Knowledge (XXG)

Fast atom bombardment

Source đź“ť

152:, Cs ions make up the primary beam and for FAB the primary beam is made up of Xe or Ar atoms. Xe atoms are used because they tend to be more sensitive than Argon atoms due to their larger masses and more momentum. For the molecules to be ionized by FAB, first the slow moving atoms (Xe or Ar) are ionized by colliding electrons. Those slow moving atoms are then ionized and accelerated to a certain potential where they develop into fast moving ions that become neutral in a dense cloud of excess natural gas atoms that make a flowing stream of high translational energy atoms. Although the exact mechanism of how the samples are ionized have not been fully discovered, the nature of its ionization mechanism is similar to 285:
sometimes modified to perform peak jumping instead of scanning and to do ion counting detection. While satisfactory precision and accuracy were attained with FAB-MS, the technique was labor-intensive with a very low sample through-put rate due in part to the absence of auto-sampling options. By the early 2000s this severe sampling rate limitation had motivated users of FAB-MS for mineral isotope analysis to switch to conventional inorganic mass spectrometers, usually ICP-MS which also exhibited improved affordability and isotope ratio analysis performance by that time.
176:. Choosing the appropriate matrix for the sample is crucial because the matrix can also influence the degree of fragmentation of the sample (analyte) ions. The sample can then be introduced to FAB analysis. The normal method of introducing the sample-matrix mixture is through an insertion probe. The sample-matrix mixture is loaded on a stainless steel sample target on the probe, which is then placed in the ion source via a vacuum lock. The alternative method of introducing the sample is by using a device called continuous flow fast atom bombardment (CF)-FAB. 136: 172:) in order to be analyzed. FAB uses a liquid matrix that is mixed with the sample in order to provide a sample ion current that is sustained, reduces damages made to the sample by absorbing the impact of the primary beam, and keeps the sample molecules form aggregating. The liquid matrix, like any other matrix, most importantly provides a medium that promotes sample ionization. The most widely accepted matrix for this type of ionization is 1467: 1491: 17: 1479: 214: 205:
ratio. When a metal frit is used to disperse the liquid on the probe, the technique is known as frit FAB. Samples can be introduced by flow injection, microdialysis, or by coupling with liquid chromatography. Flow rates are typically between 1 and 20 ÎĽL/min. CF-FAB has a higher sensitivity compared to static FAB
246:
ATPase activity. Another application of FAB includes its original use for the analysis of condensed-phase samples. FAB can be use for measurements of the molecular weight of samples below 5000 Da, as well as their structural characteristics. FAB can be paired with various mass spectrometers for data
284:
studies of calcium, iron, magnesium and zinc. The analysis of metals required minimal modification of the mass spectrometers, e.g.replacing the stainless steel sample targets with pure silver ones to eliminate background from ionization of stainless steel components. Signal acquisition systems were
147:
denoted as and deprotonated molecules such as . Radical cations can also be observed in a FAB spectrum in rare cases. FAB was designed as an improved version of SIMS that allowed for the primary beam to no longer cause damaging effects to the sample. The major difference between the two techniques
204:
ombardment (CF-FAB), the sample is introduced into the mass spectrometer insertion probe through a small diameter capillary. (CF)-FAB was developed to minimize the problem of poor detection sensitivity that is caused by an excess of the matrix background that results in a high matrix-to-sample
263:
In 1983 a paper was published describing the use of fast atom bombardment mass spectrometry (FAB-MS) to analyze isotopes of calcium. Glycerol was not used; samples in aqueous solution were deposited on the sample target and dried prior to analysis. The technique was effectively
661:
Székely, Gabriella; Allison, John (1997). "If the ionization mechanism in fast-atom bombardment involves ion/molecule reactions, what are the reagent ions? The time dependence of fast-atom bombardment mass spectra and parallels to chemical ionization".
221:
The first example of the practical application of this FAB was the elucidation of the amino acid sequence of the oligopeptide efrapeptin D. This contained a variety of very unusual amino acid residues. The sequence was shown to be:
993:
Miller, Leland; Hambidge, Michael; Fennessey, Paul (1991). "Isotope Fractionation and Hydride Interference in Metal Isotope Analysis by Fast Atom Bombardment-Induced Secondary Ion Mass Spectrometry".
