Knowledge

Farley–Buneman instability

Source 📝

128:, allowing the ions to be treated as unmagnetized. Third, the collision frequency between electrons and background neutrals is assumed to be much less than the electron cyclotron frequency. Finally, we only analyze low frequency waves so that we can neglect electron inertia. Because the Buneman instability is electrostatic in nature, only electrostatic perturbations are considered. 526: 1283: 326: 119:
To derive the dispersion relation below, we make the following assumptions. First, quasi-neutrality is assumed. This is appropriate if we restrict ourselves to wavelengths longer than the Debye length. Second, the collision frequency between ions and background
1811: 1956: 902:
as the frequency of collisions between ions and neutrals. We also assume that all perturbed properties, such as species velocity, density, and the electric field, behave as plane waves. In other words, all physical quantities
1545: 2065: 333: 1116:. If we assume that the ambient electric and magnetic fields are perpendicular to one another and only analyze waves propagating perpendicular to both of these fields, the dispersion relation takes the form of: 1122: 1693: 72:
exceeding the ion acoustic speed. It occurs in collisional plasma with neutrals driven by drift current for two stream instability for unmagnetized plasma it becomes ''Buneman instability ''
167: 1599: 1047: 1699: 1828: 836: 783: 1458: 1431: 1401: 1340: 900: 870: 706: 1623: 1110: 1078: 1370: 1314: 655: 607: 559: 981: 961: 941: 921: 754: 732: 675: 627: 579: 89:. In particular, it occurs in the equatorial electrojet due to the drift of electrons relative to ions, and also in the trails behind ablating meteoroids. 1466: 1967: 838:).The collisional term describes the momentum loss frequency of each fluid due to collisions of charged particles with neutral particles in the 521:{\displaystyle m_{i}n{dv_{i} \over dt}=en({\vec {E}}+{\vec {v}}_{i}\times {\vec {B}})-k_{\text{B}}T_{i}\nabla n-m_{i}n\nu _{in}{\vec {v}}_{i}} 2218: 1278:{\displaystyle \omega \left(1+i\psi _{0}{\frac {\omega -i\nu _{in}}{\nu _{in}}}\right)=kv_{E}+i\psi _{0}{\frac {k^{2}c_{i}^{2}}{\nu _{in}}}} 792:
Note that electron inertia has been neglected, and that both species are assumed to have the same number density at every point in space (
1631: 2273: 321:{\displaystyle 0=-en({\vec {E}}+{\vec {v}}_{e}\times {\vec {B}})-k_{\text{B}}T_{e}\nabla n-m_{e}n\nu _{en}{\vec {v}}_{e}} 86: 46: 1562: 993: 1806:{\displaystyle \gamma ={\frac {\psi _{0}}{\nu _{in}}}{\frac {\omega _{r}^{2}-k^{2}c_{i}^{2}}{1+\psi _{0}}}} 145: 108: 61: 1951:{\displaystyle 1-(\omega _{p}^{2}/\omega ^{2})-{\displaystyle (\omega _{p}^{2}/(\omega -k.v_{0})^{2})}=0} 96: 2101:
Farley, D. T. (1963). "Two-Stream Plasma Instability as a Source of Irregularities in the Ionosphere".
2145: 2110: 795: 125: 2172: 761: 1436: 1409: 1085: 786: 141: 31: 1379: 1319: 875: 845: 681: 2214: 1089: 1608: 1095: 1063: 2247: 2210: 2184: 2153: 2118: 2076: 839: 137: 121: 53: 35: 1348: 1292: 633: 585: 537: 2149: 2114: 1373: 1342: 1113: 966: 946: 926: 906: 739: 717: 660: 612: 564: 57: 2267: 157: 39: 2136:
Buneman, O. (1963). "Excitation of Field Aligned Sound Waves by Electron Streams".
