: 1143: 1104: 779: 316: 292:
with the MELP data frames to create the cipher text that is then transmitted.
284:) is negotiated for each call. The block cipher is fed a 64-bit state vector ( 1168: 116: 1213: 1173: 928: 923: 251:
but the MELPe has optional additional rates of 1200 bit/s and 600 bit/s.
165:
Digital Voice Processor Consortium (DDVPC) in cooperation with the U.S.
834: 819: 774: 726: 705: 390: 236: 209: 174: 311:, a 128-bit block design. With this or other 128-bit ciphers, such as 1094: 895: 875: 839: 829: 756: 629: 624: 619: 579: 559: 400: 395: 17: 482: 870: 865: 860: 794: 789: 741: 736: 731: 721: 695: 680: 665: 634: 584: 569: 405: 375: 344: 308: 244: 146:
US SCIP or FNBDT systems were used since 2001, beginning with the
140: 136: 784: 690: 675: 574: 450: 385: 380: 370: 365: 100:) is a US standard for secure voice and data communication, for 949: 508: 227:
code, 7 digits for Type 1 security, 4 digits for unclassified.
289: 29: 239:. The standard requires, as a minimum, support for the 1115:
Cryptographically secure pseudorandom number generator
488:
Secure Communications Interoperability Protocols, SCIP
264:
defining, their own national security modes for SCIP.
496: 216:. At least one commercial grade implementation uses 1227: 983: 904: 848: 765: 714: 643: 540: 453:discusses the prospects for FNBDT for NATO in 2003 243:(MELP) coder, an enhanced MELP algorithm known as 208:calls), the SCIP signalling plan uses an enhanced 192:To set up a secure call, a new Traffic Encryption 231:Voice compression using Voice Coders (vocoders) 169:and is intended to solve problems with earlier 94:Secure Communications Interoperability Protocol 961: 520: 8: 1343:National Security Agency encryption devices 968: 954: 946: 527: 513: 505: 501: 497: 479:Securing the Wireless Environment (FNBDT) 80:Learn how and when to remove this message 464:IAD SecurePhone document search web page 43:This article includes a list of general 432: 27:US standard for secure communications 7: 150:. The standard is designed to cover 241:mixed-excitation linear prediction 106:Future Narrowband Digital Terminal 49:it lacks sufficient corresponding 25: 1303: 1302: 483:http://wireless.securephone.net/ 280:. A new Traffic Encryption Key ( 235:SCIP can work with a variety of 34: 1164:Information-theoretic security 1: 490:, HFIA briefing available at 139:. It is similar to a dial-up 1280:Message authentication code 1235:Cryptographic hash function 1048:Cryptographic hash function 421:Sectéra secure voice family 268:US National Mode (SCIP 230) 127:and the several different 1364: 1159:Harvest now, decrypt later 481:, briefing available from 200:) must be negotiated. For 1298: 1275:Post-quantum cryptography 945: 504: 500: 411:Secure Terminal Equipment 351:being publicly verified. 179:Secure Terminal Equipment 161:SCIP was designed by the 158:voice and data security. 1265:Quantum key distribution 1255:Authenticated encryption 1110:Random number generation 333:forward error correction 167:National Security Agency 148:CONDOR secure cell phone 121:communication satellites 1333:Cryptographic protocols 1260:Public-key cryptography 1250:Symmetric-key algorithm 1053:Key derivation function 1013:Cryptographic primitive 1006:Authentication protocol 996:Outline of cryptography 991:History of cryptography 214:public key cryptography 64:more precise citations. 