Knowledge (XXG)

Semiconductor device fabrication

Source đź“ť

478:. FOUPs in many fabs contain an internal nitrogen atmosphere which helps prevent copper from oxidizing on the wafers. Copper is used in modern semiconductors for wiring. The insides of the processing equipment and FOUPs is kept cleaner than the surrounding air in the cleanroom. This internal atmosphere is known as a mini-environment and helps improve yield which is the amount of working devices on a wafer. This mini environment is within an EFEM (equipment front end module) which allows a machine to receive FOUPs, and introduces wafers from the FOUPs into the machine. Additionally many machines also handle wafers in clean nitrogen or vacuum environments to reduce contamination and improve process control. Fabrication plants need large amounts of liquid nitrogen to maintain the atmosphere inside production machinery and FOUPs, which are constantly purged with nitrogen. There can also be an air curtain or a mesh between the FOUP and the EFEM which helps reduce the amount of humidity that enters the FOUP and improves yield. 904:. During this shortage caused by the COVID-19 pandemic, many semiconductor manufacturers banned employees from leaving company grounds. Many countries granted subsidies to semiconductor companies for building new fabrication plants or fabs. Many companies were affected by counterfeit chips. Semiconductors have become vital to the world economy and the national security of some countries. The US has asked TSMC to not produce semiconductors for Huawei, a Chinese company. CFET transistors were explored, which stacks NMOS and PMOS transistors on top of each other. Two approaches were evaluated for constructing these transistors: a monolithic approach which built both types of transistors in one process, and a sequential approach which built the two types of transistors separately and then stacked them. 723:
once, were developed to carry several wafers between process steps, but wafers had to be individually removed from the carrier, processed and returned to the carrier, so acid-resistant carriers were developed to eliminate this time consuming process, so the entire cassette with wafers was dipped into wet etching and wet cleaning tanks. When wafer sizes increased to 100 mm, the entire cassette would often not be dipped as uniformly, and the quality of the results across the wafer became hard to control. By the time 150 mm wafers arrived, the cassettes were not dipped and were only used as wafer carriers and holders to store wafers, and robotics became prevalent for handling wafers. With 200 mm wafers manual handling of wafer cassettes becomes risky as they are heavier.
2039:
defects. A particle needs to be 1/5 the size of a feature to cause a killer defect. So if a feature is 100 nm across, a particle only needs to be 20 nm across to cause a killer defect. Electrostatic electricity can also affect yield adversely. Chemical contaminants or impurities include heavy metals such as iron, copper, nickel, zinc, chromium, gold, mercury and silver, alkali metals such as sodium, potassium and lithium, and elements such as aluminum, magnesium, calcium, chlorine, sulfur, carbon, and fluorine. It is important for these elements to not remain in contact with the silicon, as they could reduce yield. Chemical mixtures may be used to remove these elements from the silicon; different mixtures are effective against different elements.
2035:
dust particles, however since the 1990s, yield degradation is mainly caused by process variation, the process itself and by the tools used in chip manufacturing, although dust still remains a problem in many older fabs. Dust particles have an increasing effect on yield as feature sizes are shrunk with newer processes. Automation and the use of mini environments inside of production equipment, FOUPs and SMIFs have enabled a reduction in defects caused by dust particles. Device yield must be kept high to reduce the selling price of the working chips since working chips have to pay for those chips that failed, and to reduce the cost of wafer processing. Yield can also be affected by the design and operation of the fab.
827:, thus the conventional notion of a process node has become blurred. Additionally, TSMC and Samsung's 10 nm processes are only slightly denser than Intel's 14 nm in transistor density. They are actually much closer to Intel's 14 nm process than they are to Intel's 10 nm process (e.g. Samsung's 10 nm processes' fin pitch is the exact same as that of Intel's 14 nm process: 42 nm). Intel has changed the name of its 10 nm process to position it as a 7 nm process. As transistors become smaller, new effects start to influence design decisions such as self-heating of the transistors, and other effects such as electromigration have become more evident since the 16 nm node. 1725:, creating dummy gates, manufacturing sources and drains by ion deposition and dopant annealing, depositing an "interlevel dielectric (ILD)" and then polishing, and removing the dummy gates to replace them with a metal whose workfunction depended on whether the transistor was NMOS or PMOS, thus creating the metal gate. A third process, full silicidation (FUSI) was not pursued due to manufacturing problems. Gate-first became dominant at the 22 nm/20 nm node. HKMG has been extended from planar transistors for use in FinFET and nanosheet transistors. Hafnium silicon oxynitride can also be used instead of hafnium oxide. 1989:
according to predetermined test limits such as maximum operating frequencies/clocks, number of working (fully functional) cores per chip, etc. The resulting binning data can be graphed, or logged, on a wafer map to trace manufacturing defects and mark bad chips. This map can also be used during wafer assembly and packaging. Binning allows chips that would otherwise be rejected to be reused in lower-tier products, as is the case with GPUs and CPUs, increasing device yield, especially since very few chips are fully functional (have all cores functioning correctly, for example).
845:: horizontal and vertical nanowires, horizontal nanosheet transistors (Samsung MBCFET, Intel Nanoribbon), vertical FET (VFET) and other vertical transistors, complementary FET (CFET), stacked FET, vertical TFETs, FinFETs with III-V semiconductor materials (III-V FinFET), several kinds of horizontal gate-all-around transistors such as nano-ring, hexagonal wire, square wire, and round wire gate-all-around transistors and negative-capacitance FET (NC-FET) which uses drastically different materials. FD-SOI was seen as a potential low cost alternative to FinFETs. 1475:. These ingots are then sliced into wafers about 0.75 mm thick and polished to obtain a very regular and flat surface. During the production process wafers are often grouped into lots, which are represented by a FOUP, SMIF or a wafer cassette, which are wafer carriers. FOUPs and SMIFs can be transported in the fab between machines and equipment with an automated OHT (Overhead Hoist Transport) AMHS (Automated Material Handling System). Besides SMIFs and FOUPs, wafer cassettes can be placed in a wafer box or a wafer carrying box. 1378: 838:(FinFETs), where the gate surrounds the channel on three sides, allowing for increased energy efficiency and lower gate delay—and thus greater performance—over planar transistors at the 22nm node, because planar transistors which only have one surface acting as a channel, started to suffer from short channel effects. A startup called SuVolta created a technology called Deeply Depleted Channel (DDC) to compete with FinFET transistors, which uses planar transistors at the 65 nm node which are very lightly doped. 1412:(FFUs) at regular intervals to constantly replace and filter the air in the cleanroom; semiconductor capital equipment may also have their own FFUs to clean air in the equipment's EFEM which allows the equipment to receive wafers in FOUPs. The FFUs, combined with raised floors with grills, help ensure a laminar air flow, to ensure that particles are immediately brought down to the floor and do not stay suspended in the air due to turbulence. The workers in a semiconductor fabrication facility are required to wear 2128:
finished, packaged chips, are called the back end, post-fab, ATMP (Assembly, Test, Marking, and Packaging) or ATP (Assembly, Test and Packaging) of semiconductor manufacturing, and may be carried out by OSAT (OutSourced Assembly and Test) companies which are separate from semiconductor foundries. A foundry is a company or fab performing manufacturing processes such as photolithography and etching that are part of the front end of semiconductor manufacturing.
1834: 808:'s 130 nm, 90 nm, 65 nm, 45 nm and 32 nm single, dual, quad, six and eight core processors made since 2001. During the transition from 200 mm to 300 mm wafers in 2001, many bridge tools were used which could process both 200 mm and 300 mm wafers. At the time, 18 companies could manufacture chips in the leading edge 130 nm process. 57: 752:
wafers. The semiconductor industry has adopted larger wafers to cope with the increased demand for chips as larger wafers provide more surface area per wafer. Over time, the industry shifted to 300 mm wafers which brought along the adoption of FOUPs, but many products that are not advanced are still produced in 200 mm wafers such as analog ICs, RF chips, power ICs,
508:
is used as a measurement of area for different parts of a semiconductor device, based on the feature size of a semiconductor manufacturing process. Many semiconductor devices are designed in sections called cells, and each cell represents a small part of the device such as a memory cell to store data. Thus F is used to measure the area taken up by these cells or sections.
2047:
achieve the same functions of larger dies or surpass them, and smaller features require reduced process variation and increased purity (reduced contamination) to maintain high yields. Metrology tools are used to inspect the wafers during the production process and predict yield, so wafers predicted to have too many defects may be scrapped to save on processing costs.
1701:. Semiconductor equipment may have several chambers which process wafers in processes such as deposition and etching. Many pieces of equipment handle wafers between these chambers in an internal nitrogen or vacuum environment to improve process control. Wet benches with tanks containing chemical solutions were historically used for cleaning and etching wafers. 1819:
transistors, and an upper layer which is a tungsten plug that connects the transistors to the interconnect. Intel at the 10nm node introduced contact-over-active-gate (COAG) which, instead of placing the contact for connecting the transistor close to the gate of the transistor, places it directly over the gate of the transistor to improve transistor density.
1577:/resist ashing or by "wet" resist stripper chemistry. Wet etching was widely used in the 1960s and 1970s, but it was replaced by dry etching/plasma etching starting at the 10 micron to 3 micron nodes. This is because wet etching makes undercuts (etching under mask layers or resist layers with patterns). Dry etching has become the dominant etching technique. 31: 757:
Materials introduced the Producer, a cluster tool that had chambers grouped in pairs for processing wafers, which shared common vacuum and supply lines but were otherwise isolated, which was revolutionary at the time as it offered higher productivity than other cluster tools without sacrificing quality, due to the isolated chamber design.
6443:
Tateshita, Y.; Wang, J.; Nagano, K.; Hirano, T.; Miyanami, Y.; Ikuta, T.; Kataoka, T.; Kikuchi, Y.; Yamaguchi, S.; Ando, T.; Tai, K.; Matsumoto, R.; Fujita, S.; Yamane, C.; Yamamoto, R.; Kanda, S.; Kugimiya, K.; Kimura, T.; Ohchi, T.; Yamamoto, Y.; Nagahama, Y.; Hagimoto, Y.; Wakabayashi, H.; Tagawa,
2127:
The packaged chips are retested to ensure that they were not damaged during packaging and that the die-to-pin interconnect operation was performed correctly. A laser then etches the chip's name and numbers on the package. The steps involving testing and packaging of dies, followed by final testing of
2042:
Several models are used to estimate yield. They are Murphy's model, Poisson's model, the binomial model, Moore's model and Seeds' model. There is no universal model; a model has to be chosen based on actual yield distribution (the location of defective chips). For example, Murphy's model assumes that
2034:
Device yield or die yield is the number of working chips or dies on a wafer, given in percentage since the number of chips on a wafer (Die per wafer, DPW) can vary depending on the chips' size and the wafer's diameter. Yield degradation is a reduction in yield, which historically was mainly caused by
1600:
as it still required a separate furnace but ion implantation ultimately prevailed in the 1970s as it offers better reproducibility of results. Ion implantation is practical because of the high sensitivity of semiconductor devices to foreign atoms, as ion implantation does not deposit large numbers of
1428:
pods isolate the wafers from the air in the cleanroom, increasing yield because they reduce the number of defects caused by dust particles. Also, fabs have as few people as possible in the cleanroom to make maintaining the cleanroom environment easier, since people, even when wearing cleanroom suits,
747:
Until the 1980s, physical vapor deposition was the primary technique used for depositing materials onto wafers, until the advent of chemical vapor deposition. Equipment with diffusion pumps was replaced with those using turbomolecular pumps as the latter do not use oil which often contaminated wafers
507:
Feature size is determined by the width of the smallest lines that can be patterned in a semiconductor fabrication process, this measurement is known as the linewidth. Patterning often refers to photolithography which allows a device design or pattern to be defined on the device during fabrication. F
2976: 2204:
It is vital that workers not be directly exposed to these dangerous substances. The high degree of automation common in the IC fabrication industry helps to reduce the risks of exposure. Most fabrication facilities employ exhaust management systems, such as wet scrubbers, combustors, heated absorber
2046:
Smaller dies cost less to produce (since more fit on a wafer, and wafers are processed and priced as a whole), and can help achieve higher yields since smaller dies have a lower chance of having a defect, due to their lower surface area on the wafer. However, smaller dies require smaller features to
1818:
Since the 22 nm node, some manufacturers have added a new process called middle-of-line (MOL) which connects the transistors to the rest of the interconnect made in the BEoL process. The MOL is often based on tungsten and has upper and lower layers: the lower layer connects the junctions of the
722:
In the era of 2 inch wafers, these were handled manually using tweezers and held manually for the time required for a given process. Tweezers were replaced by vacuum wands as they generate fewer particles which can contaminate the wafers. Wafer carriers or cassettes, which can hold several wafers at
1896:
processing, which eliminates processing steps. As the number of interconnect levels increases, planarization of the previous layers is required to ensure a flat surface prior to subsequent lithography. Without it, the levels would become increasingly crooked, extending outside the depth of focus of
1729:
also be used to remove materials isotropically, in all directions at the same time but without the capability to create vertical walls. Plasma ALE was initially adopted for etching contacts in transistors, and since the 7 nm node it is also used to create transistor structures by etching them.
912:
This is a list of processing techniques that are employed numerous times throughout the construction of a modern electronic device; this list does not necessarily imply a specific order, nor that all techniques are taken during manufacture as, in practice the order and which techniques are applied,
751:
200 mm diameter wafers were first used in 1990 for making chips. These became the standard until the introduction of 300 mm diameter wafers in 2000. Bridge tools were used in the transition from 150 mm wafers to 200 mm wafers and in the transition from 200 mm to 300 mm
2001:
Usually, the fab charges for testing time, with prices in the order of cents per second. Testing times vary from a few milliseconds to a couple of seconds, and the test software is optimized for reduced testing time. Multiple chip (multi-site) testing is also possible because many testers have the
1728:
Since the 16 nm/14 nm node, atomic layer etching (ALE) is increasingly used for etching as it offers higher precision than other etching methods. In production, plasma ALE is commonly used, which removes materials unidirectionally, creating structures with vertical walls. Thermal ALE can
1595:
and polysilicon. Doping consists of introducing impurities into the atomic structure of a semiconductor material, in order to modify its electrical properties. Initially thermal diffusion with furnaces at 900-1200°C with gases containing dopants were used for doping wafers and there was resistance
797:
semiconductor companies, outsourcing their production to companies like TSMC. They also have facilities spread in different countries. As the average utilization of semiconductor devices increased, durability became an issue and manufacturers started to design their devices to ensure they last for
2038:
Tight control over contaminants and the production process are necessary to increase yield. Contaminants may be chemical contaminants or be dust particles. "Killer defects" are those caused by dust particles that cause complete failure of the device (such as a transistor). There are also harmless
1905:
is still sometimes employed when the number of interconnect levels is no more than three. Copper interconnects use an electrically conductive barrier layer to prevent the copper from diffusing into ("poisoning") its surroundings, often made of tantalum nitride. In 1997, IBM was the first to adopt
1988:
with an electronic tester that presses tiny probes against the chip. The machine marks each bad chip with a drop of dye. Currently, electronic dye marking is possible if wafer test data (results) are logged into a central computer database and chips are "binned" (i.e. sorted into virtual bins)
1572:
image on the wafer using short-wavelength light; the exposed regions (for "positive" resist) are washed away by a developer solution. The wafer then undergoes etching where materials not protected by the mask are removed. After removal or other processing, the remaining photoresist is removed by
1993:
may be used to disconnect parts of chips such as cores, either because they did not work as intended during binning, or as part of market segmentation (using the same chip for low, mid and high-end tiers). Chips may have spare parts to allow the chip to fully pass testing even if it has several
1717:
is not compatible with polysilicon gates which requires the use of a metal gate. Two approaches were used in production: gate-first and gate-last. Gate-first consists of depositing the high-k dielectric and then the gate metal such as tantalum nitride whose workfunction depends on whether the
756:
and MEMS devices. Some processes such as cleaning, ion implantation, etching, annealing and oxidation started to adopt single wafer processing instead of batch wafer processing in order to improve the reproducibility of results. A similar trend existed in MEMS manufacturing. In 1998, Applied
1644:
A recipe in semiconductor manufacturing is a list of conditions under which a wafer will be processed by a particular machine in a processing step during manufacturing. Process variability is a challenge in semiconductor processing, in which wafers are not processed evenly or the quality or
2043:
yield loss occurs more at the edges of the wafer (non-working chips are concentrated on the edges of the wafer), Poisson's model assumes that defective dies are spread relatively evenly across the wafer, and Seeds's model assumes that defective dies are clustered together.
1909:
In 2014, Applied Materials proposed the use of cobalt in interconnects at the 22 nm node, used for encapsulating copper interconnects in cobalt to prevent electromigration, replacing tantalum nitride since it needs to be thicker than cobalt in this application.
459:
nodes, fabrication can take up to 15 weeks, with 11–13 weeks being the industry average. Production in advanced fabrication facilities is completely automated, with automated material handling systems taking care of the transport of wafers from machine to machine.
1814:
BEoL has been used since 1995 at the 350 nm and 250 nm nodes (0.35 and 0.25 micron nodes), at the same time chemical mechanical polishing began to be employed. At the time, 2 metal layers for interconnect, also called metallization was state-of-the-art.
1704:
At the 90 nm node, transistor channels made with strain engineering were introduced to improve drive current in PMOS transistors by introducing regions with silicon-germanium in the transistor. The same was done in NMOS transistors at the 20 nm node.