280:(ICP-MS). In contrast, FAB mass spectrometers were widely found in biomedical research institutions. Multiple laboratories adopted this technique, using FAB-MS to measure isotope ratios in 1012:
Krebs, Nancy; Miller, Leland; Naake, Vernon; Lei, Sian; Westcott, Jamie; Fennessey, Paul; Hambidge, Michael (June 1995). "The Use of Stable Isotope Techniques to Assess Zinc Metabolism".
1211: 664: 1394: 1389: 1141: 302:
Morris HR, Panico M, Barber M, Bordoli RS, Sedgwick RD, Tyler A (1981). "Fast atom bombardment: a new mass spectrometric method for peptide sequence analysis".
884:"Coaxial continuous flow fast atom bombardment for higher-molecular-weight peptides: comparison with static fast atom bombardment and electrospray ionization" 1246: 1196: 277: 1384: 252: 1206: 1057: 153: 1221: 1495: 1412: 1302: 1379: 395:
Barber, M.; Bordoli, R. S.; Sedgwick, R. D.; Tyler, A. N. (September 1981). "Fast atom bombardment of solids as an ion source in mass spectrometry".
1121: 1447: 337:
Barber, Michael; Bordoli, Robert S.; Elliott, Gerard J.; Sedgwick, R. Donald; Tyler, Andrew N. (1982). "Fast Atom Bombardment Mass Spectrometry".
968:
Eagles, John; Mellon, Fred (1996). "Chapter 10: Fast Atom Bombardment Mass Spectrometry (FABMS)". In Mellon, Fred; Sandstrom, Britmarie (eds.).
1437: 1201: 1126: 938:
Smith, David (December 1983). "Determination of Stable Isotopes of Calcium in Biological Fluids by Fast Atom Bombardment Mass Spectrometry".
817: 772: 484: 1131: 500:
De Pauw, E.; Agnello, A.; Derwa, F. (1991). "Liquid matrices for liquid secondary ion mass spectrometry-fast atom bombardment: An update".
273: 372:
Barber M, Bordoli RS, Sedgewick RD, Tyler AN (1981). "Fast atom bombardment of solids (F.A.B.): a new ion source for mass spectrometry".
1364: 124: 928:
Bullough,D.A., Jackson C.G.,Henderson, P.J.F., Cottee, F.H.,Beechey,R.B. and Linnett, P.E. Biochemistry International (1981) 4, 543-549
859: 834: 1161: 1151: 1103: 1442: 1404: 1226: 977: 561: 268:
using a neutral primary beam. This was a welcomed development for biomedical researchers studying the nutrition and metabolism of
1427: 1282: 1191: 1156: 1231: 1050: 265: 120: 56: 1432: 1417: 430:
Stoll, R.G.; Harvan, D.J.; Hass, J.R. (1984). "Liquid secondary ion mass spectrometry with a focussed primary ion source".
1422: 1369: 1343: 1452: 1146: 67:). In FAB and LSIMS, the material to be analyzed is mixed with a non-volatile chemical protection environment, called a 1483: 622:"The development of fast atom bombardment combined with tandem mass spectrometry for the determination of biomolecules" 1328: 227: 1471: 1098: 1043: 169: 626: 1374: 1359: 1287: 1272: 1077: 248: 104: 52: 48: 1171: 1241: 96: 846: 752: 635: 509: 439: 222:
N-acetyl-L-pip-AIB-L-pip-AIB-AIB-L-leu-beta-ala-gly-AIB-AIB-L-pip-AIB-gly-L-leu-L-iva-AIB-X. PIP =
1517: 1323: 1292: 1166: 1136: 157: 144: 1251: 782: 269: 143:
FAB is a relatively low fragmentation (soft) ionization technique and produces primarily intact
135: 1066: 973: 911: 903: 864: 813: 768: 746: 724: 716: 681: 602: 567: 557: 525: 480: 474: 455: 412: 354: 319: 281: 36: 1236: 1216: 1181: 1021: 947: 895: 854: 760: 708: 673: 643: 594: 517: 447: 404: 377: 346: 311: 68: 794: 116: 850: 756: 699:
Caprioli, Richard M. (1990). "Continuous-flow fast atom bombardment mass spectrometry".