1054: 80: 2236:"Electrodynamics of meteor trail evolution in the equatorial E-region ionosphere" 2081: 1081: 984: 100: 28: 2157: 2122: 2188: 1540:{\displaystyle \psi _{0}={\frac {\nu _{in}\nu _{en}}{\Omega _{i}\Omega _{e}}}} 1404: 1403:
described the combined effect of electron and ion collisions as well as their
104: 93: 83: 43: 1625:
describes the growth rate of the instability. For FB we have the following:
1058: 709: 2060:{\displaystyle \gamma ={\sqrt {3}}\omega _{p}(Z_{i}.{m_{e}}/{m_{i}})^{1/3}} 2252: 2235: 149: 65: 2234:
Oppenheim, Meers M.; Endt, Axel F. vom; Dyrud, Lars P. (October 2000).
76: 2173:"Instability, Turbulence, and Conductivity in Current-Carrying Plasma" 160:
and collisional terms. The equation of motion for each species is:
872:
as the frequency of collisions between electrons and neutrals, and
153: 69: 1688:{\displaystyle \omega _{r}={\frac {kv_{E}}{1+\psi _{0}}}} 1556:
Solving the dispersion we arrive at frequency given as:
1970: 1878: 1831: 1702: 1634: 1611: 1565: 1469: 1439: 1412: 1382: 1351: 1322: 1295: 1125: 1098: 1066: 996: 969: 949: 929: 909: 878: 848: 798: 764: 742: 720: 712:
of collisions between species s and neutral particles
684: 663: 636: 615: 588: 567: 540: 336: 170: 2059: 1950: 1805: 1687: 1617: 1593: 1539: 1452: 1425: 1395: 1364: 1334: 1308: 1277: 1104: 1072: 1041: 975: 955: 935: 915: 894: 864: 830: 777: 748: 726: 700: 669: 649: 621: 601: 573: 553: 520: 320: 2205:Treumann, Rudolf A; Baumjohann, Wolfgang (1997). 923:will behave as an exponential function of time 8: 1594:{\displaystyle \omega =\omega _{r}+i\gamma } 124:is assumed to be much greater than the ion 2200: 2198: 1042:{\displaystyle f\sim \exp(-i\omega t+ikx)} 2251: 2047: 2043: 2032: 2027: 2022: 2015: 2010: 2001: 1988: 1977: 1969: 1931: 1921: 1897: 1891: 1886: 1877: 1865: 1856: 1850: 1845: 1830: 1794: 1776: 1771: 1761: 1748: 1743: 1736: 1725: 1715: 1709: 1701: 1676: 1658: 1648: 1639: 1633: 1610: 1576: 1564: 1528: 1518: 1503: 1490: 1483: 1474: 1468: 1444: 1438: 1417: 1411: 1387: 1381: 1356: 1350: 1321: 1300: 1294: 1264: 1253: 1248: 1238: 1231: 1225: 1209: 1183: 1169: 1153: 1147: 1124: 1097: 1065: 995: 968: 948: 928: 908: 883: 877: 853: 847: 816: 803: 797: 769: 763: 741: 719: 689: 683: 662: 641: 635: 614: 593: 587: 566: 545: 539: 512: 501: 500: 490: 477: 458: 448: 427: 426: 417: 406: 405: 390: 389: 360: 350: 341: 335: 312: 301: 300: 290: 277: 258: 248: 227: 226: 217: 206: 205: 190: 189: 169: 64:arising from the difference in drifts of 56:with neutral component, and is driven by 2093: 103:can be used to diagnose the state of 60:. It can be thought of as a modified 7: 1525: 1515: 1441: 1414: 464: 264: 14: 2040: 1994: 1937: 1928: 1902: 1879: 1871: 1838: 1036: 1009: 756:is the electron number density 657:is the temperature of species 506: 438: 432: 411: 395: 386: 306: 238: 