566:
Initially transistor gate length was smaller than that suggested by the process node name (e.g. 350 nm node); however this trend reversed in 2009. Feature sizes can have no connection to the nanometers (nm) used in marketing. For example, Intel's former
2972: 7035: 1957:
Once the front-end process has been completed, the semiconductor devices or chips are subjected to a variety of electrical tests to determine if they function properly. The percent of devices on the wafer found to perform properly is referred to as the
896:
nodes. GlobalFoundries has decided to stop the development of new nodes beyond 12 nanometers in order to save resources, as it has determined that setting up a new fab to handle sub-12 nm orders would be beyond the company's financial abilities.
1718:
transistor is NMOS or PMOS, polysilicon deposition, gate line patterning, source and drain ion implantation, dopant anneal, and silicidation of the polysilicon and the source and drain. In DRAM memories this technology was first adopted in 2015.
515:
has specific rules on the minimum size (width or CD/Critical Dimension) and spacing for features on each layer of the chip. Normally a new semiconductor process has smaller minimum sizes and tighter spacing. In some cases, this allows a simple
1708:
In 2007, HKMG (high-k/metal gate) transistors were introduced by Intel at the 45 nm node, which replaced polysilicon gates which in turn replaced metal gate (aluminum gate) technology in the 1970s. High-k dielectric such as hafnium oxide
2013:" to speed testing and reduce testing costs. In certain designs that use specialized analog fab processes, wafers are also laser-trimmed during testing, in order to achieve tightly distributed resistance values as specified by the design. 1855:), blanket films of aluminum are deposited first, patterned, and then etched, leaving isolated wires. Dielectric material is then deposited over the exposed wires. The various metal layers are interconnected by etching holes (called " 1794:
of chip fabrication, which refers to the packaging and testing stages). BEOL processing involves creating metal interconnecting wires that are isolated by dielectric layers. The insulating material has traditionally been a form of
2065:
Once tested, a wafer is typically reduced in thickness in a process also known as "backlap", "backfinish", "wafer backgrind" or "wafer thinning" before the wafer is scored and then broken into individual dies, a process known as
1609:(RTA) to activate the dopants. Annealing was initially done at 500 to 700°C, but this was later increased to 900 to 1100°C. Implanters can either process a single wafer at a time or several, up to 17, mounted on a rotating disk. 1875:(DRAM), because the number of interconnect levels can be small (no more than four). The aluminum was sometimes alloyed with copper for preventing recrystallization. Gold was also used in interconnects in early chips. 2084:
After the dies are tested for functionality and binned, they are packaged. Plastic or ceramic packaging involves mounting the die, connecting the die/bond pads to the pins on the package, and sealing the die. Tiny
7024: 2089:
are used to connect the pads to the pins. In the 'old days' (1970s), wires were attached by hand, but now specialized machines perform the task. Traditionally, these wires have been composed of gold, leading to a
1997:
Chips are also tested again after packaging, as the bond wires may be missing, or analog performance may be altered by the package. This is referred to as the "final test". Chips may also be imaged using x-rays.
1134:(for complete photoresist removal/photoresist stripping, also known as dry strip, historically done with a chemical solvent called a resist stripper, to allow wafers to undergo another round of photolithography) 4211: 1934:
of photoresist and other coatings. Wafer metrology equipment/tools, or wafer inspection tools are used to verify that the wafers haven't been damaged by previous processing steps up until testing; if too many
814:
Since 2009, "node" has become a commercial name for marketing purposes that indicates new generations of process technologies, without any relation to gate length, metal pitch or gate pitch. For example,
1400:, semiconductor purity was not as big of an issue as it is today in device manufacturing. In the 1960s, workers could work on semiconductor devices in street clothing. As devices become more integrated, 6313:
Frank, M. M. (2011). High-k / metal gate innovations enabling continued CMOS scaling. 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC). doi:10.1109/essderc.2011.6044239
1977:
size of 17.92 mm. The yield went down to 32.0% with an increase in die size to 100 mm. The number of killer defects on a wafer, regardless of die size, can be noted as the defect density (or D
368: 1697:
technology involves the insertion of an insulating layer between the raw silicon wafer and the thin layer of subsequent silicon epitaxy. This method results in the creation of transistors with reduced
1969:
The yield is often but not necessarily related to device (die or chip) size. As an example, in December 2019, TSMC announced an average yield of ~80%, with a peak yield per wafer of >90% for their
729:
In 1984, KLA developed the first automatic reticle and photomask inspection tool. In 1985, KLA developed an automatic inspection tool for silicon wafers, which replaced manual microscope inspection.
5544: 726:
In the 1970s, several companies migrated their semiconductor manufacturing technology from bipolar to CMOS technology. Semiconductor manufacturing equipment has been considered costly since 1978.
7268: 1713:) replaced silicon oxynitride (SiON), in order to prevent large amounts of leakage current in the transistor while allowing for continued scaling or shrinking of the transistors. However HfO 2137: 6304:
Robertson, J., & Wallace, R. M. (2015). High-K materials and metal gates for CMOS applications. Materials Science and Engineering: R: Reports, 88, 1–41. doi:10.1016/j.mser.2014.11.001
1420:
by humans. To increase yield, FOUPs and semiconductor capital equipment may have a mini environment with ISO class 1 level of dust, and FOUPs can have an even cleaner micro environment.
1755:), patterning of the gate, patterning of the source and drain regions, and subsequent implantation or diffusion of dopants to obtain the desired complementary electrical properties. In 744:
devices. It can also be made with Bipolar, CMOS and DMOS devices. Applied Materials developed the first practical multi chamber, or cluster wafer processing tool, the Precision 5000.
4349: 520:
of a currently produced chip design to reduce costs, improve performance, and increase transistor density (number of transistors per unit area) without the expense of a new design.
1790:, they must be interconnected to form the desired electrical circuits. This occurs in a series of wafer processing steps collectively referred to as BEOL (not to be confused with 1489:
In semiconductor device fabrication, the various processing steps fall into four general categories: deposition, removal, patterning, and modification of electrical properties.
1007:
Development (removal of parts of the resist by application of a liquid developer, leaving only parts of the wafer exposed for ion implantation, layer deposition, etching, etc)
6947: 3131: 6856:
Löper, Philipp; Stuckelberger, Michael; Niesen, Bjoern; Werner, Jérémie; Filipič, Miha; Moon, Soo-Jin; Yum, Jun-Ho; Topič, Marko; De Wolf, Stefaan; Ballif, Christophe (2015).
4693: 3071: 2286: 560: 361: 5594: 3991: 6972: 6030: 3096: 4626: 1878:
More recently, as the number of interconnect levels for logic has substantially increased due to the large number of transistors that are now interconnected in a modern
1408:
with filtered air to remove even the smallest particles, which could come to rest on the wafers and contribute to defects. The ceilings of semiconductor cleanrooms have
4179: 563:) has become more of a marketing term that has no standardized relation with functional feature sizes or with transistor density (number of transistors per unit area). 2235: 719:
Wafer size has grown over time, from 25 mm in 1960, to 50 mm in 1969, 100 mm in 1976, 125 mm in 1981, 150 mm in 1983 and 200 mm in 1992.
4201: 2120:, like most packages, is many times larger than the actual die hidden inside, whereas CSP chips are nearly the size of the die; a CSP can be constructed for each die 3673:
Huff, Howard R.; Goodall, Randal K.; Bullis, W. Murray; Moreland, James A.; Kirscht, Fritz G.; Wilson, Syd R.; The NTRS Starting Materials Team (24 November 1998).
1807:
materials, also called low-Îş dielectrics, are being used (such as silicon oxycarbide), typically providing dielectric constants around 2.7 (compared to 3.82 for SiO
6446:"High-Performance and Low-Power CMOS Device Technologies Featuring Metal/High-k Gate Stacks with Uniaxial Strained Silicon Channels on (100) and (110) Substrates" 354: 4465: 2279: 2103: 918: 7087: 5005: 1381:
Progress of miniaturization, and comparison of sizes of semiconductor manufacturing process nodes with some microscopic objects and visible light wavelengths
4785: 5536: 1962:. Manufacturers are typically secretive about their yields, but it can be as low as 30%, meaning that only 30% of the chips on the wafer work as intended. 4753: 2561:
450mm FOUP/LPU system in advanced semiconductor manufacturing processes: A study on the minimization of oxygen content inside FOUP when the door is opened
2368:
Hendrik Purwins; Bernd Barak; Ahmed Nagi; Reiner Engel; Uwe Höckele; Andreas Kyek; Srikanth Cherla; Benjamin Lenz; Günter Pfeifer; Kurt Weinzierl (2014).
4043: 4882: 5302:"Characterization of thin carbonized photoresist layer and investigation of dry strip process through real-time monitored variable temperature control" 7288: 4807: 4570: 2414: 2307: 2302: 841:
By 2018, a number of transistor architectures had been proposed for the eventual replacement of FinFET, most of which were based on the concept of
4269: 1698: 1087: 1966:
is one among many reasons for low yield. Testing is carried out to prevent faulty chips from being assembled into relatively expensive packages.
876:
process chips in mass production by TSMC and Samsung, although their 7 nanometer node definition is similar to Intel's 10 nanometer process. The
3550: 2564:. 2015 Joint e-Manufacturing and Design Collaboration Symposium (eMDC) & 2015 International Symposium on Semiconductor Manufacturing (ISSM). 5060: 4240: 3038: 2932: 1679:
to the silicon epitaxy step, tricks are performed to improve the performance of the transistors to be built. One method involves introducing a
917:(IDM) for their own products, and a semiconductor device might not need all techniques. Equipment for carrying out these processes is made by 7180: 6753: 6700: 6674: 6610: 6575: 6510: 6408: 6257: 6230: 6204: 6177: 6098: 5985: 5944: 5898: 5871: 5844: 5817: 5790: 5763: 5736: 5680: 5379: 5348: 5321: 5158: 5132: 5031: 4972: 3941: 3853: 3714: 3560: 3422: 3406: 3380: 3340: 2891: 2864: 2837: 2810: 2694: 2532: 5507: 5439: 901: 6993: 4825: 2240: 2214: 1247: 1216: 654:
over the next several years. Many early semiconductor device manufacturers developed and built their own equipment such as ion implanters.
592: 69: 3190: 4939: 3204: 4327: 4298: 857: 6904: 6600: 6167: 3674: 2939: 1828: 7195: 7131: 7109: 6858:"Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry" 3121: 6924: 6465: 5148: 4683: 3198: 2800: 2469:
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
1963: 1898: 1543: 6664: 5489: 5468: 5278: 5103: 4840: 3061: 2720:"A Numerical Study on the Effects of Purge and Air Curtain Flow Rates on Humidity Invasion Into a Front Opening Unified Pod (FOUP)" 2651: 6194: 3330: 5586: 4962: 4861: 3995: 3659: 2854: 798:
enough time, and this depends on the market the device is designed for. This especially became a problem at the 10 nm node.
6962: 6690: 5410: 3931: 3235: 6053: 5623: 4516:
The next major transistor innovation was the introduction of FinFET (tri-gate) transistors on Intel's 22-nm technology in 2011.
3092: 643: 440: 6247: 6002: 5975: 5934: 2827: 7098: 6220: 5960: 5807: 4171: 3750: 2954: 2762:"Performance of Different Front-Opening Unified Pod (FOUP) Moisture Removal Techniques With Local Exhaust Ventilation System" 914: 5861: 4584: 4407: 1841:
through four layers of planarized copper interconnect, down to the polysilicon (pink), wells (greyish) and substrate (green)
7206: 5726: 1943:
has been used to predict wafer properties based on statistical methods without performing the physical measurement itself.
1353:
Trim and form (separates the lead frames from each other, and bends the lead frame's pins so that they can be mounted on a
7293: 7088:
https://www.st.com/resource/en/application_note/cd00003986-introduction-to-semiconductor-technology-stmicroelectronics.pdf
5365: 5006:
https://www.st.com/resource/en/application_note/cd00003986-introduction-to-semiconductor-technology-stmicroelectronics.pdf
3843: 3250: 2760:
Lin, Tee; Ali Zargar, Omid; Juina, Oscar; Lee, Tzu-Chieh; Sabusap, Dexter Lyndon; Hu, Shih-Cheng; Leggett, Graham (2020).
1185: 811:
In 2006, 450 mm wafers were expected to be adopted in 2012, and 675 mm wafers were expected to be used by 2021.
5338: 5176:"An Investigation of Edge Bead Removal Width Variability, Effects and Process Control in Photolithographic Manufacturing" 5021: 3627: 3502: 5122: 4017: 3396: 2079: 1872: 1756: 5704: 5670: 4917: 3704: 3370: 2718:
Benalcazar, David; Lin, Tee; Hu, Ming-Hsuan; Ali Zargar, Omid; Lin, Shao-Yu; Shih, Yang-Cheng; Leggett, Graham (2022).
1240:
or wafer bonding and stacking, this can also occur during wafer dicing, in a process known as Dice Before Grind or DBG)
921:. All equipment needs to be tested before a semiconductor fabrication plant is started. These processes are done after 467:
as they are pieces diced from a single wafer. Individual dies are separated from a finished wafer in a process called
2291: 1882:, the timing delay in the wiring has become so significant as to prompt a change in wiring material (from aluminum to 835: 733: 1322:
Molding (using special plastic molding compound that may contain glass powder as filler to control thermal expansion)
4627:"7nm, 5nm, 3nm: The new materials and transistors that will take us to the limits of Moore's law | Extremetech" 1496:
is any process that grows, coats, or otherwise transfers a material onto the wafer. Available technologies include
559:". However, this has not been the case since 1994, and the number of nanometers used to name process nodes (see the 6398: 3436: 3266: 1763:
are also fabricated at this time, typically stacked above the access transistor (the now defunct DRAM manufacturer
1539: 1535: 1067: 1022: 5915: 4436: 769:
is a global business today. The leading semiconductor manufacturers typically have facilities all over the world.
4775: 2881: 1864: 1501: 1497: 1364: 1101: 1081: 1043: 922: 2577:"Moisture Prevention in a Pre-Purged Front-Opening Unified Pod (FOUP) During Door Opening in a Mini-Environment" 1641:. Modern chips have up to eleven or more metal levels produced in over 300 or more sequenced processing steps. 7170: 6828: 6031:"History of Some Early Developments in Ion-Implantation Technology Leading to Silicon Transistor Manufacturing" 5780: 5240: 4745: 3001: 1974: 1936: 1442: 1195: 925:. A semiconductor fab operates 24/7 and many fabs use large amounts of water, primarily for rinsing the chips. 464: 7067: 5806:
Li, Jinmin; Wang, Junxi; Yi, Xiaoyan; Liu, Zhiqiang; Wei, Tongbo; Yan, Jianchang; Xue, Bin (August 31, 2020).
5403:"Laser Lift-Off(LLO) Ideal for high brightness vertical LED manufacturing - Press Release - DISCO Corporation" 4612: 4035: 3581:
Proceedings of ISSM2000. Ninth International Symposium on Semiconductor Manufacturing (IEEE Cat. No.00CH37130)
4128: 7143: 5961:"1954: Diffusion Process Developed for Transistors | the Silicon Engine | Computer History Museum" 5371: 3450: 3303: 3126: 2911: 2334: 1513: 1460: 1377: 1095: 670: 635: 5645: 5255: 3871:"Understanding the Impact of Batch vs. Single Wafer in Thermal Processing Using Cost of Ownership Analysis" 3641: 3536: 7217: 4598: 4556: 4528: 2633: 2269: 1847: 1742: 1629:, which can be carried out to create semiconductor-insulator junctions, such as in the local oxidation of 1509: 1310: 1120: 766: 732:
In 1985, STmicroelectronics invented BCD, also called BCDMOS, a semiconductor manufacturing process using
604: 600: 433: 336: 3810:
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
1667:. The raw wafer is engineered by the growth of an ultrapure, virtually defect-free silicon layer through 2174: 2023: 1868: 1659:
Wafer processing is separated into FEOL and BEOL stages. FEOL processing refers to the formation of the
1448: 1354: 1261: 385: 6842: 4542: 4261: 3522: 6626: 7000: 6782: 5069: 4845: 3817: 3275: 2476: 2117: 1888:
layer) alongside a change in dielectric material in the interconnect (from silicon dioxides to newer
1722: 1693: 1606: 1584: 1257: 1141: 1049: 1037: 801: 575:
fins) with a width of 7 nm, so the Intel 10 nm process is similar in transistor density to
481:
Companies that manufacture machines used in the industrial semiconductor fabrication process include
311: 7263: 6370: 6146: 5888: 5834: 4232: 3423:"The Inside Story of Texas Instruments' Biggest Blunder: The TMS9900 Microprocessor - IEEE Spectrum" 3030: 2638: 6356: 4866: 4862:"Countries lavish subsidies and perks on semiconductor manufacturers as a global chip war heats up" 4233:"Exclusive: Is Intel Really Starting To Lose Its Process Lead? 7nm Node Slated For Release in 2022" 1893: 1889: 1884: 1804: 1618: 1614: 1472: 1438: 1302: 1212: 1146:
Millisecond thermal processing, millisecond anneal, millisecond processing, flash lamp anneal (FLA)
1072: 982: 770: 662: 658: 421: 417: 7196:
https://www.semiconductor-digest.com/abating-potentially-dangerous-particles-2-5m-and-smaller/amp/
7132:
https://www.csis.org/analysis/mapping-semiconductor-supply-chain-critical-role-indo-pacific-region
7110:
https://www.electronicsb2b.com/industry-buzz/invest/atmps-founding-stone-indias-semiconductor-era/
5565: 4900: 2519:. 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014). pp. 120–124. 6941: 6581: 6516: 6471: 6338: 6287: 6128: 6078: 5515: 5431: 5195: 4808:"Taiwan chipmakers keep workers 'imprisoned' in factories to keep up with global pandemic demand" 4715: 4507: 4370: 4065: 3973: 3786: 3592: 2781: 2739: 2700: 2643: 2596: 2538: 2389: 2218: 2113: 2056: 2026:
combined with the extremes of fab processing steps). Most designs cope with at least 64 corners.