1001:Cryptographic protocol 752:Siemens and Halske T52 171:NSA encryption systems 1154:End-to-end encryption 1100:Cryptojacking malware 815:Sectéra Secure Module 440:Introduction to FNBDT 323:Signalling plan (210) 307:security, SCIP uses 259:Encryption (SCIP 23x) 173:for voice, including 163:Department of Defense 1348:Secure communication 1270:Quantum cryptography 1194:Trusted timestamping 919:Intel SHA extensions 188:Key Management (120) 1033:Cryptographic nonce 914:AES instruction set 119:, military radios, 1139:Subliminal channel 1123:Pseudorandom noise 1070:Key (cryptography) 445:2016-11-04 at the 129:cellular telephone 1320: 1319: 1316: 1315: 1199:Key-based routing 1189:Trapdoor function 1060:Digital signature 941: 940: 937: 936: 906:Computer hardware 651:Bazeries cylinder 90: 89: 82: 16:(Redirected from 1355: 1306: 1305: 1134:Insecure channel 970: 963: 956: 947: 529: 522: 515: 506: 502: 498: 466: 460: 454: 437: 416:L-3 Omni/Omni xi 102:circuit-switched 85: 78: 74: 71: 65: 60:this article by 51:inline citations 38: 37: 30: 21: 1363: 1362: 1358: 1357: 1356: 1354: 1353: 1352: 1323: 1322: 1321: 1312: 1294: 1223: 979: 974: 933: 900: 844: 761: 747:Lorenz SZ 40/42 710: 639: 536: 535:Cipher machines 533: 475: 470: 469: 461: 457: 447:Wayback Machine 438: 434: 429: 357: 341: 325: 270: 261: 233: 190: 86: 75: 69: 66: 56:Please help to 55: 39: 35: 28: 23: 22: 15: 12: 11: 5: 1361: 1359: 1351: 1350: 1345: 1340: 1335: 1325: 1324: 1318: 1317: 1314: 1313: 1311: 1310: 1299: 1296: 1295: 1293: 1292: 1287: 1285:Random numbers 1282: 1277: 1272: 1267: 1262: 1257: 1252: 1247: 1242: 1237: 1231: 1229: 1225: 1224: 1222: 1221: 1216: 1211: 1209:Garlic routing 1206: 1201: 1196: 1191: 1186: 1181: 1176: 1171: 1166: 1161: 1156: 1151: 1146: 1141: 1136: 1131: 1129:Secure channel 1126: 1120: 1119: 1118: 1107: 1102: 1097: 1092: 1090:Key stretching 1087: 1082: 1077: 1072: 1067: 1062: 1057: 1056: 1055: 1050: 1040: 1038:Cryptovirology 1035: 1030: 1025: 1023:Cryptocurrency 1020: 1015: 1010: 1009: 1008: 998: 993: 987: 985: 981: 980: 975: 973: 972: 965: 958: 950: 943: 942: 939: 938: 935: 934: 932: 931: 926: 921: 916: 910: 908: 902: 901: 899: 898: 893: 888: 883: 878: 873: 868: 863: 858: 852: 850: 846: 845: 843: 842: 837: 832: 827: 822: 817: 812: 807: 802: 797: 792: 787: 782: 777: 771: 769: 763: 762: 760: 759: 754: 749: 744: 739: 734: 729: 724: 718: 716: 712: 711: 709: 708: 703: 701:Reihenschieber 698: 693: 688: 686:Jefferson disk 683: 678: 673: 668: 663: 658: 653: 647: 645: 641: 640: 638: 637: 632: 627: 622: 617: 612: 607: 602: 597: 592: 587: 582: 577: 572: 567: 562: 557: 552: 546: 544: 542:Rotor machines 538: 537: 534: 532: 531: 524: 517: 509: 495: 494: 485: 474: 471: 468: 467: 455: 431: 430: 428: 425: 424: 423: 418: 413: 408: 403: 398: 393: 388: 383: 378: 373: 368: 363: 356: 353: 340: 337: 331:protocol with 324: 321: 269: 266: 260: 257: 232: 229: 220:key exchange. 218:Diffie-Hellman 189: 186: 88: 87: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1360: 1349: 1346: 1344: 1341: 1339: 1338:Speech codecs 1336: 1334: 1331: 1330: 1328: 1309: 1301: 1300: 1297: 1291: 1290:Steganography 1288: 1286: 1283: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1245:Stream cipher 1243: 1241: 1238: 1236: 1233: 1232: 1230: 1226: 1220: 1217: 1215: 1212: 1210: 1207: 1205: 1204:Onion routing 1202: 1200: 1197: 1195: 1192: 1190: 1187: 1185: 1184:Shared secret 1182: 1180: 1177: 1175: 1172: 1170: 1167: 1165: 1162: 1160: 1157: 1155: 1152: 1150: 1147: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1124: 1121: 1116: 1113: 1112: 1111: 1108: 1106: 1103: 1101: 1098: 1096: 1093: 1091: 1088: 1086: 1083: 1081: 1080:Key generator 1078: 1076: 1073: 1071: 1068: 1066: 1063: 1061: 1058: 1054: 1051: 1049: 1046: 1045: 1044: 1043:Hash function 1041: 1039: 1036: 1034: 1031: 1029: 1026: 1024: 1021: 1019: 1018:Cryptanalysis 1016: 1014: 1011: 1007: 1004: 1003: 1002: 999: 997: 994: 992: 989: 988: 986: 982: 978: 971: 966: 964: 959: 957: 952: 951: 948: 944: 930: 927: 925: 922: 920: 917: 915: 912: 911: 909: 907: 903: 897: 894: 892: 889: 887: 884: 882: 879: 877: 874: 872: 869: 867: 864: 862: 859: 