232: 211: 195: 186: 92:Since the FB fluctuations can 16:Microscopic plasma instability 1: 2207:Advanced space plasma physics 831:{\displaystyle n_{i}=n_{e}=n} 2240:Geophysical Research Letters 778:{\displaystyle k_{\text{B}}} 734:is the charge of an electron 1822:The dispersion relation is 1453:{\displaystyle \Omega _{e}} 1426:{\displaystyle \Omega _{i}} 609:is the velocity of species 47:Rayleigh-Taylor instability 2290: 2158:10.1103/PhysRevLett.10.285 2123:10.1103/PhysRevLett.10.279 21:Farley–Buneman instability 2189:10.1103/PhysRevLett.1.119 1396:{\displaystyle \psi _{0}} 1376:of ions. The coefficient 1335:{\displaystyle E\times B} 895:{\displaystyle \nu _{in}} 865:{\displaystyle \nu _{en}} 701:{\displaystyle \nu _{sn}} 52:It occurs in collisional 2177:Physical Review Letters 2138:Physical Review Letters 2103:Physical Review Letters 1961:and the growth rate is 1618:{\displaystyle \gamma } 1105:{\displaystyle \omega } 1073:{\displaystyle \omega } 561:is the mass of species 42:. It is similar to the 2061: 1952: 1807: 1689: 1619: 1595: 1541: 1454: 1427: 1397: 1366: 1336: 1310: 1279: 1106: 1074: 1043: 977: 957: 937: 917: 896: 866: 832: 779: 750: 728: 702: 671: 651: 623: 603: 575: 555: 522: 322: 146:equation of continuity 109:electromagnetic pulses 62:two-stream instability 2062: 1953: 1808: 1690: 1620: 1596: 1542: 1455: 1428: 1405:cyclotron frequencies 1398: 1367: 1365:{\displaystyle c_{i}} 1337: 1311: 1309:{\displaystyle v_{E}} 1280: 1107: 1075: 1044: 978: 958: 938: 918: 897: 867: 833: 780: 751: 729: 703: 672: 652: 650:{\displaystyle T_{s}} 624: 604: 602:{\displaystyle v_{s}} 576: 556: 554:{\displaystyle m_{s}} 523: 323: 97:electromagnetic waves 75:It is present in the 2274:Plasma instabilities 2253:10.1029/1999GL000013 2171:Buneman, O. (1958). 2082:Plasma Instabilities 1968: 1829: 1700: 1632: 1609: 1563: 1467: 1437: 1410: 1380: 1349: 1320: 1293: 1123: 1096: 1064: 994: 967: 947: 927: 907: 876: 846: 796: 762: 740: 718: 682: 661: 634: 613: 586: 565: 538: 334: 168: 2150:1963PhRvL..10..285B 2115:1963PhRvL..10..279F 1896: 1855: 1818:Buneman instability 1781: 1753: 1258: 132:Dispersion relation 126:cyclotron frequency 2057: 1948: 1940: 1882: 1841: 1803: 1767: 1739: 1685: 1615: 1591: 1537: 1450: 1423: 1393: 1362: 1332: 1306: 1275: 1244: 1102: 1086:exponential growth 1070: 1039: 973: 953: 933: 913: 892: 862: 828: 787:Boltzmann constant 775: 746: 724: 698: 667: 647: 619: 599: 571: 551: 518: 318: 142:equation of motion 136:We use linearized 32:plasma instability 2220:978-1-86094-026-2 1982: 1801: 1734: 1683: 1535: 1273: 1192: 1090:exponential decay 1053:This can lead to 976:{\displaystyle k} 956:{\displaystyle x} 936:{\displaystyle t} 916:{\displaystyle f} 772: 749:{\displaystyle n} 727:{\displaystyle e} 670:{\displaystyle s} 622:{\displaystyle s} 574:{\displaystyle s} 509: 