2010: 1939:
on one wafer have failed, the entire wafer is scrapped to avoid the costs of further processing.
1871:; this approach can still be (and often is) used in the fabrication of many memory chips such as 1787: 1229: 972: 881: 608: 474:
Within fabrication plants, the wafers are transported inside special sealed plastic boxes called
393: 389: 6735: 5219: 4103: 2853:
Lambrechts, Wynand; Sinha, Saurabh; Abdallah, Jassem Ahmed; Prinsloo, Jaco (13 September 2018).
892:
million transistors per square millimeter. In 2019, Samsung and TSMC announced plans to produce
773:, the world's largest manufacturer of semiconductors, has facilities in South Korea and the US. 6734:
Materials: Recent Advances". In Baklanov, Mikhail R.; Ho, Paul S.; Zschech, Ehrenfried (eds.).
5697:"Wafer Cleaning Procedures; Photoresist or Resist Stripping; Removal of Films and Particulates" 3301:
Mueller, C. W.; Robinson, P. H. (December 1964). "Grown-film silicon transistors on sapphire".
2681:. 2016 27th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). pp. 6–11. 583:. As another example, GlobalFoundries' 12 and 14 nm processes have similar feature sizes. 7176: 6920: 6877: 6810: 6749: 6696: 6670: 6606: 6571: 6506: 6461: 6404: 6253: 6226: 6200: 6173: 6094: 5981: 5940: 5894: 5867: 5840: 5813: 5786: 5759: 5732: 5676: 5375: 5344: 5317: 5154: 5128: 5027: 4968: 4931: 4389: 3937: 3849: 3710: 3556: 3402: 3376: 3336: 3194: 3184: 2887: 2860: 2833: 2806: 2690: 2528: 2492: 2197: 2185: 1940: 1833: 1738: 1691:
becomes stretched somewhat, resulting in improved electronic mobility. Another method, called
1684: 1622: 1521: 1484: 1157: 940: 861: 552: 486: 413: 119: 4654: 4319: 4290: 4202:"14nm, 7nm, 5nm: How low can CMOS go? It depends if you ask the engineers or the economists…" 4156: 1534:
is any process that removes material from the wafer; examples include etch processes (either
689:(metal–oxide–semiconductor field-effect transistor) using the silicon-on-sapphire process at 7298: 6911: 6869: 6800: 6790: 6741: 6563: 6498: 6453: 6330: 6279: 6120: 6086: 6045: 6011: 5309: 5187: 5077: 4499: 3965: 3913: 3882: 3825: 3778: 3682: 3584: 3484: 3483:. 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD). 3312: 3283: 3165: 2773: 2731: 2682: 2588: 2520: 2484: 2381: 2344: 2329: 2312: 2257: 1931: 1597: 1553: 1425: 1316: 1012: 987: 950: 690: 651: 409: 326: 315: 301: 92: 83: 5055: 3264:
Manasevit, H. M.; Simpson, W. J. (1964). "Single-Crystal Silicon on a Sapphire Substrate".
17: 7099:
https://www.3dincites.com/2009/04/the-post-fab-process-debate-for-3d-ics-foundry-or-osats/
4421: 2370:"Regression Methods for Virtual Metrology of Layer Thickness in Chemical Vapor Deposition" 2060: 2018: 1752: 1748: 1688: 1468: 1409: 1272: 1207: 944: 816: 468: 397: 341: 6384: 5460: 4988: 3870: 1645:
effectiveness of processes carried out on a wafer are not even across the wafer surface.
1556:. For example, in conventional lithography, the wafer is coated with a chemical called a 128: 110: 101: 7207:
https://19january2017snapshot.epa.gov/sites/production/files/2015-06/documents/solid.pdf
6786: 6326:
Gate-first high-k/metal gate DRAM technology for low power and high performance products
5073: 3821: 3279: 3160:(February 1963). "Nanowatt logic using field-effect metal-oxide semiconductor triodes". 2618: 2480: 2002:
resources to perform most or all of the tests in parallel and on several chips at once.
1613:
Modification of electrical properties now also extends to the reduction of a material's
777:, the second-largest manufacturer, has facilities in Europe and Asia as well as the US. 6805: 6770: 6357:"Integrating high-k /metal gates: gate-first or gate-last? | Semiconductor Digest" 5977:
Semiconductor Microchips and Fabrication: A Practical Guide to Theory and Manufacturing
2339: 1879: 1800: 1602: 1505: 1456: 1413: 1405: 1328: 1291: 1199: 1179: 1152: 1031: 880:
process began being produced by Samsung in 2018. As of 2019, the node with the highest
869: 596: 490: 425: 321: 164: 158: 152: 146: 140: 134: 5402: 4918:"VLSI Symposium - TSMC and Imec on Advanced Process and Devices Technology Toward 2nm" 4084: 3464: 471:, also called wafer dicing. The dies can then undergo further assembly and packaging. 7282: 6716: 5199: 5124:
Cleaning and Surface Conditioning Technology in Semiconductor Device Manufacturing 11
3977: 3596: 3332:
Extending Moore's Law through Advanced Semiconductor Design and Processing Techniques
3157: 3153: 2856:
Extending Moore's Law through Advanced Semiconductor Design and Processing Techniques
2785: 2743: 2274: 2193: 1985: 1952: 1927: 1838: 1811:), although materials with constants as low as 2.2 are being offered to chipmakers. 1574: 1417: 1243: 1191: 1131: 824: 782: 631: 627: 568: 556: 331: 236: 227: 218: 209: 200: 191: 182: 173: 6520: 6475: 6342: 6291: 5615: 3790: 2647: 2600: 2393: 1922:
in between the various processing steps. For example, thin film metrology based on
6585: 6425: 6132: 4776:"GlobalFoundries Stops All 7nm Development: Opts To Focus on Specialized Processes" 4640: 4511: 3162:
1963 IEEE International Solid-State Circuits Conference. Digest of Technical Papers
2704: 2542: 2086: 2067: 1923: 1672: 1552:
is the shaping or altering of deposited materials, and is generally referred to as
1298: 1286: 1279: 853: 849: 580: 494: 482: 452: 448: 281: 263: 254: 245: 6717:"Introduction to Copper / Low-K Interconnects & Electromigration Fundamentals" 4668: 4142: 1930:
is used to tightly control the thickness of gate oxide, as well as the thickness,
1767:
implemented these capacitors with trenches etched deep into the silicon surface).
1019:
are embedded in the wafer creating regions of increased or decreased conductivity)
6090: 5753: 5174:
Reiter, Tamas; McCann, Michael; Connolly, James; Haughey, Sean (February 2022).
4206: 3731: 2189: 1558: 1371: 1237: 1223: 1027: 893: 877: 873: 713: 456: 6646: 6555: 6534: 6502: 6490: 6445: 6444:
Y.; Tsukamoto, M.; Iwamoto, H.; Saito, M.; Kadomura, S.; Nagashima, N. (2006).
6324: 6273: 6114: 5301: 5175: 3901: 3829: 3675:"Model-based silicon wafer criteria for optimal integrated circuit performance" 3503:"Three Chips in One: The History of the BCD Integrated Circuit - IEEE Spectrum" 3488: 3478: 3169: 2761: 2719: 2676: 2576: 2559: 2514: 2385: 2369: 2110:
packaging can be used to place bond pads across the entire surface of the die.
1901:) is the primary processing method to achieve such planarization, although dry 1294:(The die is attached to a leadframe using conductive paste or die attach film.) 7273: 7235:
Digital Integrated Circuit Design, from VLSI Architectures to CMOS Fabrication
6745: 6567: 6334: 6283: 6124: 6119:. The 2006 IEEE International Joint Conference on Neural Network Proceedings. 5313: 3969: 3957: 3770: 3576: 2829:
Fundamental Principles of Optical Lithography: The Science of Microfabrication
2686: 2524: 2159: 2091: 2006: 1918:
The highly serialized nature of wafer processing has increased the demand for
1897:
available lithography, and thus interfering with the ability to pattern. CMP (
1760: 1660: 1471:) up to 300 mm (slightly less than 12 inches) in diameter using the 1397: 1336: 701: 666: 548: 544: 517: 444: 401: 296: 56: 35: 6457: 6371:"IEDM 2009: HKMG gate-first vs gate-last options | Semiconductor Digest" 6015: 5191: 4571:"Intel's Stacked Nanosheet Transistors Could be the Next Step in Moore's Law" 4262:"Life at 10nm. (Or is it 7nm?) And 3nm - Views on Advanced Silicon Platforms" 3900:
Weimer, R.A.; Eppich, D.M.; Beaman, K.L.; Powell, D.C.; Gonzalez, F. (2003).
3805: 3588: 2777: 2735: 2592: 2496: 7120: 6967: 5696: 5306:
2017 28th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)
4780: 4688: 4503: 4354: 3917: 3782: 3610: 3066: 2323: 2230: 2170: 2107: 2106:. Tradidionally the bond pads are located on the edges of the die, however, 1919: 1626: 1569: 1401: 1391: 1344: 1306: 1268: 1233: 955: 677:). In 1964, he published his findings with colleague William Simpson in the 6881: 6814: 6010:. 2018 22nd International Conference on Ion Implantation Technology (IIT). 4883:"China import concerns spur US to launch semiconductor supply chain review" 3775:
Proceedings of 11th International Conference on Ion Implantation Technology
3316: 1892:
insulators). This performance enhancement also comes at a reduced cost via
5461:"Product Information | DBG / Package Singulation - DISCO Corporation" 4104:"Chip Architect: Intel and Motorola/AMD's 130 nm processes to be revealed" 1232:
and polishing (reduces the thickness of the wafer for thin devices like a
3886: 3755: 3660:"Novellus offers 300-mm CVD tool that's smaller than 200-mm, lower costs" 3229: 3227: 3225: 3223: 3221: 2205:
cartridges, etc., to control the risk to workers and to the environment.
2155: 2142:
Many toxic materials are used in the fabrication process. These include:
1860: 865: 790: 786: 523:
Early semiconductor processes had arbitrary names for generations (viz.,
4841:"What are semiconductors, and why are they vital to the global economy?" 3771:"Manufacturing advantages of single wafer high current ion implantation" 2465:"Die singulation technologies for advanced packaging: A critical review" 913:
are often specific to process offerings by foundries, or specific to an
7218:
https://cleanroomtechnology.com/hi-tech-without-costing-the-earth-55605
6795: 4613:"Transistors will stop shrinking in 2021, but Moore's law will live on" 4490:
Bohr, Mark T.; Young, Ian A. (2017). "CMOS Scaling Trends and Beyond".
2617:
Kure, Tokuo; Hanaoka, Hideo; Sugiura, Takumi; Nakagawa, Shinya (2007).
2151: 2147: 1764: 1668: 1664: 1630: 1564: 1452: 1115: 936: 794: 429: 30: 6873: 5081: 3287: 2488: 2177:, used in CVD deposition of tungsten in transistor interconnects, and 6049: 5104:"Wafer Cleaning Becomes Key Challenge In Manufacturing 3D Structures" 4036:"Top 10 Worldwide Semiconductor Sales Leaders - Q1 2017 - AnySilicon" 2262: 2245: 2178: 2166: 2095: 1638: 1332: 1016: 1004:
Post Exposure Baking (PEB) improves the durability of the photoresist
842: 753: 709: 686: 674: 619: 572: 531:
III/III-E/IV/V). Later each new generation process became known as a
64: 6857: 5508:"Electro Conductive Die Attach Film(Under Development) | Nitto" 5056:"A Theoretical Analysis of Wafer Cleaning Using a Cryogenic Aerosol" 3686: 2464: 443:, also called foundries or "fabs", with the central part being the " 7242: 7059: 3751:"The future of batch and single-wafer processing in wafer cleaning" 3577:"The world's first 300 mm fab at Infineon - challenges and success" 3031:"Intel 10nm isn't bigger than AMD 7nm, you're just measuring wrong" 5616:"The ASYST SMIF system - Integrated with the Tencor Surfscan 7200" 3902:"Contrasting single-wafer and batch processing for memory devices" 3465:"KLA 2020 - the tool that sparked the yield management revolution" 2296: 1990: 1832: 1687:(SiGe) is deposited. Once the epitaxial silicon is deposited, the 1634: 1525: 1517: 1464: 1376: 1162: 831: 774: 741: 697: 528: 29: 6829:"Ibm's Development of Copper Interconnect for Integrated Circuit" 3356: 2516:
Advanced FOUP purge using diffusers for FOUP door-off application
1001:
Exposure (in a photolithography stepper, scanner or mask aligner)
6539: 6151: 4723: 4529:"Start-up Seeks New Life for Planar Transistors - IEEE Spectrum" 3507: 2317: 2250: 2099: 1776: 1654: 1421: 1251: 820: 778: 737: 705: 623: 576: 524: 475: 416:, thin-film deposition, ion-implantation, etching) during which 405: 306: 7274:
Designing a Heated Chuck for Semiconductor Processing Equipment
6495:
2007 International Workshop on Physics of Semiconductor Devices
5809:
III-Nitrides Light Emitting Diodes: Technology and Applications
4350:"Intel's Process Roadmap to 2025: With 4nm, 3nm, 20A and 18A?!" 3480:
0.18um BCD technology with best-in-class LDMOS from 6 V to 45 V
1625:
in UV processing (UVP). Modification is frequently achieved by
463:
A wafer often has several integrated circuits which are called
3992:"Single Wafer vs Batch Wafer Processing in MEMS Manufacturing" 1970: 1601:
atoms. Doping processes with ion implantation are followed by
1340: 1172: 805: 639: 6278:. 2012 SEMI Advanced Semiconductor Manufacturing Conference. 6246:
Nathan, Arokia; Saha, Samar K.; Todi, Ravi M. (August 2023).
4684:"Samsung Completes Development of 5nm EUV Process Technology" 3062:"Intel's 10nm Cannon Lake and Core i3-8121U Deep Dive Review" 2463:
Lei, Wei-Sheng; Kumar, Ajay; Yalamanchili, Rao (2012-04-06).
2102:
is poisonous, so lead-free "lead frames" are now mandated by
2005:
Chips are often designed with "testability features" such as
6963:"Early TSMC 5nm Test Chip Yields 80%, HVM Coming in H1 2020" 6666:
Chemical-Mechanical Planarization of Semiconductor Materials
3962:
1992 Symposium on VLSI Technology Digest of Technical Papers
2678:
FOUP purge performance improvement using EFEM flow converter
2575:
Lin, Tee; Fu, Ben-Ran; Hu, Shih-Cheng; Tang, Yi-Han (2018).
1516:(ALD) among others. Deposition can be understood to include 992:
Photoresist coating (often as a liquid, on the entire wafer)
6329:. 2015 IEEE International Electron Devices Meeting (IEDM). 6116:
Virtual Metrology Technique for Semiconductor Manufacturing
4826:"Chip shortages lead to more counterfeit chips and devices" 4466:"Intel's Tri-Gate transistors: everything you need to know" 3122:"1963: Complementary MOS Circuit Configuration is Invented" 3093:"VLSI 2018: GlobalFoundries 12nm Leading-Performance, 12LP" 2415:"8 Things You Should Know About Water & Semiconductors" 2363: 2361: 1747:
Front-end surface engineering is followed by growth of the
439:
The fabrication process is performed in highly specialized
6730:
Dubois, Geraud; Volksen, Willi (February 24, 2012). "Low-
5432:"Product Information | Polishers - DISCO Corporation" 4932:"Power outage partially halts Toshiba Memory's chip plant" 4018:"Applied Materials Producer - a new revolution is upon us" 3806:"Approaches to single wafer high current ion implantation" 1429:
shed large amounts of particles, especially when walking.
1222:
Wafer mounting (wafer is mounted onto a metal frame using
785:, has facilities in Taiwan, China, Singapore, and the US. 447:". In more advanced semiconductor devices, such as modern 6147:"The Threat of Semiconductor Variability - IEEE Spectrum" 6079:"Ion implantation in CMOS Technology: Machine Challenges" 5581: 5579: 5566:"From a Slice of Crystal to an IC Wafer - CHM Revolution" 5337:
Einspruch, Norman G.; Brown, Dale M. (December 1, 2014).
4129:"'Bridge tools' appear to be taking over 300-mm movement" 2138:
Health hazards in semiconductor manufacturing occupations
1404:
must become even cleaner. Today, fabrication plants are
696:
Semiconductor device manufacturing has since spread from
5672:
Microlithography: Science and Technology, Second Edition
5300:
Ryu, Je Hyeok; Kim, Byoung Hoon; Yoon, Sung Jin (2017).
3006:
IEEE Spectrum: Technology, Engineering, and Science News
27:
Manufacturing process used to create integrated circuits
6771:"Recent Advances in Barrier Layer of Cu Interconnects" 6599:
Widmann, D.; Mader, H.; Friedrich, H. (9 March 2013).