639: 513: 443: 1186: 223: 112: 72: 677: 1511: 1333: 1093: 1025: 451: 315: 243: 168:
As previously stated, in FAB the samples are mixed with a non-volatile environment (
148:
is the difference in the nature of the primary beam used; ions vs atoms. For LSIMS,
1297: 92: 1338: 1277: 1256: 76: 1113: 100: 32: 907: 868: 720: 685: 606: 571: 529: 459: 416: 358: 882:
Tomer, K. B.; Perkins, J. R.; Parker, C. E.; Deterding, L. J. (1991-12-01).
235: 108: 899: 647: 521: 16: 915: 860:
10.1002/(SICI)1096-9888(199903)34:3<157::AID-JMS804>3.0.CO;2-4
728: 323: 272:
but lacking access to inorganic mass spectrometry instrumentation such as
1307: 585:
Pachuta, Steven J.; Cooks, R. G. (1987). "Mechanisms in molecular SIMS".
381: 173: 88: 55:
in 1980. When a beam of high energy ions is used instead of atoms (as in
951: 712: 598: 350: 20:
Schematic of a fast atom bombardment ion source for a mass spectrometer.
239: 231: 149: 835:"The coupling of gas and liquid chromatography with mass spectrometry" 764: 751:. Vol. 58. Springer Science & Business Media. pp. 494–. 408: 217:
ThermoQuest AvantGarde MS with quadrupole detector and FAB/EI source.
1035: 883: 621: 71:, and is bombarded under vacuum with a high energy (4000 to 10,000 213: 212: 134: 84: 80: 40: 15: 970:
Stable Isotopes in Human Nutrition:Inorganic Nutrient Metabolism
1039: 1082: 44: 432:
International Journal of Mass Spectrometry and Ion Processes
374:
Journal of the Chemical Society, Chemical Communications
810:
Continuous-flow fast atom bombardment mass spectrometry
665:
Journal of the American Society for Mass Spectrometry
79:. The atoms are typically from an inert gas such as 1403: 1352: 1316: 1265: 1112: 139:Schematic of the fast atom bombardment process. 554:Fundamentals of contemporary mass spectrometry 1051: 8: 740: 738: 278:inductively-coupled plasma mass spectrometry 154:matrix-assisted laser desorption/ionization 1058: 1044: 1036: 972:. London: Academic Press. pp. 73–80. 858: 473:Dominic M. Desiderio (14 November 1990). 294: 253:liquid chromatography–mass spectrometry 790: 780: 61:liquid secondary ion mass spectrometry 963: 961: 180:Continuous flow fast atom bombardment 7: 1478: 547: 545: 543: 541: 539: 274:thermal ionization mass spectrometry 1490: 745:JĂĽrgen H Gross (14 February 2011). 125:plasma desorption mass spectrometry 14: 995:Journal of Micronutrient Analysis 242:. This is a potent inhibitor of 1489: 1477: 1466: 1465: 164:Matrices and sample introduction 266:secondary ion mass spectrometry 121:secondary ion mass spectrometry 119:. This technique is similar to 57:secondary ion mass spectrometry 39:in which a beam of high energy 1: 748:Mass Spectrometry: A Textbook 678:10.1016/S1044-0305(97)00003-2 552:Chhabil., Dass (2007-01-01). 476:Mass Spectrometry of Peptides 304:Biochem. Biophys. Res. Commun 1026:10.1016/0955-2863(95)00043-Y 888:Biological Mass Spectrometry 839:Journal of Mass Spectrometry 479:. CRC Press. pp. 174–. 