451: 435: 414: 398: 375: 309: 251: 235: 214: 198: 122:neutral particles 2281: 2258: 2257: 2255: 2231: 2225: 2224: 2211:World Scientific 2202: 2193: 2192: 2168: 2162: 2161: 2133: 2127: 2126: 2098: 2077:Plasma stability 2066: 2064: 2063: 2058: 2056: 2055: 2051: 2038: 2037: 2036: 2026: 2021: 2020: 2019: 2006: 2005: 1993: 1992: 1983: 1978: 1957: 1955: 1954: 1949: 1941: 1936: 1935: 1926: 1925: 1901: 1895: 1890: 1870: 1869: 1860: 1854: 1849: 1812: 1810: 1809: 1804: 1802: 1800: 1799: 1798: 1782: 1780: 1775: 1766: 1765: 1752: 1747: 1737: 1735: 1733: 1732: 1720: 1719: 1710: 1694: 1692: 1691: 1686: 1684: 1682: 1681: 1680: 1664: 1663: 1662: 1649: 1644: 1643: 1624: 1622: 1621: 1616: 1600: 1598: 1597: 1592: 1581: 1580: 1546: 1544: 1543: 1538: 1536: 1534: 1533: 1532: 1523: 1522: 1512: 1511: 1510: 1498: 1497: 1484: 1479: 1478: 1459: 1457: 1456: 1451: 1449: 1448: 1432: 1430: 1429: 1424: 1422: 1421: 1402: 1400: 1399: 1394: 1392: 1391: 1371: 1369: 1368: 1363: 1361: 1360: 1341: 1339: 1338: 1333: 1315: 1313: 1312: 1307: 1305: 1304: 1284: 1282: 1281: 1276: 1274: 1272: 1271: 1259: 1257: 1252: 1243: 1242: 1232: 1230: 1229: 1214: 1213: 1198: 1194: 1193: 1191: 1190: 1178: 1177: 1176: 1154: 1152: 1151: 1111: 1109: 1108: 1103: 1079: 1077: 1076: 1071: 1048: 1046: 1045: 1040: 982: 980: 979: 974: 962: 960: 959: 954: 942: 940: 939: 934: 922: 920: 919: 914: 901: 899: 898: 893: 891: 890: 871: 869: 868: 863: 861: 860: 837: 835: 834: 829: 821: 820: 808: 807: 784: 782: 781: 776: 774: 773: 770: 755: 753: 752: 747: 733: 731: 730: 725: 707: 705: 704: 699: 697: 696: 676: 674: 673: 668: 656: 654: 653: 648: 646: 645: 628: 626: 625: 620: 608: 606: 605: 600: 598: 597: 580: 578: 577: 572: 560: 558: 557: 552: 550: 549: 527: 525: 524: 519: 517: 516: 511: 510: 502: 498: 497: 482: 481: 463: 462: 453: 452: 449: 437: 436: 428: 422: 421: 416: 415: 407: 400: 399: 391: 376: 374: 366: 365: 364: 351: 346: 345: 327: 325: 324: 319: 317: 316: 311: 310: 302: 298: 297: 282: 281: 263: 262: 253: 252: 249: 237: 236: 228: 222: 221: 216: 215: 207: 200: 199: 191: 36:Donald T. Farley 2289: 2288: 2284: 2283: 2282: 2280: 2279: 2278: 2264: 2263: 2262: 2261: 2233: 2232: 2228: 2221: 2204: 2203: 2196: 2170: 2169: 2165: 2135: 2134: 2130: 2100: 2099: 2095: 2090: 2073: 2039: 2028: 2011: 1997: 1984: 1966: 1965: 1927: 1917: 1861: 1827: 1826: 1820: 1790: 1783: 1757: 1738: 1721: 1711: 1698: 1697: 1672: 1665: 1654: 1650: 1635: 1630: 1629: 1607: 1606: 1572: 1561: 1560: 1554: 1524: 1514: 1513: 1499: 1486: 1485: 1470: 1465: 1464: 1440: 1435: 1434: 1413: 1408: 1407: 1383: 1378: 1377: 1352: 1347: 1346: 1318: 1317: 1296: 1291: 1290: 1260: 1234: 1233: 1221: 1205: 1179: 1165: 1155: 1143: 1133: 1129: 1121: 1120: 1094: 1093: 1084:, or to either 1062: 1061: 992: 991: 965: 964: 945: 944: 925: 924: 905: 904: 879: 874: 873: 849: 844: 843: 812: 799: 794: 793: 765: 760: 759: 738: 737: 716: 715: 685: 680: 679: 659: 658: 637: 632: 631: 611: 610: 589: 584: 583: 563: 562: 541: 536: 535: 499: 486: 473: 454: 444: 404: 367: 356: 352: 337: 332: 331: 299: 286: 273: 254: 244: 204: 166: 165: 138:fluid equations 134: 117: 17: 12: 11: 5: 2287: 2285: 2277: 2276: 2266: 2265: 2260: 2259: 2226: 2219: 2194: 2163: 2144:(7): 285–287. 