5279:"Ion beam deposition goes 300mm with Aviza's new tool" 3116: 3114: 2912:"Die shrink: How Intel scaled-down the 8086 processor" 2905: 2903: 2619:"Clean-room Technologies for the Mini-environment Age" 642:
in the late 1960s. RCA commercially used CMOS for its
6225:. World Scientific Publishing Company. 3 March 2008. 5863:
Fundamentals of Layout Design for Electronic Circuits
3706:
Wafer Fabrication: Automatic Material Handling System
2320:(SEMI) — the semiconductor industry trade association 6919:. Integrated Circuit Engineering Corporation. 1997. 6166:
Nishi, Yoshio; Doering, Robert (December 19, 2017).
5916:"Highly Selective Etch Rolls Out For Next-Gen Chips" 3002:"A Better Way To Measure Progress in Semiconductors" 1194:(where the electrical performance is verified using 6899: 6897: 5490:"Plasma Dicing (Dice Before Grind) | Orbotech" 5256:"Unlocking the Potential of Molecular Beam Epitaxy" 4585:"Nanowire Transistors Could Keep Moore's Law Alive" 4437:"Intel's Revolutionary 22 nm Transistor Technology" 3398:
Wafer Fabrication: Factory Performance and Analysis
2799:Nishi, Yoshio; Doering, Robert (19 December 2017). 2318:
Semiconductor Equipment and Materials International
2287:
International Technology Roadmap for Semiconductors
1396:When feature widths were far greater than about 10 561:
International Technology Roadmap for Semiconductors
7250:Handbook of Semiconductor Manufacturing Technology 6275:High-k/metal gates in leading edge silicon devices 6169:Handbook of Semiconductor Manufacturing Technology 5860:Lienig, Jens; Scheible, Juergen (March 19, 2020). 5364:Verhaverbeke, S.; Beaudry, C.; Boelen, P. (2004). 4066:"Transistor Aging Intensifies At 10/7nm And Below" 2802:Handbook of Semiconductor Manufacturing Technology 2450:Handbook of Semiconductor Manufacturing Technology 2016:Good designs try to test and statistically manage 1859:") in the insulating material and then depositing 5020:Reinhardt, Karen; Kern, Werner (March 16, 2018). 2116:(CSP) is another packaging technology. A plastic 1845:Historically, the metal wires have been composed 1786:Once the various semiconductor devices have been 704:in the 1960s to the rest of the world, including 412:and physico-chemical process (with steps such as 6946:: CS1 maint: bot: original URL status unknown ( 5646:"How a Chip Gets Made: Visiting GlobalFoundries" 5367:Aqueous Single Pass Single Wafer AI/Via Cleaning 5180:IEEE Transactions on Semiconductor Manufacturing 4422:"Foundries Rush 3-D Transistors - IEEE Spectrum" 3906:IEEE Transactions on Semiconductor Manufacturing 2766:IEEE Transactions on Semiconductor Manufacturing 2724:IEEE Transactions on Semiconductor Manufacturing 2581:IEEE Transactions on Semiconductor Manufacturing 2236:Glossary of microelectronics manufacturing terms 6913:Cost Effective Integrated Circuit Manufacturing 6560:2007 IEEE Custom Integrated Circuits Conference 6004:Review of Major Innovations in Beam Line Design 4989:"Water Scarcity and the Semiconductor Industry" 4901:"US urges Taiwan to curb chip exports to China" 2022:(extremes of silicon behavior caused by a high 1319:or integrated heat spreader (IHS) installation 6491:"High-k/Metal Gates- from research to reality" 3234:Rubin, Leonard; Poate, John (June–July 2003). 2070:. Only the good, unmarked chips are packaged. 995:Photoresist baking (solidification in an oven) 661:was the first to document epitaxial growth of 6843:"Cobalt Encapsulation Extends Copper to 10nm" 6556:"High-K/Metal Gate Technology: A New Horizon" 5782:Plasma Etching: Fundamentals and Applications 5728:Plasma Etching: Fundamentals and Applications 5023:Handbook of Silicon Wafer Cleaning Technology 4599:"Nanowires give vertical transistors a boost" 4557:"What's Different About Next-Gen Transistors" 3537:"Series 900 In-Line Sputtering System by MRC" 3523:"Applied Materials Precision 5000 CVD System" 3437:"Wafer fab costs skyrocketing out of control" 2280:Semiconductor equipment sales leaders by year 362: 8: 6769:Li, Z.; Tian, Y.; Teng, C.; Cao, H. (2020). 3552:Vacuum Deposition onto Webs, Films and Foils 3372:How Transistor Area Shrank by 1 Million Fold 3357:"Evolution of the Silicon Wafer Infographic" 2933:"Overall Roadmap Technology Characteristics" 1932:refractive index, and extinction coefficient 1851:. In this approach to wiring (often called 1721:Gate-last consisted of first depositing the 6450:2006 International Electron Devices Meeting 6083:Ion Implantation and Synthesis of Materials 4172:"A Brief History of Process Node Evolution" 3642:"300mm Semiconductor Wafers get a reprieve" 2955:"A Brief History of Process Node Evolution" 7025:"Introduction to Semiconductor Technology" 6929:. Archived from the original on 2023-01-22 4961:Labor, U. S. Dept of (February 19, 2000). 4912: 4910: 3936:. John Wiley & Sons. 28 January 2005. 1981:) of the wafer per unit area, usually cm. 888:nanometer N5 node, with a density of 171.3 681:. In 1965, C.W. Mueller and P.H. Robinson 369: 355: 40: 7121:https://www.semiconductors.org/ecosystem/ 6862:The Journal of Physical Chemistry Letters 6804: 6794: 6640: 6638: 6636: 5755:Dry Etching Technology for Semiconductors 5235: 5233: 5213: 5211: 5209: 5015: 5013: 4746:"TSMC Starts 5-Nanometer Risk Production" 4543:"The Increasingly Uneven Race to 3nm/2nm" 3698: 3696: 3622: 3620: 3024: 3022: 2883:Semiconductor Memory Devices and Circuits 2637: 2513:Wang, H. P.; Kim, S. C.; Liu, B. (2014). 929:Wafer processing (also called front end) 650:ÎĽm process before gradually scaling to a 5644:Miller, Michael J. (February 15, 2018). 4388:Derbyshire, Katherine (April 20, 2017). 3236:"Ion Implantation in Silicon Technology" 2995: 2993: 2755: 2753: 2675:Kim, Seong Chan; Schelske, Greg (2016). 2308:List of semiconductor fabrication plants 2303:List of integrated circuit manufacturers 424:, typically made of pure single-crystal 6400:Complementary Metal Oxide Semiconductor 5150:Handbook of Integrated Circuit Industry 5121:Hattori, Takeshi (September 30, 2009). 4881:Shepardson, David (December 21, 2023). 4435:Bohr, Mark; Mistry, Kaizad (May 2011). 2612: 2610: 2554: 2552: 2443: 2441: 2439: 2437: 2435: 2357: 1562:; then, a machine called an aligner or 1386:Prevention of contamination and defects 1178:Electrochemical deposition (ECD). See 1088:Metal organic chemical vapor deposition 856:chips are in mass production by Intel, 436:are used for specialized applications. 43: 6939: 6403:. BoD – Books on Demand. August 2018. 6222:Semiconductor Manufacturing Technology 6193:Grovenor, C. R. M. (October 5, 2017). 5061:Journal of the Electrochemical Society 4942:from the original on December 16, 2019 4806:Smith, Nicola; Liu, John (July 2021). 4320:"14 nm lithography process - WikiChip" 4291:"10 nm lithography process - WikiChip" 3709:. Walter de Gruyter GmbH & Co KG. 2508: 2506: 2374:IEEE/ASME Transactions on Mechatronics 6535:"The High-k Solution - IEEE Spectrum" 3191:Springer Science & Business Media 3041:from the original on October 28, 2020 1581:Modification of electrical properties 1248:three-dimensional integrated circuits 1217:three-dimensional integrated circuits 1202:may also be carried out at this step) 7: 6994:"Advanced MOSFETs and Novel Devices" 6627:"BEOL Wiring Process for CMOS Logic" 6085:. Springer. 2006. pp. 213–238. 5587:"Study into human particle shedding" 5220:"What's Next For Atomic Layer Etch?" 3869:Hossain-Pas, S.; Pas, M. F. (1997). 3186:History of Semiconductor Engineering 2241:List of semiconductor scale examples 2215:List of semiconductor scale examples 1639:metal oxide field effect transistors 1350:Laser marking or silkscreen printing 638:in 1963. CMOS was commercialised by 593:List of semiconductor scale examples 7144:"Why tech pollution's going global" 5933:Franssila, Sami (28 January 2005). 5218:LaPedus, Mark (November 16, 2017). 4371:"Chip Aging Becomes Design Problem" 4157:"Get ready for 675-mm fabs in 2021" 3958:"Trends in single-wafer processing" 2209:Timeline of commercial MOSFET nodes 1649:Front-end-of-line (FEOL) processing 571:actually has features (the tips of 432:is almost always used, but various 384:is the process used to manufacture 6249:75th Anniversary of the Transistor 5833:Powell, R. A. (December 2, 2012). 5752:Nojiri, Kazuo (October 25, 2014). 4083:Sperling, Ed (February 14, 2018). 3681:. Vol. 449. pp. 97–112. 2940:Semiconductor Industry Association 1829:interconnect (integrated circuits) 1771:Back-end-of-line (BEOL) processing 1683:wherein a silicon variant such as 947:sometimes while spinning the wafer 804:(SOI) technology has been used in 25: 6737:Low- k Materials: Recent Advances 6602:Technology of Integrated Circuits 6029:Fair, Richard B. (January 1998). 6001:Glavish, Hilton; Farley, Marvin. 5974:Lian, Yaguang (10 October 2022). 5890:Etching in Microsystem Technology 5887:Köhler, Michael (July 11, 2008). 4714:Cheng, Godfrey (14 August 2019). 3134:from the original on 23 July 2019 3099:from the original on 7 April 2019 3000:Moore, Samuel K. (21 July 2020). 2184:highly reactive liquids, such as 1899:chemical-mechanical planarization 1544:chemical-mechanical planarization 7289:Semiconductor device fabrication 6385:"Tracing Samsung's Road to 14nm" 5936:Introduction to Microfabrication 5914:LaPedus, Mark (March 21, 2022). 5836:Dry Etching for Microelectronics 5102:Hars, Adele (October 20, 2022). 4860:Whalen, Jeanne (June 14, 2021). 4390:"Will Self-Heating Stop FinFETs" 4369:Bailey, Brian (August 9, 2018). 4064:Mutschler, Ann (July 13, 2017). 3933:Introduction to Microfabrication 3703:Zhang, Jie (24 September 2018). 3555:. William Andrew. 21 June 2011. 3335:. CRC Press. 13 September 2018. 3164:. Vol. VI. pp. 32–33. 3029:Ridley, Jacob (April 29, 2020). 2181:used for depositing polysilicon. 1140:Rapid thermal processing (RTP), 441:semiconductor fabrication plants 382:Semiconductor device fabrication 55: 7264:Semiconductor industry glossery 7243:Wiki related to Chip Technology 7169:Baliga, B. (December 2, 2012). 7070:from the original on 2021-01-22 7041:from the original on 2018-04-03 6975:from the original on 2020-05-25 6424:LaPedus, Mark (July 24, 2017). 5707:from the original on 2020-10-15 5626:from the original on 2020-10-16 5597:from the original on 2020-10-15 5547:from the original on 2019-05-26 5471:from the original on 2019-05-16 5442:from the original on 2019-05-26 5413:from the original on 2019-06-14 5277:Vogler, D. (19 November 2008). 5127:. The Electrochemical Society. 5026:. William Andrew. p. 223. 4788:from the original on 2019-10-12 4756:from the original on 2020-05-05 4696:from the original on 2019-04-20 4655:"Transistor Options Beyond 3nm" 4330:from the original on 2019-07-01 4301:from the original on 2019-07-01 4272:from the original on 2019-07-09 4243:from the original on 2019-07-09 4214:from the original on 2019-07-09 4182:from the original on 2019-07-09 4046:from the original on 2017-11-06 3994:. 2 August 2016. Archived from 3749:Becker, Scott (24 March 2003). 3207:from the original on 2020-08-06 3074:from the original on 2020-11-12 2979:from the original on 2020-11-12 2657:from the original on 2021-11-01 2200:, used in etching and cleaning. 900:From 2020 to 2022, there was a 823:process was similar to Intel's 644:4000-series integrated circuits 6692:Copper Interconnect Technology 6645:LaPedus, Mark (May 22, 2017). 5153:. Springer. 27 November 2023. 3730:LaPedus, Mark (May 21, 2018). 3401:. Springer. 30 November 1995. 915:integrated device manufacturer 1: 7237:. Cambridge University Press. 6695:. Springer. 22 January 2010. 6669:. Springer. 26 January 2004. 5779:Sugawara, M. (May 28, 1998). 5725:Sugawara, M. (May 28, 1998). 5675:. CRC Press. 3 October 2018. 4964:Occupational Outlook Handbook 4774:Shilov, Anton; Cutress, Ian. 4200:Hruska, Joel (23 June 2014). 3251:American Institute of Physics 2880:Yu, Shimeng (19 April 2022). 2826:Mack, Chris (11 March 2008). 2165:poisonous compounds, such as 2094:(pronounced "leed frame") of 1186:Chemical-mechanical polishing 935:Cleaning by solvents such as 748:during processing in vacuum. 539:, designated by the process' 34:NASA's Glenn Research Center 7172:Epitaxial Silicon Technology 6905:"Yield and Yield Management" 6091:10.1007/978-3-540-45298-0_15 5254:PelĂ©, A-F. (29 March 2022). 