857: 854: 853: 851: 847: 841: 838: 836: 833: 831: 828: 826: 823: 821: 818: 816: 813: 811: 808: 806: 803: 801: 798: 796: 793: 791: 788: 786: 783: 781: 778: 776: 773: 772: 770: 768: 764: 758: 755: 753: 750: 748: 745: 743: 740: 738: 735: 733: 730: 728: 725: 723: 720: 719: 717: 713: 707: 704: 702: 699: 697: 694: 692: 689: 687: 684: 682: 679: 677: 674: 672: 669: 667: 664: 662: 659: 657: 654: 652: 649: 648: 646: 642: 636: 633: 631: 628: 626: 623: 621: 618: 616: 613: 611: 608: 606: 603: 601: 598: 596: 593: 591: 588: 586: 583: 581: 578: 576: 573: 571: 568: 566: 563: 561: 558: 556: 553: 551: 548: 547: 545: 543: 539: 530: 525: 523: 518: 516: 511: 510: 507: 503: 499: 493: 489: 486: 484: 480: 477: 476: 472: 465: 459: 456: 452: 448: 444: 441: 436: 433: 426: 422: 419: 417: 414: 412: 409: 407: 404: 402: 399: 397: 394: 392: 389: 387: 384: 382: 379: 377: 374: 372: 369: 367: 364: 362: 359: 358: 354: 352: 348: 346: 338: 336: 334: 330: 322: 320: 318: 314: 310: 306: 301: 299: 298:stream cipher 293: 291: 287: 283: 279: 276:operating in 275: 267: 265: 258: 256: 252: 250: 246: 242: 238: 230: 228: 226: 221: 219: 215: 211: 207: 203: 199: 195: 187: 185: 182: 180: 176: 172: 168: 164: 159: 157: 153: 149: 144: 142: 138: 134: 130: 126: 125:Voice over IP 122: 118: 113: 111: 107: 103: 99: 95: 84: 81: 73: 63: 59: 53: 52: 46: 41: 32: 31: 19: 1240:Block cipher 1085:Key schedule 1075:Key exchange 1065:Kleptography 1028:Cryptosystem 977:Cryptography 809: 767:Secure voice 560:M-125 Fialka 487: 478: 458: 435: 361:Secure voice 349: 342: 339:Availability 326: 302: 294: 285: 281: 278:counter mode 274:block cipher 271: 262: 253: 249:milliseconds 234: 222: 197: 191: 183: 160: 145: 114: 109: 105: 97: 93: 91: 76: 70:October 2015 67: 48: 1228:Mathematics 1219:Mix network 715:Teleprinter 671:Cipher disk 345:IAD website 154:as well as 62:introducing 1327:Categories 1179:Ciphertext 1149:Decryption 1144:Encryption 1105:Ransomware 780:FASCINATOR 644:Mechanical 473:References 317:Triple DES 206:classified 204:security ( 156:narrowband 45:references 1169:Plaintext 133:bandwidth 117:telephone 1308:Category 1214:Kademlia 1174:Codetext 1117:(CSPRNG) 929:IBM 4764 924:IBM 4758 891:Pinwheel 443:Archived 355:See also 319:cipher. 237:vocoders 152:wideband 135:of 2400 984:General 835:STU-III 820:SIGSALY 775:BID 150 727:BID 770 706:Scytale 630:Singlet 590:Mercury 391:LPC-10e 210:FIREFLY 175:STU-III 58:improve 1095:Keygen 896:Rockex 886:Purple 876:Noreen 840:VINSON 830:STU-II 800:NESTOR 757:SIGTOT 625:SIGCUM 620:SIGABA 580:Lacida 565:Hebern 555:Enigma 401:FS1016 396:FS1015 305:Type 1 202:Type 1 47:, but 1125:(PRN) 871:KL-51 866:KL-43 861:KG-84 849:Other 795:KY-68 790:KY-58 742:KW-37 737:KW-26 732:DUDEK 722:5-UCO 696:M-209 681:Kryha 666:CD-57 635:Typex 615:SG-41 610:SG-39 585:M-325 570:HX-63 427:Notes 406:ANDVT 376:MELPe 309:BATON 290:xored 245:MELPe 141:modem 110:FNBDT 18:FNBDT 856:JADE 810:SCIP 805:OMNI 785:KY-3 691:M-94 676:HC-9 661:C-52 656:C-36 595:NEMA 575:KL-7 451:NC3A 386:CELP 381:CVSD 371:MELP 366:ZRTP 303:For 177:and 98:SCIP 92:The 881:Red 825:STE 605:RED 600:OMI 550:CCM 449:by 329:ARQ 313:AES 282:TEK 225:PIN 198:TEK 194:Key 1329:: 347:. 286:SV 137:Hz 123:, 969:e 962:t 955:v 528:e 521:t 514:v 196:( 108:( 96:( 83:) 77:( 72:) 68:( 54:. 20:)

Index

FNBDT
references
inline citations
improve
introducing
Learn how and when to remove this message
circuit-switched
telephone
communication satellites
Voice over IP
cellular telephone
bandwidth
Hz
modem
CONDOR secure cell phone
wideband
narrowband
Department of Defense
National Security Agency
NSA encryption systems
STU-III
Secure Terminal Equipment
Key
Type 1
classified
FIREFLY
public key cryptography
Diffie-Hellman
PIN
vocoders

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