2128: 2109:(7): 279–282. 2092: 2091: 2089: 2086: 2085: 2084: 2079: 2072: 2069: 2068: 2067: 2054: 2050: 2046: 2042: 2035: 2031: 2025: 2018: 2014: 2009: 2004: 2000: 1996: 1991: 1987: 1981: 1976: 1973: 1959: 1958: 1947: 1944: 1939: 1934: 1930: 1924: 1920: 1916: 1913: 1910: 1907: 1904: 1900: 1894: 1889: 1885: 1881: 1876: 1873: 1868: 1864: 1859: 1853: 1848: 1844: 1840: 1837: 1834: 1819: 1816: 1815: 1814: 1797: 1793: 1789: 1786: 1779: 1774: 1770: 1764: 1760: 1756: 1751: 1746: 1742: 1731: 1728: 1724: 1718: 1714: 1708: 1705: 1695: 1679: 1675: 1671: 1668: 1661: 1657: 1653: 1647: 1642: 1638: 1614: 1603: 1602: 1590: 1587: 1584: 1579: 1575: 1571: 1568: 1553: 1550: 1549: 1548: 1531: 1527: 1521: 1517: 1509: 1506: 1502: 1496: 1493: 1489: 1482: 1477: 1473: 1447: 1443: 1420: 1416: 1390: 1386: 1374:acoustic speed 1359: 1355: 1331: 1328: 1325: 1303: 1299: 1287: 1286: 1270: 1267: 1263: 1256: 1251: 1247: 1241: 1237: 1228: 1224: 1220: 1217: 1212: 1208: 1204: 1201: 1197: 1189: 1186: 1182: 1175: 1172: 1168: 1164: 1161: 1158: 1150: 1146: 1142: 1139: 1136: 1132: 1128: 1101: 1069: 1051: 1050: 1038: 1035: 1032: 1029: 1026: 1023: 1020: 1017: 1014: 1011: 1008: 1005: 1002: 999: 972: 952: 932: 912: 889: 886: 882: 859: 856: 852: 827: 824: 819: 815: 811: 806: 802: 790: 789: 768: 757: 745: 735: 723: 713: 695: 692: 688: 677: 666: 644: 640: 629: 618: 596: 592: 581: 570: 548: 544: 529: 528: 515: 508: 505: 496: 493: 489: 485: 480: 476: 472: 469: 466: 461: 457: 447: 443: 440: 434: 431: 425: 420: 413: 410: 403: 397: 394: 388: 385: 382: 379: 373: 370: 363: 359: 355: 349: 344: 340: 328: 315: 308: 305: 296: 293: 289: 285: 280: 276: 272: 269: 266: 261: 257: 247: 243: 240: 234: 231: 225: 220: 213: 210: 203: 197: 194: 188: 185: 182: 179: 176: 173: 133: 130: 116: 113: 107:by the use of 58:drift currents 25:FB instability 15: 13: 10: 9: 6: 4: 3: 2: 2286: 2275: 2272: 2271: 2269: 2254: 2249: 2245: 2241: 2237: 2230: 2227: 2222: 2216: 2212: 2208: 2201: 2199: 2195: 2190: 2186: 2182: 2178: 2174: 2167: 2164: 2159: 2155: 2151: 2147: 2143: 2139: 2132: 2129: 2124: 2120: 2116: 2112: 2108: 2104: 2097: 2094: 2087: 2083: 2080: 2078: 2075: 2074: 2070: 2052: 2048: 2044: 2033: 2029: 2023: 2016: 2012: 2007: 2002: 1998: 1989: 1985: 1979: 1974: 1971: 1964: 1963: 1962: 1945: 1942: 1932: 1922: 1918: 1914: 1911: 1908: 1905: 1898: 1892: 1887: 1883: 1874: 1866: 1862: 1857: 1851: 1846: 1842: 1835: 1832: 1825: 1824: 1823: 1817: 1795: 1791: 1787: 1784: 1777: 1772: 1768: 1762: 1758: 