5054:Natraj Narayanswami (1999). 4950:– via www.reuters.com. 4464:Grabham, Dan (May 6, 2011). 3628:"Applied Materials Producer" 2973:"Technology Node - WikiChip" 2173:in ion implantation doping, 2080:Integrated circuit packaging 1986:tests the chips on the wafer 1873:dynamic random-access memory 1757:dynamic random-access memory 1605:or, in advanced devices, by 1416:to protect the devices from 836:fin field-effect transistors 400:, and memory chips (such as 5591:www.cleanroomtechnology.com 5537:"Die Attach Film Adhesives" 4744:Schor, David (2019-04-06). 2910:Shirriff, Ken (June 2020). 2292:Semiconductor consolidation 1370:Additionally steps such as 646:in 1968, starting with a 20 420:are gradually created on a 18:Fabrication (semiconductor) 7315: 6503:10.1109/IWPSD.2007.4472451 5340:Plasma Processing for VLSI 3848:. Springer. 29 June 2013. 3830:10.1016/j.nimb.2005.05.016 3679:AIP Conference Proceedings 3489:10.1109/ISPSD.2014.6856005 3375:. Springer. 15 July 2020. 3267:Journal of Applied Physics 3170:10.1109/ISSCC.1963.1157450 2386:10.1109/TMECH.2013.2273435 2297:Local oxidation of silicon 2212: 2135: 2077: 2054: 1950: 1826: 1774: 1736: 1652: 1583:has historically entailed 1512:(MBE), and more recently, 1506:electrochemical deposition 1482: 1436: 1389: 1023:Etching (microfabrication) 872:and GlobalFoundries, with 679:Journal of Applied Physics 590: 7185:– via Google Books. 6746:10.1002/9781119963677.ch1 6651:Semiconductor Engineering 6568:10.1109/CICC.2007.4405765 6430:Semiconductor Engineering 6335:10.1109/IEDM.2015.7409775 6284:10.1109/ASMC.2012.6212925 6252:. John Wiley & Sons. 6209:– via Google Books. 6196:Microelectronic Materials 6182:– via Google Books. 6125:10.1109/IJCNN.2006.247284 5980:. John Wiley & Sons. 5939:. John Wiley & Sons. 5920:Semiconductor Engineering 5903:– via Google Books. 5893:. John Wiley & Sons. 5876:– via Google Books. 5849:– via Google Books. 5822:– via Google Books. 5795:– via Google Books. 5768:– via Google Books. 5741:– via Google Books. 5353:– via Google Books. 5314:10.1109/ASMC.2017.7969207 5224:Semiconductor Engineering 5137:– via Google Books. 5108:Semiconductor Engineering 4977:– via Google Books. 4716:"Moore's Law is not Dead" 4669:"Samsung, GF Ramp FD-SOI" 4394:Semiconductor Engineering 4375:Semiconductor Engineering 4089:Semiconductor Engineering 4070:Semiconductor Engineering 3970:10.1109/VLSIT.1992.200629 3736:Semiconductor Engineering 2832:. John Wiley & Sons. 2687:10.1109/ASMC.2016.7491075 2525:10.1109/ASMC.2014.6846999 1502:chemical vapor deposition 1498:physical vapor deposition 1451:is made out of extremely 1102:Physical vapor deposition 1082:Chemical vapor deposition 1044:Deep reactive-ion etching 923:integrated circuit design 408:). It is a multiple-step 7233:Kaeslin, Hubert (2008). 6740:. Wiley. pp. 1–33. 6458:10.1109/IEDM.2006.346959 6016:10.1109/IIT.2018.8807986 5541:www.henkel-adhesives.com 5192:10.1109/TSM.2021.3129770 4085:"Chip Aging Accelerates" 3589:10.1109/ISSM.2000.993612 3243:The Industrial Physicist 2778:10.1109/TSM.2020.2977122 2736:10.1109/TSM.2022.3209221 2593:10.1109/TSM.2018.2791985 1759:(DRAM) devices, storage 1443:mono-crystalline silicon 1196:automatic test equipment 977:Immersion batch cleaning 6426:"What's After FinFETs?" 6038:Proceedings of the IEEE 5570:www.computerhistory.org 5372:Electrochemical Society 4641:"What's After FinFETs?" 4504:10.1109/MM.2017.4241347 3918:10.1109/TSM.2003.810939 3783:10.1109/IIT.1996.586424 3304:Proceedings of the IEEE 3127:Computer History Museum 1805:low dielectric constant 1733:Gate oxide and implants 1671:. In the most advanced 1607:rapid thermal annealing 1524:or, more specifically, 1514:atomic layer deposition 1096:Atomic layer deposition 671:North American Aviation 636:Fairchild Semiconductor 434:compound semiconductors 7248:Yoshio, Nishi (2017). 6554:Khare, Mukesh (2007). 6489:Narayanan, V. (2007). 3611:"The 300mm Era Begins" 3317:10.1109/PROC.1964.3436 2448:Yoshio, Nishi (2017). 2270:Semiconductor industry 1906:copper interconnects. 1842: 1837:Synthetic detail of a 1743:doping (semiconductor) 1510:molecular beam epitaxy 1382: 1311:tape automated bonding 1275:), and WLCSP packages) 1121:Molecular beam epitaxy 919:a handful of companies 793:are among the biggest 781:, the world's largest 767:semiconductor industry 605:Semiconductor industry 601:MOS integrated circuit 38: 6758:– via CrossRef. 2175:tungsten hexafluoride 2024:operating temperature 1869:tungsten hexafluoride 1836: 1380: 1355:printed circuit board 1090:(MOCVD), used in LEDs 665:while working at the 555:length, such as the " 513:semiconductor process 386:semiconductor devices 33: 7294:Cleanroom technology 6647:"The Race To 10/7nm" 6562:. pp. 417–420. 5308:. pp. 102–106. 4846:World Economic Forum 4143:"Foundry Wars Begin" 3887:10.1557/PROC-470-201 3845:Dry Etching for VLSI 2326:for labels on wafers 2146:poisonous elemental 2124:the wafer is diced. 2118:dual in-line package 1853:subtractive aluminum 1694:silicon on insulator 1520:layer formation, by 1374:may be carried out. 1258:Redistribution layer 1171:Laser lift-off (for 1142:rapid thermal anneal 1050:Atomic layer etching 1038:Reactive-ion etching 902:global chip shortage 802:Silicon on insulator 618:An improved type of 541:minimum feature size 6787:2020Mate...13.5049L 6059:on 2 September 2007 5866:. Springer Nature. 5812:. Springer Nature. 5074:1999JElS..146..767N 4967:. JIST Publishing. 4920:. 25 February 2024. 4867:The Washington Post 4657:. 15 February 2018. 4159:. 14 November 2006. 3998:on 18 February 2024 3822:2005NIMPB.237..284R 3280:1964JAP....35.1349M 2481:2012JVSTB..30d0801L 2132:Hazardous materials 1994:non-working parts. 1885:copper interconnect 1803:, but recently new 1615:dielectric constant 1473:Czochralski process 1439:Wafer (electronics) 1303:thermosonic bonding 1267:Wafer bumping (for 1213:Through-silicon via 1137:Thermal treatments 1128:Ion beam deposition 1073:Buffered oxide etch 983:Surface passivation 771:Samsung Electronics 663:silicon on sapphire 659:Harold M. Manasevit 626:, was developed by 551:) of the process's 418:electronic circuits 394:computer processors 390:integrated circuits 7032:STMicroelectronics 6796:10.3390/ma13215049 6497:. pp. 42–45. 5374:. pp. 23–26. 5343:. Academic Press. 4993:large.stanford.edu 4559:. 20 October 2022. 4108:chip-architect.com 3804:Renau, A. (2005). 3732:"200mm Fab Crunch" 3183:Lojek, Bo (2007). 2219:Transistor density 2114:Chip scale package 2057:Wafer backgrinding 2011:built-in self-test 1973:test chips with a 1843: 1383: 1246:and stacking (for 1230:Wafer backgrinding 966:Jet spray cleaning 882:transistor density 652:10 ÎĽm process 609:Transistor density 39: 7182:978-0-323-15545-8 7060:"Wafer Backgrind" 6961:Cutress, Dr Ian. 6874:10.1021/jz502471h 6755:978-0-470-66254-0 6702:978-1-4419-0076-0 6676:978-3-540-43181-7 6612:978-3-662-04160-4 6577:978-1-4244-0786-6 6512:978-1-4244-1727-8 6410:978-1-78923-496-1 6259:978-1-394-20244-7 6232:978-981-310-671-0 6206:978-1-351-43154-5 6179:978-1-4200-1766-3 6100:978-3-540-23674-0 5987:978-1-119-86780-7 5946:978-0-470-02056-2 5900:978-3-527-61379-3 5873:978-3-030-39284-0 5846:978-0-08-098358-5 5819:978-981-15-7949-3 5792:978-0-19-159029-0 5765:978-3-319-10295-5 5738:978-0-19-159029-0 5682:978-1-4200-5153-7 5381:978-1-56677-411-6 5350:978-1-4832-1775-8 5323:978-1-5090-5448-0 5281:. Gold Flag Media 5160:978-981-99-2836-1 5134:978-1-56677-742-1 5082:10.1149/1.1391679 5033:978-0-323-51085-1 4974:978-1-56370-677-6 4938:. June 21, 2019. 4170:Shukla, Priyank. 3943:978-0-470-02056-2 3855:978-1-4899-2566-4 3716:978-3-11-048723-7 3562:978-1-4377-7868-7 3408:978-0-7923-9619-2 3382:978-3-030-40021-7 3342:978-1-351-24866-2 3288:10.1063/1.1713618 2953:Shukla, Priyank. 2893:978-1-000-56761-8 2866:978-1-351-24866-2 2839:978-0-470-72386-9 2812:978-1-4200-1766-3 2696:978-1-5090-0270-2 2534:978-1-4799-3944-2 2489:10.1116/1.3700230 2198:hydrofluoric acid 2186:hydrogen peroxide 1964:Process variation 1941:Virtual metrology 1739:self-aligned gate 1723:high-Îş dielectric 1699:parasitic effects 1685:silicon-germanium 1623:ultraviolet light 1603:furnace annealing 1522:thermal oxidation 1485:Wafer fabrication 1260:manufacture (for 1215:manufacture (for 1198:, binning and/or 1158:Thermal oxidation 998:Edge bead removal 969:Cryogenic aerosol 941:trichloroethylene 860:, TSMC, Samsung, 783:pure play foundry 547:(or historically 487:Applied Materials 414:thermal oxidation 410:photolithographic 379: 378: 16:(Redirected from 7306: 7253: 7238: 7220: 7215: 7209: 7204: 7198: 7193: 7187: 7186: 7166: 7160: 7159: 7157: 7155: 7150:. April 25, 2002 7140: 7134: 7129: 7123: 7118: 7112: 7107: 7101: 7096: 7090: 7085: 7079: 7078: 7076: 7075: 7056: 7050: 7049: 7047: 7046: 7040: 7029: 7021: 7015: 7014: 7012: 7011: 7005: 6999:. Archived from 6998: 6990: 6984: 6983: 6981: 6980: 6958: 6952: 6951: 6945: 6937: 6935: 6934: 6918: 6909: 6901: 6892: 6891: 6889: 6888: 6853: 6847: 6846: 6839: 6833: 6832: 6825: 6819: 6818: 6808: 6798: 6766: 6760: 6759: 6727: 6721: 6720: 6713: 6707: 6706: 6687: 6681: 6680: 6661: 6655: 6654: 6642: 6631: 6630: 6623: 6617: 6616: 6596: 6590: 6589: 6551: 6545: 6544: 6531: 6525: 6524: 6486: 6480: 6479: 6452:. pp. 1–4. 6440: 6434: 6433: 6421: 6415: 6414: 6395: 6389: 6388: 6381: 6375: 6374: 6367: 6361: 6360: 6353: 6347: 6346: 6321: 6315: 6311: 6305: 6302: 6296: 6295: 6270: 6264: 6263: 6243: 6237: 6236: 6217: 6211: 6210: 6190: 6184: 6183: 6163: 6157: 6156: 6143: 6137: 6136: 6111: 6105: 6104: 6075: 6069: 6068: 6066: 6064: 6058: 6052:. Archived from 6050:10.1109/5.658764 6035: 6026: 6020: 6019: 6009: 5998: 5992: 5991: 5971: 5965: 5964: 5957: 5951: 5950: 5930: 5924: 5923: 5911: 5905: 5904: 5884: 5878: 5877: 5857: 5851: 5850: 5830: 5824: 5823: 5803: 5797: 5796: 5776: 5770: 5769: 5749: 5743: 5742: 5722: 5716: 5715: 5713: 5712: 5693: 5687: 5686: 5667: 5661: 5660: 5658: 5656: 5641: 5635: 5634: 5632: 5631: 5612: 5606: 5605: 5603: 5602: 5583: 5574: 5573: 5562: 5556: 5555: 5553: 5552: 5533: 5527: 5526: 5524: 5523: 5514:. Archived from 5504: 5498: 5497: 5494:www.orbotech.com 5486: 5480: 5479: 5477: 5476: 5457: 5451: 5450: 5448: 5447: 5428: 5422: 5421: 5419: 5418: 5399: 5393: 5392: 5390: 5388: 5361: 5355: 5354: 5334: 5328: 5327: 5297: 5291: 5290: 5288: 5286: 5274: 5268: 5267: 5265: 5263: 5251: 5245: 5244: 5237: 5228: 5227: 5215: 5204: 5203: 5171: 5165: 5164: 5145: 5139: 5138: 5118: 5112: 5111: 5099: 5093: 5092: 5090: 5088: 5051: 5045: 5044: 5042: 5040: 5017: 5008: 5003: 4997: 4996: 4985: 4979: 4978: 4958: 4952: 4951: 4949: 4947: 4928: 4922: 4921: 4914: 4905: 4904: 4897: 4891: 4890: 4878: 4872: 4871: 4857: 4851: 4850: 4836: 4830: 4829: 4822: 4816: 4815: 4803: 4797: 4796: 4794: 4793: 4771: 4765: 4764: 4762: 4761: 4741: 4735: 4734: 4732: 4730: 4711: 4705: 4704: 4702: 4701: 4679: 4673: 4672: 4671:. 27 April 2018. 4665: 4659: 4658: 4651: 4645: 4644: 4637: 4631: 4630: 4623: 4617: 4616: 4609: 4603: 4602: 4601:. 2 August 2012. 4595: 4589: 4588: 4581: 4575: 4574: 4567: 4561: 4560: 4553: 4547: 4546: 4539: 4533: 4532: 4525: 4519: 4518: 4487: 4481: 4480: 4478: 4476: 4461: 4455: 4454: 4452: 4450: 4441: 4432: 4426: 4425: 4418: 4412: 4411: 4404: 4398: 4397: 4385: 4379: 4378: 4366: 4360: 4359: 4345: 4339: 4338: 4336: 4335: 4316: 4310: 4309: 4307: 4306: 4287: 4281: 4280: 4278: 4277: 4258: 4252: 4251: 4249: 4248: 4229: 4223: 4222: 4220: 4219: 4197: 4191: 4190: 4188: 4187: 4176:design-reuse.com 4167: 4161: 4160: 4153: 4147: 4146: 4145:. 19 April 2021. 4139: 4133: 4132: 4131:. 26 April 2001. 4125: 4119: 4118: 4116: 4114: 4102:de Vries, Hans. 4099: 4093: 4092: 4080: 4074: 4073: 4061: 4055: 4054: 4052: 4051: 4032: 4026: 4025: 4014: 4008: 4007: 4005: 4003: 3988: 3982: 3981: 3954: 3948: 3947: 3928: 3922: 3921: 3897: 3891: 3890: 3866: 3860: 3859: 3840: 3834: 3833: 3816:(1–2): 284–289. 3801: 3795: 3794: 3767: 3761: 3760: 3746: 3740: 3739: 3727: 3721: 3720: 3700: 3691: 3690: 3670: 3664: 3663: 3656: 3650: 3649: 3638: 3632: 3631: 3624: 3615: 3614: 3607: 3601: 3600: 3573: 3567: 3566: 3547: 3541: 3540: 3533: 3527: 3526: 3519: 3513: 3512: 3499: 3493: 3492: 3475: 3469: 3468: 3461: 3455: 3454: 3451:"Kla 200 Series" 3447: 3441: 3440: 3433: 3427: 3426: 3419: 3413: 3412: 3393: 3387: 3386: 3367: 3361: 3360: 3353: 3347: 3346: 3327: 3321: 3320: 3298: 3292: 3291: 3261: 3255: 3254: 3240: 3231: 3216: 3215: 3213: 3212: 3180: 3174: 3173: 3150: 3144: 3143: 3141: 3139: 3118: 3109: 3108: 3106: 3104: 3095:. 