452:10.1016/0168-1176(84)85118-6 316:10.1016/0006-291X(81)91304-8 43:strikes a surface to create 1329:Microchannel plate detector 228:alpha-amino-isobutyric acid 1534: 87:. Common matrices include 59:), the method is known as 1461: 1073: 627:Mass Spectrometry Reviews 502:Mass Spectrometry Reviews 247:analysis, such as with a 1344:Langmuir–Taylor detector 1014:Nutritional Biochemistry 808:Caprioli, R. M. (1990). 249:quadrupole mass analyzer 105:2-nitrophenyloctyl ether 53:University of Manchester 1288:Quadrupole mass filter 900:10.1002/bms.1200201207 648:10.1002/mas.1280080602 556:. Wiley-Interscience. 522:10.1002/mas.1280100402 218: 140: 47:. It was developed by 21: 216: 138: 97:3-nitrobenzyl alcohol 25:Fast atom bombardment 19: 940:Analytical Chemistry 701:Analytical Chemistry 382:10.1039/C39810000325 339:Analytical Chemistry 145:protonated molecules 131:Ionization mechanism 1324:Electron multiplier 1293:Quadrupole ion trap 952:10.1021/ac00264a042 851:1999JMSp...34..157A 812:. New York: Wiley. 757:2005PhT....58f..59G 713:10.1021/ac00207a715 640:1989MSRv....8..445T 599:10.1021/cr00079a009 514:1991MSRv...10..283D 444:1984IJMSI..61...71S 351:10.1021/ac00241a817 158:chemical ionization 833:Abian, J. (1999). 270:essential minerals 259:Inorganic analysis 219: 141: 35:technique used in 22: 1505: 1504: 1067:Mass spectrometry 946:(14): 2391–2393. 819:978-0-471-92863-8 774:978-3-642-10709-2 765:10.1063/1.1996478 620:Tomer KB (1989). 486:978-0-8493-6293-4 403:(5830): 270–275. 37:mass spectrometry 1525: 1493: 1492: 1481: 1480: 1469: 1468: 1060: 1053: 1046: 1037: 1030: 1029: 1009: 1003: 1002: 990: 984: 983: 965: 956: 955: 935: 929: 926: 920: 919: 879: 873: 872: 862: 830: 824: 823: 805: 799: 798: 792: 788: 786: 778: 742: 733: 732: 707:(8): 477A–485A. 696: 690: 689: 658: 652: 651: 617: 611: 610: 587:Chemical Reviews 582: 576: 575: 549: 534: 533: 497: 491: 490: 470: 464: 463: 427: 421: 420: 409:10.1038/293270a0 392: 386: 385: 369: 363: 362: 345:(4): 645A–657A. 334: 328: 327: 299: 1533: 1532: 1528: 1527: 1526: 1524: 1523: 1522: 1508: 1507: 1506: 1501: 1457: 1399: 1348: 1312: 1261: 1108: 1069: 1064: 1034: 1033: 1011: 1010: 1006: 992: 991: 987: 980: 967: 966: 959: 937: 936: 932: 927: 923: 894:(12): 783–788. 881: 880: 876: 832: 831: 827: 820: 807: 806: 802: 789: 779: 775: 744: 743: 736: 698: 697: 693: 660: 659: 655: 619: 618: 614: 584: 583: 579: 564: 551: 550: 537: 499: 498: 494: 487: 472: 471: 467: 429: 428: 424: 394: 393: 389: 371: 370: 366: 336: 335: 331: 301: 300: 296: 291: 261: 211: 182: 166: 133: 117:triethanolamine 12: 11: 5: 1531: 1529: 1521: 1520: 1510: 1509: 1503: 1502: 1500: 1499: 1487: 1475: 1462: 1459: 1458: 1456: 1455: 1450: 1445: 1440: 1435: 1430: 1425: 1420: 1415: 1409: 1407: 1401: 1400: 1398: 1397: 1392: 1387: 1382: 1377: 1372: 1367: 1362: 1356: 1354: 1353:MS combination 1350: 1349: 1347: 1346: 1341: 1336: 1331: 1326: 1320: 1318: 1314: 1313: 1311: 1310: 1305: 1300: 1295: 1290: 1285: 1283:Time-of-flight 1280: 1275: 1269: 1267: 1263: 1262: 1260: 1259: 1254: 1249: 1244: 1239: 1234: 1229: 1224: 1219: 1214: 1209: 1204: 1199: 1194: 1189: 1184: 1179: 1174: 1169: 1164: 1159: 1154: 1149: 1144: 1139: 1134: 1129: 1124: 1118: 1116: 1110: 1109: 1107: 1106: 1101: 1096: 1091: 1080: 1074: 1071: 1070: 1065: 1063: 1062: 1055: 1048: 1040: 1032: 1031: 1020:(6): 292–301. 