22 July 2018. 3089: 3083: 3082: 3080: 3079: 3057: 3051: 3050: 3048: 3046: 3026: 3017: 3016: 3014: 3012: 2997: 2988: 2987: 2985: 2984: 2969: 2963: 2962: 2959:Design And Reuse 2950: 2944: 2943: 2937: 2929: 2923: 2922: 2920: 2918: 2907: 2898: 2897: 2877: 2871: 2870: 2850: 2844: 2843: 2823: 2817: 2816: 2796: 2790: 2789: 2757: 2748: 2747: 2715: 2709: 2708: 2672: 2666: 2665: 2663: 2662: 2656: 2641: 2623: 2614: 2605: 2604: 2572: 2566: 2565: 2556: 2547: 2546: 2510: 2501: 2500: 2460: 2454: 2453: 2445: 2430: 2429: 2427: 2426: 2419:China Water Risk 2411: 2405: 2404: 2402: 2400: 2365: 2345:Transistor count 2330:Etch pit density 2313:Microfabrication 2258:Multigate device 2098:-plated copper; 1867:technique using 1663:directly in the 1621:via exposure to 1619:low-Îş insulators 1598:ion implantation 1573:"dry" stripping/ 1461:mono-crystalline 1410:fan filter units 1317:IC encapsulation 1013:Ion implantation 988:Photolithography 951:Piranha solution 891: 887: 691:RCA Laboratories 649: 527:I/II/III/IV and 398:microcontrollers 371: 364: 357: 327:Transistor count 280: 262: 253: 244: 235: 226: 217: 208: 199: 190: 181: 172: 127: 118: 109: 100: 91: 82: 59: 41: 21: 7314: 7313: 7309: 7308: 7307: 7305: 7304: 7303: 7279: 7278: 7260: 7247: 7239:, section 14.2. 7232: 7229: 7227:Further reading 7224: 7223: 7216: 7212: 7205: 7201: 7194: 7190: 7183: 7168: 7167: 7163: 7153: 7151: 7142: 7141: 7137: 7130: 7126: 7119: 7115: 7108: 7104: 7097: 7093: 7086: 7082: 7073: 7071: 7058: 7057: 7053: 7044: 7042: 7038: 7027: 7023: 7022: 7018: 7009: 7007: 7003: 6996: 6992: 6991: 6987: 6978: 6976: 6960: 6959: 6955: 6938: 6932: 6930: 6927: 6916: 6907: 6903: 6902: 6895: 6886: 6884: 6855: 6854: 6850: 6841: 6840: 6836: 6827: 6826: 6822: 6768: 6767: 6763: 6756: 6729: 6728: 6724: 6715: 6714: 6710: 6703: 6689: 6688: 6684: 6677: 6663: 6662: 6658: 6644: 6643: 6634: 6625: 6624: 6620: 6613: 6598: 6597: 6593: 6578: 6553: 6552: 6548: 6533: 6532: 6528: 6513: 6488: 6487: 6483: 6468: 6442: 6441: 6437: 6423: 6422: 6418: 6411: 6397: 6396: 6392: 6383: 6382: 6378: 6369: 6368: 6364: 6355: 6354: 6350: 6323: 6322: 6318: 6312: 6308: 6303: 6299: 6272: 6271: 6267: 6260: 6245: 6244: 6240: 6233: 6219: 6218: 6214: 6207: 6192: 6191: 6187: 6180: 6165: 6164: 6160: 6145: 6144: 6140: 6113: 6112: 6108: 6101: 6077: 6076: 6072: 6062: 6060: 6056: 6033: 6028: 6027: 6023: 6007: 6000: 5999: 5995: 5988: 5973: 5972: 5968: 5959: 5958: 5954: 5947: 5932: 5931: 5927: 5913: 5912: 5908: 5901: 5886: 5885: 5881: 5874: 5859: 5858: 5854: 5847: 5832: 5831: 5827: 5820: 5805: 5804: 5800: 5793: 5778: 5777: 5773: 5766: 5751: 5750: 5746: 5739: 5724: 5723: 5719: 5710: 5708: 5695: 5694: 5690: 5683: 5669: 5668: 5664: 5654: 5652: 5643: 5642: 5638: 5629: 5627: 5614: 5613: 5609: 5600: 5598: 5585: 5584: 5577: 5564: 5563: 5559: 5550: 5548: 5535: 5534: 5530: 5521: 5519: 5506: 5505: 5501: 5488: 5487: 5483: 5474: 5472: 5465:www.disco.co.jp 5459: 5458: 5454: 5445: 5443: 5436:www.disco.co.jp 5430: 5429: 5425: 5416: 5414: 5407:www.disco.co.jp 5401: 5400: 5396: 5386: 5384: 5382: 5363: 5362: 5358: 5351: 5336: 5335: 5331: 5324: 5299: 5298: 5294: 5284: 5282: 5276: 5275: 5271: 5261: 5259: 5253: 5252: 5248: 5239: 5238: 5231: 5217: 5216: 5207: 5173: 5172: 5168: 5161: 5147: 5146: 5142: 5135: 5120: 5119: 5115: 5101: 5100: 5096: 5086: 5084: 5053: 5052: 5048: 5038: 5036: 5034: 5019: 5018: 5011: 5004: 5000: 4987: 4986: 4982: 4975: 4960: 4959: 4955: 4945: 4943: 4930: 4929: 4925: 4916: 4915: 4908: 4899: 4898: 4894: 4880: 4879: 4875: 4859: 4858: 4854: 4839:Miller, Chris. 4838: 4837: 4833: 4828:. 14 June 2021. 4824: 4823: 4819: 4805: 4804: 4800: 4791: 4789: 4773: 4772: 4768: 4759: 4757: 4743: 4742: 4738: 4728: 4726: 4713: 4712: 4708: 4699: 4697: 4682:Shilov, Anton. 4681: 4680: 4676: 4667: 4666: 4662: 4653: 4652: 4648: 4643:. 24 July 2017. 4639: 4638: 4634: 4625: 4624: 4620: 4615:. 25 July 2016. 4611: 4610: 4606: 4597: 4596: 4592: 4583: 4582: 4578: 4569: 4568: 4564: 4555: 4554: 4550: 4541: 4540: 4536: 4527: 4526: 4522: 4489: 4488: 4484: 4474: 4472: 4463: 4462: 4458: 4448: 4446: 4439: 4434: 4433: 4429: 4420: 4419: 4415: 4406: 4405: 4401: 4387: 4386: 4382: 4368: 4367: 4363: 4347: 4346: 4342: 4333: 4331: 4324:en.wikichip.org 4318: 4317: 4313: 4304: 4302: 4295:en.wikichip.org 4289: 4288: 4284: 4275: 4273: 4260: 4259: 4255: 4246: 4244: 4231: 4230: 4226: 4217: 4215: 4199: 4198: 4194: 4185: 4183: 4169: 4168: 4164: 4155: 4154: 4150: 4141: 4140: 4136: 4127: 4126: 4122: 4112: 4110: 4101: 4100: 4096: 4082: 4081: 4077: 4063: 4062: 4058: 4049: 4047: 4034: 4033: 4029: 4016: 4015: 4011: 4001: 3999: 3990: 3989: 3985: 3956: 3955: 3951: 3944: 3930: 3929: 3925: 3899: 3898: 3894: 3875:MRS Proceedings 3868: 3867: 3863: 3856: 3842: 3841: 3837: 3803: 3802: 3798: 3769: 3768: 3764: 3748: 3747: 3743: 3729: 3728: 3724: 3717: 3702: 3701: 3694: 3687:10.1063/1.56795 3672: 3671: 3667: 3662:. 10 July 2000. 3658: 3657: 3653: 3640: 3639: 3635: 3626: 3625: 3618: 3613:. 10 July 2000. 3609: 3608: 3604: 3575: 3574: 3570: 3563: 3549: 3548: 3544: 3535: 3534: 3530: 3521: 3520: 3516: 3501: 3500: 3496: 3477: 3476: 3472: 3463: 3462: 3458: 3449: 3448: 3444: 3435: 3434: 3430: 3421: 3420: 3416: 3409: 3395: 3394: 3390: 3383: 3369: 3368: 3364: 3355: 3354: 3350: 3343: 3329: 3328: 3324: 3311:(12): 1487–90. 3300: 3299: 3295: 3263: 3262: 3258: 3238: 3233: 3232: 3219: 3210: 3208: 3201: 3193:. p. 330. 3182: 3181: 3177: 3152: 3151: 3147: 3137: 3135: 3120: 3119: 3112: 3102: 3100: 3091: 3090: 3086: 3077: 3075: 3059: 3058: 3054: 3044: 3042: 3028: 3027: 3020: 3010: 3008: 2999: 2998: 2991: 2982: 2980: 2971: 2970: 2966: 2952: 2951: 2947: 2935: 2931: 2930: 2926: 2916: 2914: 2909: 2908: 2901: 2894: 2879: 2878: 2874: 2867: 2852: 2851: 2847: 2840: 2825: 2824: 2820: 2813: 2798: 2797: 2793: 2759: 2758: 2751: 2717: 2716: 2712: 2697: 2674: 2673: 2669: 2660: 2658: 2654: 2639:10.1.1.493.1460 2621: 2616: 2615: 2608: 2574: 2573: 2569: 2558: 2557: 2550: 2535: 2512: 2511: 2504: 2462: 2461: 2457: 2447: 2446: 2433: 2424: 2422: 2413: 2412: 2408: 2398: 2396: 2367: 2366: 2359: 2354: 2349: 2226: 2221: 2213:Main articles: 2211: 2140: 2134: 2082: 2076: 2063: 2061:Die preparation 2055:Main articles: 2053: 2051:Die preparation 2032: 1980: 1955: 1949: 1916: 1914:Wafer metrology 1863:in them with a 1831: 1825: 1810: 1798: 1784: 1779: 1773: 1753:silicon dioxide 1751:(traditionally 1749:gate dielectric 1745: 1737:Main articles: 1735: 1716: 1712: 1689:crystal lattice 1657: 1651: 1637:) to fabricate 1487: 1481: 1445: 1437:Main articles: 1435: 1414:cleanroom suits 1394: 1388: 1278:Die cutting or 1273:ball grid array 1208:Die preparation 1153:Furnace anneals 960:Wafer scrubbing 945:ultrapure water 910: 889: 885: 817:GlobalFoundries 763: 647: 616: 611: 589: 553:transistor gate 533:technology node 503: 469:die singulation 375: 346: 342:Nanoelectronics 293: 287: 278: 269: 260: 251: 242: 233: 224: 215: 206: 197: 188: 179: 170: 125: 116: 107: 98: 89: 80: 67: 48: 46: 28: 23: 22: 15: 12: 11: 5: 7312: 7310: 7302: 7301: 7296: 7291: 7281: 7280: 7277: 7276: 7271: 7266: 7259: 7258:External links 7256: 7255: 7254: 7245: 7240: 7228: 7225: 7222: 7221: 7210: 7199: 7188: 7181: 7161: 7135: 7124: 7113: 7102: 7091: 7080: 7051: 7016: 6985: 6953: 6925: 6893: 6848: 6845:. 13 May 2014. 6834: 6820: 6761: 6754: 6722: 6708: 6701: 6682: 6675: 6656: 6632: 6618: 6611: 6591: 6576: 6546: 6526: 6511: 6481: 6466: 6435: 6416: 6409: 6390: 6387:. 12 May 2015. 6376: 6362: 6348: 6316: 6306: 6297: 6265: 6258: 6238: 6231: 6212: 6205: 6185: 6178: 6158: 6138: 6106: 6099: 6070: 6044:(1): 111–137. 6021: 5993: 5986: 5966: 5952: 5945: 5925: 5906: 5899: 5879: 5872: 5852: 5845: 5825: 5818: 5798: 5791: 5785:. OUP Oxford. 5771: 5764: 5744: 5737: 5731:. OUP Oxford. 5717: 5701:www.eesemi.com 5688: 5681: 5662: 5636: 5607: 5575: 5557: 5528: 5499: 5481: 5452: 5423: 5394: 5380: 5356: 5349: 5329: 5322: 5292: 5269: 5246: 5229: 5205: 5166: 5159: 5140: 5133: 5113: 5094: 5068:(2): 767–774. 5046: 5032: 5009: 4998: 4980: 4973: 4953: 4923: 4906: 4892: 4873: 4852: 4831: 4817: 4798: 4766: 4736: 4706: 4674: 4660: 4646: 4632: 4618: 4604: 4590: 4576: 4562: 4548: 4545:. 24 May 2021. 4534: 4520: 4482: 4456: 4427: 4413: 4399: 4380: 4361: 4348:Cutress, Ian. 4340: 4311: 4282: 4268:. 2018-03-12. 4253: 4239:. 2016-09-10. 4224: 4192: 4162: 4148: 4134: 4120: 4094: 4075: 4056: 4042:. 2017-05-09. 4027: 4009: 3983: 3949: 3942: 3923: 3912:(2): 138–146. 3892: 3861: 3854: 3835: 3796: 3762: 3741: 3722: 3715: 3692: 3665: 3651: 3633: 3616: 3602: 3568: 3561: 3542: 3528: 3514: 3494: 3470: 3456: 3442: 3428: 3414: 3407: 3388: 3381: 3362: 3348: 3341: 3322: 3293: 3274:(4): 1349–51. 3256: 3217: 3199: 3175: 3158:Wanlass, Frank 3154:Sah, Chih-Tang 3145: 3110: 3084: 3060:Cutress, Ian. 3052: 3018: 2989: 2964: 2945: 2924: 2899: 2892: 2872: 2865: 2845: 2838: 2818: 2811: 2791: 2772:(2): 310–315. 2749: 2730:(4): 670–679. 2710: 2695: 2667: 2626:Hitachi Review 2606: 2587:(1): 108–115. 2567: 2548: 2533: 2502: 2455: 2431: 2421:. 11 July 2013 2406: 2356: 2355: 2353: 2350: 2348: 2347: 2342: 2340:Planar process 2337: 2332: 2327: 2321: 2315: 2310: 2305: 2300: 2294: 2289: 2284: 2283: 2282: 2277: 2267: 2266: 2265: 2255: 2254: 2253: 2243: 2238: 2233: 2227: 2225: 2222: 2210: 2207: 2202: 2201: 2182: 2163: 2133: 2130: 2078:Main article: 2075: 2072: 2052: 2049: 2031: 2028: 1978: 1951:Main article: 1948: 1945: 1915: 1912: 1880:microprocessor 1827:Main article: 1824: 1821: 1808: 1801:silicate glass 1796: 1783: 1780: 1775:Main article: 1772: 1769: 1734: 1731: 1714: 1710: 1681:straining step 1653:Main article: 1650: 1647: 1611: 1610: 1578: 1547: 1529: 1480: 1477: 1434: 1431: 1390:Main article: 1387: 1384: 1368: 1367: 1362: 1361: 1360: 1359: 1358: 1351: 1348: 1329:Electroplating 1326: 1323: 1314: 1295: 1292:Die attachment 1284: 1283: 1282: 1276: 1265: 1255: 1241: 1227: 1220: 1205: 1204: 1203: 1200:laser trimming 1189: 1183: 1180:Electroplating 1176: 1169: 1168: 1167: 1166: 1165: 1155: 1150: 1147: 1144: 1135: 1129: 1126: 1125: 1124: 1113: 1112: 1111: 1108: 1099: 1093: 1092: 1091: 1079: 1078: 1077: 1076: 1075: 1065: 1064: 1063: 1062: 1061: 1060: 1059: 1056: 1047: 1032:plasma etching 1020: 1010: 1009: 1008: 1005: 1002: 999: 996: 993: 985: 980: 979: 978: 975: 970: 967: 964: 961: 958: 953: 948: 909: 906: 870:Toshiba Memory 762: 759: 615: 612: 588: 585: 502: 499: 491:Tokyo Electron 426:semiconducting 392:(ICs) such as 377: 376: 374: 373: 366: 359: 351: 348: 347: 345: 344: 339: 334: 329: 324: 319: 309: 304: 299: 292: 289: 288: 286: 285: 274: 271: 270: 268: 267: 258: 249: 240: 231: 222: 213: 204: 195: 186: 177: 168: 162: 156: 150: 144: 138: 132: 123: 114: 105: 96: 87: 77: 74: 73: 65:MOSFET scaling 61: 60: 52: 51: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 7311: 7300: 7297: 7295: 7292: 7290: 7287: 7286: 7284: 7275: 7272: 7270: 7269:Wafer heating 7267: 7265: 7262: 7261: 7257: 7251: 7246: 7244: 7241: 7236: 7231: 7230: 7226: 7219: 7214: 7211: 7208: 7203: 7200: 7197: 7192: 7189: 7184: 7178: 7174: 7173: 7165: 7162: 7149: 7145: 7139: 7136: 7133: 7128: 7125: 7122: 7117: 7114: 7111: 7106: 7103: 7100: 7095: 7092: 7089: 7084: 7081: 7069: 7065: 7061: 7055: 7052: 7037: 7034:. p. 6. 7033: 7026: 7020: 7017: 7006:on 2020-10-26 7002: 6995: 6989: 6986: 6974: 6970: 6969: 6964: 6957: 6954: 6949: 6943: 6928: 6926:1-877750-60-3 6922: 6915: 6914: 6906: 6900: 6898: 6894: 6883: 6879: 6875: 6871: 6867: 6863: 6859: 6852: 6849: 6844: 6838: 6835: 6830: 6824: 6821: 6816: 6812: 6807: 6802: 6797: 6792: 6788: 6784: 6780: 6776: 6772: 6765: 6762: 6757: 6751: 6747: 6743: 6739: 6738: 6733: 6726: 6723: 6718: 6712: 6709: 6704: 6698: 6694: 6693: 6686: 6683: 6678: 6672: 6668: 6667: 6660: 6657: 6652: 6648: 6641: 6639: 6637: 6633: 6628: 6622: 6619: 6614: 6608: 6604: 6603: 6595: 6592: 6587: 6583: 6579: 6573: 6569: 6565: 6561: 6557: 6550: 6547: 6542: 6541: 6536: 6530: 6527: 6522: 6518: 6514: 6508: 6504: 6500: 6496: 6492: 6485: 6482: 6477: 6473: 6469: 6467:1-4244-0438-X 6463: 6459: 6455: 6451: 6447: 6439: 6436: 6431: 6427: 6420: 6417: 6412: 6406: 6402: 6401: 6394: 6391: 6386: 6380: 6377: 6372: 6366: 6363: 6358: 6352: 6349: 6344: 6340: 6336: 6332: 6328: 6327: 6320: 6317: 6310: 6307: 6301: 6298: 6293: 6289: 6285: 6281: 6277: 6276: 6269: 6266: 6261: 6255: 6251: 6250: 6242: 6239: 6234: 6228: 6224: 6223: 6216: 6213: 6208: 6202: 6199:. Routledge. 6198: 6197: 6189: 6186: 6181: 6175: 6172:. CRC Press. 6171: 6170: 6162: 6159: 6154: 6153: 6148: 6142: 6139: 6134: 6130: 6126: 6122: 6118: 6117: 6110: 6107: 6102: 6096: 6092: 6088: 6084: 6080: 6074: 6071: 6055: 6051: 6047: 6043: 6039: 6032: 6025: 6022: 6017: 6013: 6006: 6005: 5997: 5994: 5989: 5983: 5979: 5978: 5970: 5967: 5962: 5956: 5953: 5948: 5942: 5938: 5937: 5929: 5926: 5921: 5917: 5910: 5907: 5902: 5896: 5892: 5891: 5883: 5880: 5875: 5869: 5865: 5864: 5856: 5853: 5848: 5842: 5838: 5837: 5829: 5826: 5821: 5815: 5811: 5810: 5802: 5799: 5794: 5788: 5784: 5783: 5775: 5772: 5767: 5761: 5757: 5756: 5748: 5745: 5740: 5734: 5730: 5729: 5721: 5718: 5706: 5702: 5698: 5692: 5689: 5684: 5678: 5674: 5673: 5666: 5663: 5651: 5647: 5640: 5637: 5625: 5621: 5617: 5611: 5608: 5596: 5592: 5588: 5582: 5580: 5576: 5571: 5567: 5561: 5558: 5546: 5542: 5538: 5532: 5529: 5518:on 2019-05-26 5517: 5513: 5512:www.nitto.com 5509: 5503: 5500: 5495: 5491: 5485: 5482: 5470: 5466: 5462: 5456: 5453: 5441: 5437: 5433: 5427: 5424: 5412: 5408: 5404: 5398: 5395: 5383: 5377: 5373: 5369: 5368: 5360: 5357: 5352: 5346: 5342: 5341: 5333: 5330: 5325: 5319: 5315: 5311: 5307: 5303: 5296: 5293: 5280: 5273: 5270: 5257: 5250: 5247: 5242: 5236: 5234: 5230: 5225: 5221: 5214: 5212: 5210: 5206: 5201: 5197: 5193: 5189: 5185: 5181: 5177: 5170: 5167: 5162: 5156: 5152: 5151: 5144: 5141: 5136: 5130: 5126: 5125: 5117: 5114: 5109: 5105: 5098: 5095: 5083: 5079: 5075: 5071: 5067: 5063: 5062: 5057: 5050: 5047: 5035: 5029: 5025: 5024: 5016: 5014: 5010: 5007: 5002: 4999: 4994: 4990: 4984: 4981: 4976: 4970: 4966: 4965: 4957: 4954: 4941: 4937: 4933: 4927: 4924: 4919: 4913: 4911: 4907: 4902: 4896: 4893: 4888: 4884: 4877: 4874: 4869: 4868: 4863: 4856: 4853: 4848: 4847: 4842: 4835: 4832: 4827: 4821: 4818: 4813: 4812:The Telegraph 4809: 4802: 4799: 4787: 4783: 4782: 4777: 4770: 4767: 4755: 4751: 4750:WikiChip Fuse 4747: 4740: 4737: 4725: 4721: 4717: 4710: 4707: 4695: 4691: 4690: 4685: 4678: 4675: 4670: 4664: 4661: 4656: 4650: 4647: 4642: 4636: 4633: 4628: 4622: 4619: 4614: 4608: 4605: 4600: 4594: 4591: 4586: 4580: 4577: 4572: 4566: 4563: 4558: 4552: 4549: 4544: 4538: 4535: 4530: 4524: 4521: 4517: 4513: 4509: 4505: 4501: 4497: 4493: 4486: 4483: 4471: 4467: 4460: 4457: 4445: 4438: 4431: 4428: 4423: 4417: 4414: 4409: 4403: 4400: 4395: 4391: 4384: 4381: 4376: 4372: 4365: 4362: 4357: 4356: 4351: 4344: 4341: 4329: 4325: 4321: 4315: 4312: 4300: 4296: 4292: 4286: 4283: 4271: 4267: 4266:eejournal.com 4263: 4257: 4254: 4242: 4238: 4234: 4228: 4225: 4213: 4209: 4208: 4203: 4196: 4193: 4181: 4177: 4173: 4166: 4163: 4158: 4152: 4149: 4144: 4138: 4135: 4130: 4124: 4121: 4109: 4105: 4098: 4095: 4090: 4086: 4079: 4076: 4071: 4067: 4060: 4057: 4045: 4041: 4037: 4031: 4028: 4023: 4019: 4013: 4010: 3997: 3993: 3987: 3984: 3979: 3975: 3971: 3967: 3963: 3959: 3953: 3950: 3945: 3939: 3935: 3934: 3927: 3924: 3919: 3915: 3911: 3907: 3903: 3896: 3893: 3888: 3884: 3880: 3876: 3872: 3865: 3862: 3857: 3851: 3847: 3846: 3839: 3836: 3831: 3827: 3823: 3819: 3815: 3811: 3807: 3800: 3797: 3792: 3788: 3784: 3780: 3776: 3772: 3766: 3763: 3758: 3757: 3752: 3745: 3742: 3737: 3733: 3726: 3723: 3718: 3712: 3708: 3707: 3699: 3697: 3693: 3688: 3684: 3680: 3676: 3669: 3666: 3661: 3655: 3652: 3647: 3643: 3637: 3634: 3629: 3623: 3621: 3617: 3612: 3606: 3603: 3598: 3594: 3590: 3586: 3582: 3578: 3572: 3569: 3564: 3558: 3554: 3553: 3546: 3543: 3538: 3532: 3529: 3524: 3518: 3515: 3510: 3509: 3504: 3498: 3495: 3490: 3486: 3482: 3481: 3474: 3471: 3466: 3460: 3457: 3452: 3446: 3443: 3438: 3432: 3429: 3424: 3418: 3415: 3410: 3404: 3400: 3399: 3392: 3389: 3384: 3378: 3374: 3373: 3366: 3363: 3358: 3352: 3349: 3344: 3338: 3334: 3333: 3326: 3323: 3318: 3314: 3310: 3306: 3305: 3297: 3294: 3289: 3285: 3281: 3277: 3273: 3269: 3268: 3260: 3257: 3252: 3248: 3244: 3237: 3230: 3228: 3226: 3224: 3222: 3218: 3206: 3202: 3200:9783540342588 3196: 3192: 3188: 3187: 3179: 3176: 3171: 3167: 3163: 3159: 3155: 3149: 3146: 3133: 3129: 3128: 3123: 3117: 3115: 3111: 3098: 3094: 3088: 3085: 3073: 3069: 3068: 3063: 3056: 3053: 3040: 3036: 3032: 3025: 3023: 3019: 3007: 3003: 2996: 2994: 2990: 2978: 2974: 2968: 2965: 2960: 2956: 2949: 2946: 2941: 2934: 2928: 2925: 2913: 2906: 2904: 2900: 2895: 2889: 2886:. CRC Press. 2885: 2884: 2876: 2873: 2868: 2862: 2859:. CRC Press. 2858: 2857: 2849: 2846: 2841: 2835: 2831: 2830: 2822: 2819: 2814: 2808: 2805:. CRC Press. 2804: 2803: 2795: 2792: 2787: 2783: 2779: 2775: 2771: 2767: 2763: 2756: 2754: 2750: 2745: 2741: 2737: 2733: 2729: 2725: 2721: 2714: 2711: 2706: 2702: 2698: 2692: 2688: 2684: 2680: 2679: 2671: 2668: 2653: 2649: 2645: 2640: 2635: 2631: 2627: 2620: 2613: 2611: 2607: 2602: 2598: 2594: 2590: 2586: 2582: 2578: 2571: 2568: 2563: 2562: 2555: 2553: 2549: 2544: 2540: 2536: 2530: 2526: 2522: 2518: 2517: 2509: 2507: 2503: 2498: 2494: 2490: 2486: 2482: 2478: 2475:(4): 040801. 2474: 2470: 2466: 2459: 2456: 2451: 2444: 2442: 2440: 2438: 2436: 2432: 2420: 2416: 2410: 2407: 2395: 2391: 2387: 2383: 2379: 2375: 2371: 2364: 2362: 2358: 2351: 2346: 2343: 2341: 2338: 2336: 2333: 2331: 2328: 2325: 2322: 2319: 2316: 2314: 2311: 2309: 2306: 2304: 2301: 2298: 2295: 2293: 2290: 2288: 2285: 2281: 2278: 2276: 2275:Foundry model 2273: 2272: 2271: 2268: 2264: 2261: 2260: 2259: 2256: 2252: 2249: 2248: 2247: 2244: 2242: 2239: 2237: 2234: 2232: 2229: 2228: 2223: 2220: 2216: 2208: 2206: 2199: 2195: 2194:sulfuric acid 2191: 2187: 2183: 2180: 2176: 2172: 2168: 2164: 2161: 2157: 2153: 2149: 2145: 2144: 2143: 2139: 2131: 2129: 2125: 2123: 2119: 2115: 2111: 2109: 2105: 2101: 2097: 2093: 2088: 2081: 2073: 2071: 2069: 2062: 2058: 2050: 2048: 2044: 2040: 2036: 2029: 2027: 2025: 2021: 2020: 2014: 2012: 2008: 2003: 1999: 1995: 1992: 1987: 1982: 1976: 1972: 1967: 1965: 1961: 1954: 1953:Wafer testing 1946: 1944: 1942: 1938: 1933: 1929: 1928:reflectometry 1925: 1921: 1913: 1911: 1907: 1904: 1900: 1895: 1891: 1887: 1886: 1881: 1876: 1874: 1870: 1866: 1862: 1858: 1854: 1850: 1849: 1840: 1839:standard cell 1835: 1830: 1822: 1820: 1816: 1812: 1806: 1802: 1793: 1789: 1781: 1778: 1770: 1768: 1766: 1762: 1758: 1754: 1750: 1744: 1740: 1732: 1730: 1726: 1724: 1719: 1706: 1702: 1700: 1696: 1695: 1690: 1686: 1682: 1678: 1674: 1673:logic devices 1670: 1666: 1662: 1656: 1648: 1646: 1642: 1640: 1636: 1632: 1628: 1624: 1620: 1616: 1608: 1604: 1599: 1594: 1590: 1586: 1582: 1579: 1576: 1575:plasma ashing 1571: 1567: 1566: 1561: 1560: 1555: 1551: 1548: 1545: 1541: 1537: 1533: 1530: 1527: 1523: 1519: 1515: 1511: 1507: 1503: 1499: 1495: 1492: 1491: 1490: 1486: 1478: 1476: 1474: 1470: 1466: 1462: 1458: 1454: 1450: 1444: 1440: 1432: 1430: 1427: 1423: 1419: 1418:contamination 1415: 1411: 1407: 1403: 1399: 1393: 1385: 1379: 1375: 1373: 1366: 1363: 1356: 1352: 1349: 1346: 1342: 1338: 1335:leads of the 1334: 1330: 1327: 1324: 1321: 1320: 1318: 1315: 1312: 1308: 1304: 1300: 1296: 1293: 1290: 1289: 1288: 1285: 1281: 1277: 1274: 1270: 1266: 1263: 1259: 1256: 1253: 1249: 1245: 1244:Wafer bonding 1242: 1239: 1235: 1231: 1228: 1225: 1221: 1218: 1214: 1211: 1210: 1209: 1206: 1201: 1197: 1193: 1192:Wafer testing 1190: 1187: 1184: 1181: 1177: 1174: 1170: 1164: 1161: 1160: 1159: 1156: 1154: 1151: 1148: 1145: 1143: 1139: 1138: 1136: 1133: 1132:Plasma ashing 1130: 1127: 1122: 1119: 1118: 1117: 1114: 1109: 1106: 1105: 1103: 1100: 1097: 1094: 1089: 1086: 1085: 1083: 1080: 1074: 1071: 1070: 1069: 1066: 1057: 1054: 1053: 1051: 1048: 1045: 1042: 1041: 1039: 1036: 1035: 1033: 1029: 1026: 1025: 1024: 1021: 1018: 1014: 1011: 1006: 1003: 1000: 997: 994: 991: 990: 989: 986: 984: 981: 976: 974: 971: 968: 965: 963:Spin cleaning 962: 959: 957: 954: 952: 949: 946: 942: 938: 934: 933: 931: 930: 928: 927: 926: 924: 920: 916: 908:List of steps 907: 905: 903: 898: 895: 883: 879: 875: 871: 867: 863: 859: 855: 851: 846: 844: 839: 837: 834:demonstrated 833: 828: 826: 825:10 nm process 822: 818: 812: 809: 807: 803: 799: 796: 792: 788: 784: 780: 776: 772: 768: 760: 758: 755: 749: 745: 743: 739: 735: 730: 727: 724: 720: 717: 715: 711: 707: 703: 699: 694: 692: 688: 684: 680: 676: 672: 668: 664: 660: 655: 653: 645: 641: 637: 633: 632:Frank Wanlass 629: 628:Chih-Tang Sah 625: 621: 613: 610: 606: 602: 598: 594: 586: 584: 582: 578: 574: 570: 569:10 nm process 564: 562: 558: 557:90 nm process 554: 550: 546: 542: 538: 534: 530: 526: 521: 519: 514: 509: 505: 500: 498: 496: 492: 488: 484: 479: 477: 472: 470: 466: 461: 458: 454: 450: 446: 442: 437: 435: 431: 427: 423: 419: 415: 411: 407: 403: 399: 395: 391: 387: 383: 372: 367: 365: 360: 358: 353: 352: 350: 349: 343: 340: 338: 335: 333: 332:Semiconductor 330: 328: 325: 323: 320: 317: 313: 310: 308: 305: 303: 300: 298: 295: 294: 291: 290: 283: 277: 276: 273: 272: 265: 259: 256: 250: 247: 241: 238: 232: 229: 223: 220: 214: 211: 205: 202: 196: 193: 187: 184: 178: 175: 169: 166: 163: 160: 157: 154: 151: 148: 145: 142: 139: 136: 133: 130: 124: 121: 115: 112: 106: 103: 97: 94: 88: 85: 79: 78: 76: 75: 71: 70:process nodes 66: 63: 62: 58: 54: 53: 50: 45:Semiconductor 42: 37: 32: 19: 7252:. CRC Press. 7249: 7234: 7213: 7202: 7191: 7175:. Elsevier. 7171: 7164: 7154:February 17, 7152:. Retrieved 7147: 7138: 7127: 7116: 7105: 7094: 7083: 7072:. Retrieved 7063: 7054: 7043:. Retrieved 7031: 7019: 7008:. Retrieved 7001:the original 6988: 6977:. Retrieved 6966: 6956: 6931:. Retrieved 6912: 6885:. Retrieved 6868:(1): 66–71. 6865: 6861: 6851: 6837: 6823: 6781:(21): 5049. 6778: 6774: 6764: 6736: 6731: 6725: 6711: 6691: 6685: 6665: 6659: 6650: 6621: 6605:. Springer. 6601: 6594: 6559: 6549: 6538: 6529: 6494: 6484: 6449: 6438: 6429: 6419: 6399: 6393: 6379: 6365: 6351: 6325: 6319: 6309: 6300: 6274: 6268: 6248: 6241: 6221: 6215: 6195: 6188: 6168: 6161: 6150: 6141: 6115: 6109: 6082: 6073: 6061:. Retrieved 6054:the original 6041: 6037: 6024: 6003: 5996: 5976: 5969: 5955: 5935: 5928: 5919: 5909: 5889: 5882: 5862: 5855: 5839:. Elsevier. 5835: 5828: 5808: 5801: 5781: 5774: 5758:. Springer. 5754: 5747: 5727: 5720: 5709:. Retrieved 5700: 5691: 5671: 5665: 5655:November 23, 5653:. Retrieved 5649: 5639: 5628:. Retrieved 5620:Chip History 5619: 5610: 5599:. Retrieved 5590: 5569: 5560: 5549:. Retrieved 5540: 5531: 5520:. Retrieved 5516:the original 5511: 5502: 5493: 5484: 5473:. Retrieved 5464: 5455: 5444:. Retrieved 5435: 5426: 5415:. Retrieved 5406: 5397: 5385:. Retrieved 5366: 5359: 5339: 5332: 5305: 5295: 5283:. Retrieved 5272: 5260:. Retrieved 5249: 5223: 5186:(1): 60–66. 5183: 5179: 5169: 5149: 5143: 5123: 5116: 5107: 5097: 5085:. Retrieved 5065: 5059: 5049: 5037:. Retrieved 5022: 5001: 4992: 4983: 4963: 4956: 4946:December 16, 4944:. Retrieved 4935: 4926: 4895: 4886: 4876: 4865: 4855: 4849:(Interview). 4844: 4834: 4820: 4811: 4801: 4790:. Retrieved 4779: 4769: 4758:. Retrieved 4749: 4739: 4729:25 September 4727:. Retrieved 4719: 4709: 4698:. Retrieved 4687: 4677: 4663: 4649: 4635: 4621: 4607: 4593: 4579: 4565: 4551: 4537: 4523: 4515: 4498:(6): 20–29. 4495: 4491: 4485: 4473:. Retrieved 4469: 4459: 4447:. Retrieved 4443: 4430: 4416: 4402: 4393: 4383: 4374: 4364: 4353: 4343: 4332:. Retrieved 4323: 4314: 4303:. Retrieved 4294: 4285: 4274:. Retrieved 4265: 4256: 4245:. Retrieved 4237:wccftech.com 4236: 4227: 4216:. Retrieved 4205: 4195: 4184:. Retrieved 4175: 4165: 4151: 4137: 4123: 4111:. Retrieved 4107: 4097: 4088: 4078: 4069: 4059: 4048:. Retrieved 4039: 4030: 4022:Chip History 4021: 4012: 4000:. Retrieved 3996:the original 3986: 3961: 3952: 3932: 3926: 3909: 3905: 3895: 3878: 3874: 3864: 3844: 3838: 3813: 3809: 3799: 3774: 3765: 3754: 3744: 3735: 3725: 3705: 3678: 3668: 3654: 3646:Chip History 3645: 3636: 3605: 3580: 3571: 3551: 3545: 3531: 3517: 3506: 3497: 3479: 3473: 3459: 3445: 3431: 3417: 3397: 3391: 3371: 3365: 3351: 3331: 3325: 3308: 3302: 3296: 3271: 3265: 3259: 3246: 3242: 3209:. Retrieved 3185: 3178: 3161: 3148: 3136:. Retrieved 3125: 3101:. Retrieved 3087: 3076:. Retrieved 3065: 3055: 3043:. Retrieved 3034: 3009:. Retrieved 3005: 2981:. Retrieved 2967: 2958: 2948: 2927: 2915:. Retrieved 2882: 2875: 2855: 2848: 2828: 2821: 2801: 2794: 2769: 2765: 2727: 2723: 2713: 2677: 2670: 2659:. Retrieved 2632:(3): 70–74. 