1004: 985: 978: 957: 930: 921: 874: 845:(3): 157–168. 825: 818: 800: 791:|journal= 773: 734: 691: 672:(4): 337–351. 653: 612: 593:(3): 647–669. 577: 562: 535: 508:(4): 283–301. 492: 485: 465: 422: 387: 364: 329: 293: 292: 290: 287: 282:isotope tracer 260: 257: 224:pipecolic acid 210: 207: 181: 178: 165: 162: 132: 129: 113:diethanolamine 73:electron volts 49:Michael Barber 13: 10: 9: 6: 4: 3: 2: 1530: 1519: 1516: 1515: 1513: 1498: 1497: 1488: 1486: 1485: 1476: 1474: 1473: 1464: 1463: 1460: 1454: 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1419: 1416: 1414: 1411: 1410: 1408: 1406: 1405:Fragmentation 1402: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1376: 1373: 1371: 1368: 1366: 1363: 1361: 1358: 1357: 1355: 1351: 1345: 1342: 1340: 1337: 1335: 1334:Daly detector 1332: 1330: 1327: 1325: 1322: 1321: 1319: 1315: 1309: 1306: 1304: 1301: 1299: 1296: 1294: 1291: 1289: 1286: 1284: 1281: 1279: 1276: 1274: 1271: 1270: 1268: 1266:Mass analyzer 1264: 1258: 1255: 1253: 1250: 1248: 1245: 1243: 1240: 1238: 1235: 1233: 1230: 1228: 1225: 1223: 1220: 1218: 1215: 1213: 1210: 1208: 1205: 1203: 1200: 1198: 1195: 1193: 1190: 1188: 1185: 1183: 1180: 1178: 1175: 1173: 1170: 1168: 1165: 1163: 1160: 1158: 1155: 1153: 1150: 1148: 1145: 1143: 1140: 1138: 1135: 1133: 1130: 1128: 1125: 1123: 1120: 1119: 1117: 1115: 1111: 1105: 1102: 1100: 1097: 1095: 1094:Mass spectrum 1092: 1090: 1089: 1085: 1081: 1079: 1076: 1075: 1072: 1068: 1061: 1056: 1054: 1049: 1047: 1042: 1041: 1038: 1027: 1023: 1019: 1015: 1008: 1005: 1000: 996: 989: 986: 981: 979:0-12-490540-4 975: 971: 964: 962: 958: 953: 949: 945: 941: 934: 931: 925: 922: 917: 913: 909: 905: 901: 897: 893: 889: 885: 878: 875: 870: 866: 861: 856: 852: 848: 844: 840: 836: 829: 826: 821: 815: 811: 804: 801: 796: 784: 776: 770: 766: 762: 758: 754: 750: 749: 741: 739: 735: 730: 726: 722: 718: 714: 710: 706: 702: 695: 692: 687: 683: 679: 675: 671: 667: 666: 657: 654: 649: 645: 641: 637: 634:(6): 445–82. 633: 629: 628: 623: 616: 613: 608: 604: 600: 596: 592: 588: 581: 578: 573: 569: 565: 563:9780471682295 559: 555: 548: 546: 544: 542: 540: 536: 531: 527: 523: 519: 515: 511: 507: 503: 496: 493: 488: 482: 478: 477: 469: 466: 461: 457: 453: 449: 445: 441: 437: 433: 426: 423: 418: 414: 410: 406: 402: 398: 391: 388: 383: 379: 375: 368: 365: 360: 356: 352: 348: 344: 340: 333: 330: 325: 321: 317: 313: 310:(2): 623–31. 309: 305: 298: 295: 288: 286: 283: 279: 275: 271: 267: 258: 256: 254: 250: 245: 244:mitochondrial 241: 237: 233: 229: 225: 215: 208: 206: 203: 199: 195: 191: 187: 179: 177: 175: 171: 163: 161: 159: 155: 151: 146: 137: 130: 128: 126: 122: 118: 114: 110: 106: 102: 98: 94: 90: 86: 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 18: 1494: 1482: 1470: 1298:Penning trap 1176: 1087: 1083: 1017: 1013: 1007: 998: 994: 988: 969: 943: 939: 933: 924: 891: 887: 877: 842: 838: 828: 809: 803: 747: 704: 700: 694: 669: 663: 656: 631: 625: 615: 590: 586: 580: 553: 505: 501: 495: 475: 468: 438:(1): 71–79. 435: 431: 425: 400: 396: 390: 376:(7): 325–7. 