2629: 2625: 2584: 2580: 2570: 2560: 2515: 2472: 2468: 2458: 2452:. CRC Press. 2449: 2423:. Retrieved 2418: 2409: 2397:. Retrieved 2377: 2373: 2203: 2141: 2126: 2121: 2112: 2083: 2068:wafer dicing 2064: 2045: 2041: 2037: 2033: 2030:Device yield 2017: 2015: 2004: 2000: 1996: 1983: 1968: 1959: 1956: 1924:ellipsometry 1917: 1908: 1902: 1883: 1877: 1856: 1852: 1846: 1844: 1823:Interconnect 1817: 1813: 1791: 1785: 1782:Metal layers 1746: 1727: 1720: 1707: 1703: 1692: 1680: 1676: 1658: 1643: 1612: 1592: 1588: 1580: 1563: 1557: 1549: 1531: 1493: 1488: 1463:cylindrical 1453:pure silicon 1446: 1395: 1369: 1331:(plates the 1299:Wire bonding 1297:IC bonding: 1287:IC packaging 1280:wafer dicing 1149:Laser anneal 911: 899: 854:10 nanometer 850:14 nanometer 848:As of 2019, 847: 840: 829: 813: 810: 800: 764: 761:21st century 750: 746: 731: 728: 725: 721: 718: 695: 682: 678: 669:division of 656: 622:technology, 617: 614:20th century 581:7 nm process 565: 540: 537:process node 536: 532: 522: 512: 510: 506: 504: 501:Feature size 495:Lam Research 480: 473: 462: 438: 388:, typically 381: 380: 284: ~ 2025 266: â€“ 2022 257: â€“ 2020 248: â€“ 2018 239: â€“ 2016 230: â€“ 2014 221: â€“ 2012 212: â€“ 2010 203: â€“ 2009 194: â€“ 2007 185: â€“ 2005 176: â€“ 2003 167: â€“ 2001 161: â€“ 1999 155: â€“ 1996 149: â€“ 1993 143: â€“ 1990 137: â€“ 1987 131: â€“ 1984 122: â€“ 1981 113: â€“ 1977 104: â€“ 1974 95: â€“ 1971 86: â€“ 1968 44: 6063:26 February 5258:. AspenCore 4207:ExtremeTech 4002:18 February 3045:October 21, 2399:November 9, 2335:Passivation 2190:nitric acid 2007:scan chains 1947:Device test 1848:of aluminum 1661:transistors 1587:transistor 1559:photoresist 1554:lithography 1406:pressurized 1398:micrometres 1372:Wright etch 1337:lead frames 1238:PCMCIA card 1224:dicing tape 1175:production) 1110:Evaporation 1068:Wet etching 1058:Thermal ALE 1028:Dry etching 932:Wet cleans 894:3 nanometer 884:is TSMC's 5 878:5 nanometer 874:7 nanometer 714:Middle East 597:Moore's law 549:micrometers 511:A specific 322:Moore's law 165:130 nm 159:180 nm 153:250 nm 147:350 nm 141:600 nm 135:800 nm 120:1.5 ÎĽm 49:fabrication 7283:Categories 7074:2020-12-18 7064:eesemi.com 7045:2018-09-25 7010:2020-10-23 6979:2020-04-12 6933:2023-01-22 6887:2021-11-16 5711:2020-10-14 5650:PCMag Asia 5630:2020-10-14 5601:2020-10-14 5551:2019-05-26 5522:2019-05-26 5475:2019-05-26 5446:2019-05-26 5417:2019-05-26 4792:2019-10-12 4760:2019-04-07 4700:2019-05-31 4492:IEEE Micro 4334:2019-08-17 4305:2019-08-17 4276:2019-07-09 4247:2019-07-09 4218:2019-07-09 4186:2019-07-09 4050:2017-11-19 4040:AnySilicon 3211:2019-07-21 3103:20 October 3078:2020-11-07 2983:2020-10-20 2661:2021-11-01 2425:2023-01-21 2380:(1): 1–8. 2352:References 2160:phosphorus 2150:, such as 2136:See also: 2092:lead frame 1761:capacitors 1568:focuses a 1550:Patterning 1494:Deposition 1483:See also: 1479:Processing 1447:A typical 1402:cleanrooms 1365:IC testing 1107:Sputtering 1055:Plasma ALE 1015:(in which 973:Megasonics 712:, and the 702:California 683:fabricated 667:Autonetics 591:See also: 545:nanometers 518:die shrink 445:clean room 428:material. 402:NAND flash 316:multi-gate 297:Half-nodes 237:10 nm 228:14 nm 219:22 nm 210:28 nm 201:32 nm 192:45 nm 183:65 nm 174:90 nm 93:10 ÎĽm 84:20 ÎĽm 36:clean room 6968:AnandTech 6942:cite book 6775:Materials 5387:8 January 5285:8 January 5262:8 January 5241:"Epitaxy" 5200:244560651 5087:8 January 5039:8 January 4781:AnandTech 4720:TSMC Blog 4689:AnandTech 4475:April 19, 4470:TechRadar 4449:April 18, 4444:intel.com 4355:AnandTech 3978:110840307 3597:109383925 3067:AnandTech 2786:213026336 2744:252555815 2634:CiteSeerX 2497:2166-2746 2324:SEMI font 2231:Deathnium 2188:, fuming 2171:phosphine 2108:Flip-chip 2087:bondwires 2074:Packaging 1920:metrology 1903:etch back 1894:damascene 1627:oxidation 1392:Cleanroom 1345:soldering 1307:flip chip 1269:flip chip 1264:packages) 1234:smartcard 956:RCA clean 830:In 2011, 821:7 nm 657:In 1963, 457:7 nm 282:2 nm 264:3 nm 255:5 nm 246:7 nm 129:1 ÎĽm 111:3 ÎĽm 102:6 ÎĽm 7068:Archived 7036:Archived 6973:Archived 6882:26263093 6815:33182434 6521:25926459 6476:23881959 6343:35956689 6292:32122636 5705:Archived 5624:Archived 5595:Archived 5545:Archived 5469:Archived 5440:Archived 5411:Archived 4940:Archived 4786:Archived 4754:Archived 4694:Archived 4408:"FinFET" 4328:Archived 4299:Archived 4270:Archived 4241:Archived 4212:Archived 4180:Archived 4113:22 April 4044:Archived 3791:70599233 3756:EE Times 3253:: 12–15. 3205:Archived 3132:Archived 3097:Archived 3072:Archived 3039:Archived 3035:PC Gamer 2977:Archived 2652:Archived 2648:30883737 2601:25469704 2394:12369827 2224:See also 2156:antimony 1984:The fab 1861:tungsten 1792:back end 1596:against 1455:that is 1343:to make 866:SK Hynix 791:Broadcom 787:Qualcomm 337:Industry 7299:MOSFETs 6806:7664900 6783:Bibcode 6586:1589266 6133:1194426 5070:Bibcode 4936:Reuters 4887:Reuters 4512:6700881 3818:Bibcode 3276:Bibcode 2705:3240442 2543:2482339 2477:Bibcode 2299:(LOCOS) 2152:arsenic 2148:dopants 2019:corners 1788:created 1765:Qimonda 1669:epitaxy 1665:silicon 1631:silicon 1589:sources 1565:stepper 1532:Removal 1508:(ECD), 1504:(CVD), 1500:(PVD), 1347:easier) 1116:Epitaxy 1017:dopants 937:acetone 795:fabless 734:bipolar 587:History 430:Silicon 302:Density 275:Future 7179:  6923:  6880:  6813:  6803:  6752:  6699:  6673:  6609:  6584:  6574:  6519:  6509:  6474:  6464:  6407:  6341:  6290:  6256:  6229:  6203:  6176:  6131:  6097:  5984:  5943:  5897:  5870:  5843:  5816:  5789:  5762:  5735:  5679:  5378:  5347:  5320:  5198:  5157:  5131:  5030:  4971:  4510:  3976:  3940:  3852:  3789:  3713:  3595:  3559:  3405:  3379:  3339:  3197:  3138:6 July 3011:22 May 2917:22 May 2890:  2863:  2836:  2809:  2784:  2742:  2703:  2693:  2646:  2636:  2599:  2541:  2531:  2495:  2392:  2263:FinFET 2246:MOSFET 2196:, and 2179:silane 2167:arsine 2158:, and 2122:before 2096:solder 2009:or a " 1991:eFUSEs 1593:drains 1585:doping 1546:(CMP). 1542:) and 1469:boules 1465:ingots 1433:Wafers 1333:copper 1325:Baking 1104:(PVD) 1084:(CVD) 1052:(ALE) 1046:(DRIE) 1040:(RIE) 890:  886:  862:Micron 843:GAAFET 754:BCDMOS 710:Europe 687:MOSFET 675:Boeing 648:  620:MOSFET 607:, and 573:FinFET 312:Device 117:  47:device 7039:(PDF) 7028:(PDF) 7004:(PDF) 6997:(PDF) 6917:(PDF) 6908:(PDF) 6582:S2CID 6517:S2CID 6472:S2CID 6339:S2CID 6288:S2CID 6129:S2CID 6057:(PDF) 6034:(PDF) 6008:(PDF) 5196:S2CID 4508:S2CID 4440:(PDF) 3974:S2CID 3787:S2CID 3593:S2CID 3249:(3). 3239:(PDF) 2936:(PDF) 2782:S2CID 2740:S2CID 2701:S2CID 2655:(PDF) 2644:S2CID 2622:(PDF) 2597:S2CID 2539:S2CID 2390:S2CID 1960:yield 1890:low-Îş 1799:or a 1677:prior 1635:LOCOS 1526:LOCOS 1518:oxide 1459:into 1457:grown 1449:wafer 1422:FOUPs 1339:with 1313:(TAB) 1271:BGA ( 1262:WLCSP 1188:(CMP) 1163:LOCOS 1123:(MBE) 1098:(ALD) 832:Intel 775:Intel 742:LDMOS 698:Texas 673:(now 529:CHMOS 476:FOUPs 422:wafer 7177:ISBN 7156:2024 7148:CNET 6948:link 6921:ISBN 6878:PMID 6811:PMID 6750:ISBN 6697:ISBN 6671:ISBN 6607:ISBN 6572:ISBN 6540:IEEE 6507:ISBN 6462:ISBN 6405:ISBN 6254:ISBN 6227:ISBN 6201:ISBN 6174:ISBN 6152:IEEE 6095:ISBN 6065:2024 5982:ISBN 5941:ISBN 5895:ISBN 5868:ISBN 5841:ISBN 5814:ISBN 5787:ISBN 5760:ISBN 5733:ISBN 5677:ISBN 5657:2023 5389:2024 5376:ISBN 5345:ISBN 5318:ISBN 5287:2024 5264:2024 5155:ISBN 5129:ISBN 5089:2024 5041:2024 5028:ISBN 4969:ISBN 4948:2019 4731:2023 4724:TSMC 4477:2018 4451:2018 4115:2018 4004:2024 3938:ISBN 3850:ISBN 3711:ISBN 3557:ISBN 3508:IEEE 3403:ISBN 3377:ISBN 3337:ISBN 3195:ISBN 3140:2019 3105:2020 3047:2020 3013:2022 2919:2022 2888:ISBN 2861:ISBN 2834:ISBN 2807:ISBN 2691:ISBN 2529:ISBN 2493:ISSN 2401:2015 2251:CMOS 2217:and 2169:and 2104:RoHS 2100:lead 2059:and 1937:dies 1857:vias 1777:BEOL 1741:and 1709:(HfO 1655:FEOL 1591:and 1570:mask 1441:and 1426:SMIF 1424:and 1252:MEMS 1250:and 852:and 789:and 779:TSMC 765:The 740:and 738:CMOS 706:Asia 700:and 630:and 624:CMOS 577:TSMC 525:HMOS 493:and 483:ASML 465:dies 406:DRAM 404:and 307:CMOS 6870:doi 6801:PMC 6791:doi 6742:doi 6564:doi 6499:doi 6454:doi 6331:doi 6280:doi 6121:doi 6087:doi 6046:doi 6012:doi 5310:doi 5188:doi 5078:doi 5066:146 4500:doi 3966:doi 3914:doi 3883:doi 3879:470 3826:doi 3814:237 3779:doi 3683:doi 3585:doi 3485:doi 3313:doi 3284:doi 3166:doi 2774:doi 2732:doi 2683:doi 2589:doi 2521:doi 2485:doi 2382:doi 1975:die 1971:5nm 1926:or 1865:CVD 1795:SiO 1617:in 1540:dry 1538:or 1536:wet 1341:tin 1309:or 1236:or 1173:LED 943:or 858:UMC 806:AMD 716:. 640:RCA 634:at 579:'s 543:in 535:or 7285:: 7146:. 7066:. 7062:. 7030:. 6971:. 6965:. 6944:}} 6940:{{ 6910:. 6896:^ 6876:. 6864:. 6860:. 6809:. 6799:. 6789:. 6779:13 6777:. 6773:. 6748:. 6649:. 6635:^ 6580:. 6570:. 6558:. 6537:. 6515:. 6505:. 6493:. 6470:. 6460:. 6448:. 6428:. 6337:. 6286:. 6149:. 6127:. 6093:. 6081:. 6042:86 6040:. 6036:. 5918:. 5703:. 5699:. 5648:. 5622:. 5618:. 5593:. 5589:. 5578:^ 5568:. 5543:. 5539:. 5510:. 5492:. 5467:. 5463:. 5438:. 5434:. 5409:. 5405:. 5370:. 5316:. 5304:. 5232:^ 5222:. 5208:^ 5194:. 5184:35 5182:. 5178:. 5106:. 5076:. 5064:. 5058:. 5012:^ 4991:. 4934:. 4909:^ 4885:. 4864:. 4843:. 4810:. 4784:. 4778:. 4752:. 4748:. 4722:. 4718:. 4692:. 4686:. 4514:. 4506:. 4496:37 4494:. 4468:. 4442:. 4392:. 4373:. 4352:. 4326:. 4322:. 4297:. 4293:. 4264:. 4235:. 4210:. 4204:. 4178:. 4174:. 4106:. 4087:. 4068:. 4038:. 4020:. 3972:. 3964:. 3960:. 3910:16 3908:. 3904:. 3881:. 3877:. 3873:. 3824:. 3812:. 3808:. 3785:. 3777:. 3773:. 3753:. 3734:. 3695:^ 3677:. 3644:. 3619:^ 3591:. 3583:. 3579:. 3505:. 3309:52 3307:. 3282:. 3272:35 3270:. 3245:. 3241:. 3220:^ 3203:. 3189:. 3156:; 3130:. 3124:. 3113:^ 3070:. 3064:. 3037:. 3033:. 3021:^ 3004:. 2992:^ 2975:. 2957:. 2938:. 2902:^ 2780:. 2770:33 2768:. 2764:. 2752:^ 2738:. 2728:35 2726:. 2722:. 2699:. 2689:. 2650:. 2642:. 2630:56 2628:. 2624:. 2609:^ 2595:. 2585:31 2583:. 2579:. 2551:^ 2537:. 2527:. 2505:^ 2491:. 2483:. 2473:30 2471:. 2467:. 2434:^ 2417:. 2388:. 2378:19 2376:. 2372:. 2360:^ 2192:, 2154:, 1675:, 1305:, 1301:, 1034:) 939:, 868:, 864:, 819:' 736:, 708:, 693:. 685:a 603:, 599:, 595:, 497:. 489:, 485:, 453:10 449:14 396:, 279:00 261:00 252:00 243:00 126:00 108:00 99:00 7158:. 7077:. 7048:. 7013:. 6982:. 6950:) 6936:. 6890:. 6872:: 6866:6 6831:. 6817:. 6793:: 6785:: 6744:: 6732:k 6719:. 6705:. 6679:. 6653:. 6629:. 6615:. 6588:. 6566:: 6543:. 6523:. 6501:: 6478:. 6456:: 6432:. 6413:. 6373:. 6359:. 6345:. 6333:: 6294:. 6282:: 6262:. 6235:. 6155:. 6135:. 6123:: 6103:. 6089:: 6067:. 6048:: 6018:. 6014:: 5990:. 5963:. 5949:. 5922:. 5714:. 5685:. 5659:. 5633:. 5604:. 5572:. 5554:. 5525:. 5496:. 5478:. 5449:. 5420:. 5391:. 5326:. 5312:: 5289:. 5266:. 5243:. 5226:. 5202:. 5190:: 5163:. 5110:. 5091:. 5080:: 5072:: 5043:. 4995:. 4903:. 4889:. 4870:. 4814:. 4795:. 4763:. 4733:. 4703:. 4629:. 4587:. 4573:. 4531:. 4502:: 4479:. 4453:. 4424:. 4410:. 4396:. 4377:. 4358:. 4337:. 4308:. 4279:. 4250:. 4221:. 4189:. 4117:. 4091:. 4072:. 4053:. 4024:. 4006:. 3980:. 3968:: 3946:. 3920:. 3916:: 3889:. 3885:: 3858:. 3832:. 3828:: 3820:: 3793:. 3781:: 3759:. 3738:. 3719:. 3689:. 3685:: 3648:. 3630:. 3599:. 3587:: 3565:. 3539:. 3525:. 3511:. 3491:. 3487:: 3467:. 3453:. 3439:. 3425:. 3411:. 3385:. 3359:. 3345:. 3319:. 3315:: 3290:. 3286:: 3278:: 3247:9 3214:. 3172:. 3168:: 3142:. 3107:. 3081:. 3049:. 3015:. 2986:. 2961:. 2942:. 2921:. 2896:. 2869:. 2842:. 2815:. 2788:. 2776:: 2746:. 2734:: 2707:. 2685:: 2664:. 2603:. 2591:: 2545:. 2523:: 2499:. 2487:: 2479:: 2428:. 2403:. 2384:: 2162:. 1979:0 1809:2 1797:2 1715:2 1711:2 1633:( 1528:. 1467:( 1357:) 1254:) 1226:) 1219:) 1182:. 1030:( 455:/ 451:/ 370:e 363:t 356:v 318:) 314:( 234:0 225:0 216:0 207:0 198:0 189:0 180:0 171:0 90:0 81:0 72:) 68:( 20:)

Index

Fabrication (semiconductor)

clean room
Semiconductor
device
fabrication


MOSFET scaling
process nodes
20 ÎĽm
10 ÎĽm
6 ÎĽm
3 ÎĽm
1.5 ÎĽm
1 ÎĽm
800 nm
600 nm
350 nm
250 nm
180 nm
130 nm
90 nm
65 nm
45 nm
32 nm
28 nm
22 nm
14 nm
10 nm
7 nm
5 nm
3 nm

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