373: 367: 342: 338: 332: 307: 303: 297: 262: 255:, and more. 220: 209:Applications 201: 197: 193: 189: 185: 183: 167: 156:(MALDI) and 142: 93:thioglycerol 64: 60: 28: 24: 23: 1496:WikiProject 1339:Faraday cup 1278:Wien filter 1099:MS software 77:atomic beam 1518:Ion source 1114:Ion source 1001:: 179–197. 289:References 188:ontinuous 101:18-crown-6 33:ionization 1375:Hybrid MS 908:1052-9306 869:1076-5174 793:ignored ( 783:cite book 721:0003-2700 686:1044-0305 607:0009-2665 572:609942304 530:0277-7037 460:0168-1176 417:0028-0836 359:0003-2700 236:isovaline 109:sulfolane 99:(3-NBA), 1512:Category 1472:Category 1317:Detector 1308:Orbitrap 1104:Acronyms 238:, gly = 234:, iva = 230:, leu = 226:, AIB = 174:glycerol 89:glycerol 31:) is an 1484:Commons 1212:MALDESI 916:1812988 847:Bibcode 753:Bibcode 729:2190496 636:Bibcode 510:Bibcode 440:Bibcode 324:7306100 240:glycine 232:leucine 103:ether, 51:at the 1390:IMS/MS 1303:FT-ICR 1273:Sector 976:  914:  906:  867:  816:  771:  727:  719:  684:  605:  570:  560:  528:  483:  458:  415:  397:Nature 357:  322:  170:matrix 150:Cesium 115:, and 69:matrix 1443:IRMPD 1395:CE-MS 1385:LC/MS 1380:GC/MS 1360:MS/MS 1247:SELDI 1207:MALDI 1202:LAESI 1142:DAPPI 85:xenon 81:argon 65:LSIMS 41:atoms 1448:NETD 1413:BIRD 1232:SIMS 1227:SESI 1162:EESI 1157:DIOS 1152:DESI 1147:DART 1132:APPI 1127:APLI 1122:APCI 1078:Mass 974:ISBN 912:PMID 904:ISSN 865:ISSN 814:ISBN 795:help 769:ISBN 725:PMID 717:ISSN 682:ISSN 603:ISSN 568:OCLC 558:ISBN 526:ISSN 481:ISBN 456:ISSN 413:ISSN 355:ISSN 320:PMID 200:tom 196:ast 192:low 123:and 45:ions 1453:SID 1438:HCD 1433:ETD 1428:EDD 1423:ECD 1418:CID 1370:AMS 1365:QqQ 1242:SSI 1222:PTR 1217:MIP 1197:ICP 1177:FAB 1172:ESI 1022:doi 948:doi 896:doi 855:doi 761:doi 709:doi 674:doi 644:doi 595:doi 518:doi 448:doi 405:doi 401:293 378:doi 347:doi 312:doi 308:101 276:or 184:In 83:or 29:FAB 1514:: 1257:TS 1252:TI 1237:SS 1192:IA 1187:GD 1182:FD 1167:EI 1137:CI 1016:. 997:. 960:^ 944:55 942:. 910:. 902:. 892:20 890:. 886:. 863:. 853:. 843:34 841:. 837:. 787:: 785:}} 781:{{ 767:. 759:. 737:^ 723:. 715:. 705:62 703:. 680:. 668:. 642:. 630:. 624:. 601:. 591:87 589:. 566:. 538:^ 524:. 516:. 506:10 504:. 454:. 446:. 436:61 434:. 411:. 399:. 353:. 343:54 341:. 318:. 306:. 251:, 160:. 127:. 111:, 107:, 95:, 91:, 75:) 1088:z 1086:/ 1084:m 1059:e 1052:t 1045:v 1028:. 1024:: 1018:6 999:8 982:. 954:. 950:: 918:. 898:: 871:. 857:: 849:: 822:. 797:) 777:. 763:: 755:: 731:. 711:: 688:. 676:: 670:8 650:. 646:: 638:: 632:8 609:. 597:: 574:. 532:. 520:: 512:: 489:. 462:. 450:: 442:: 419:. 407:: 384:. 380:: 361:. 349:: 326:. 314:: 202:b 198:a 194:f 190:f 186:c 63:( 27:(

Index


ionization
mass spectrometry
atoms
ions
Michael Barber
University of Manchester
secondary ion mass spectrometry
matrix
electron volts
atomic beam
argon
xenon
glycerol
thioglycerol
3-nitrobenzyl alcohol
18-crown-6
2-nitrophenyloctyl ether
sulfolane
diethanolamine
triethanolamine
secondary ion mass spectrometry
plasma desorption mass spectrometry

protonated molecules
Cesium
matrix-assisted laser desorption/ionization
chemical ionization
matrix
glycerol

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