1754: 1749: 1744: 1740: 1729: 1726: 1722: 1716: 1712: 1706: 1703: 1696: 1677: 1673: 1669: 1666: 1659: 1655: 1651: 1645: 1640: 1636: 1628: 1627: 1626: 1612: 1588: 1585: 1582: 1577: 1573: 1569: 1566: 1559: 1558: 1557: 1551: 1529: 1519: 1507: 1504: 1500: 1494: 1491: 1487: 1480: 1475: 1471: 1463: 1462: 1461: 1445: 1418: 1406: 1388: 1384: 1375: 1357: 1353: 1344: 1329: 1326: 1323: 1301: 1297: 1268: 1265: 1261: 1254: 1249: 1245: 1239: 1235: 1226: 1222: 1218: 1215: 1210: 1206: 1202: 1199: 1195: 1187: 1184: 1180: 1173: 1170: 1166: 1162: 1159: 1156: 1148: 1144: 1140: 1137: 1134: 1130: 1126: 1119: 1118: 1117: 1115: 1099: 1091: 1087: 1083: 1067: 1060: 1056: 1033: 1030: 1027: 1024: 1021: 1018: 1015: 1012: 1006: 1003: 1000: 997: 990: 989: 988: 986: 970: 950: 943:and position 930: 910: 887: 884: 880: 857: 854: 850: 841: 825: 822: 817: 813: 809: 804: 800: 788: 766: 758: 743: 736: 721: 714: 711: 693: 690: 686: 678: 664: 642: 638: 630: 616: 594: 590: 582: 568: 546: 542: 534: 533: 532: 513: 503: 494: 491: 487: 483: 478: 474: 470: 467: 459: 455: 445: 441: 429: 423: 418: 408: 401: 392: 383: 380: 377: 371: 368: 361: 357: 353: 347: 342: 338: 329: 313: 303: 294: 291: 287: 283: 278: 274: 270: 267: 259: 255: 245: 241: 229: 223: 218: 208: 201: 192: 183: 180: 177: 174: 171: 163: 162: 161: 159: 158:Lorentz force 155: 151: 147: 143: 139: 131: 129: 127: 123: 114: 112: 110: 106: 102: 98: 95: 90: 88: 85: 82: 78: 73: 71: 67: 63: 59: 55: 50: 48: 45: 41: 40:Oscar Buneman 37: 33: 30: 26: 22: 2246:(19): 3173. 2243: 2239: 2229: 2206: 2180: 2176: 2166: 2141: 2137: 2131: 2106: 2102: 2096: 1960: 1821: 1604: 1555: 1288: 1055:oscillations 1052: 842:. We denote 791: 530: 135: 118: 91: 74: 51: 34:named after 24: 20: 18: 1552:Growth rate 1082:real number 985:wave number 164:Electrons: 101:instability 84:ionospheric 44:ionospheric 29:microscopic 2183:(3): 119. 2088:References 115:Conditions 105:ionosphere 77:equatorial 1986:ω 1972:γ 1909:− 1906:ω 1884:ω 1875:− 1863:ω 1843:ω 1836:− 1792:ψ 1755:− 1741:ω 1723:ν 1713:ψ 1704:γ 1674:ψ 1637:ω 1613:γ 1589:γ 1574:ω 1567:ω 1526:Ω 1516:Ω 1501:ν 1488:ν 1472:ψ 1442:Ω 1415:Ω 1385:ψ 1327:× 1262:ν 1223:ψ 1181:ν 1167:ν 1160:− 1157:ω 1145:ψ 1127:ω 1100:ω 1068:ω 1059:frequency 1019:ω 1013:− 1007:⁡ 1001:∼ 881:ν 851:ν 710:frequency 687:ν 507:→ 488:ν 471:− 465:∇ 442:− 433:→ 424:× 412:→ 396:→ 307:→ 288:ν 271:− 265:∇ 242:− 233:→ 224:× 212:→ 196:→ 178:− 150:electrons 87:E-regions 66:electrons 2268:Category 2071:See also 2146:Bibcode 2111:Bibcode 1372:is the 1316:is the 1114:complex 1057:if the 983:is the 963:(where 785:is the 708:is the 94:scatter 27:, is a 2217:  1605:where 1289:where 840:plasma 531:where 330:Ions: 148:) for 99:, the 54:plasma 1343:drift 1080:is a 156:with 81:polar 23:, or 2215:ISBN 1433:and 1345:and 154:ions 152:and 79:and 70:ions 68:and 38:and 19:The 2248:doi 2185:doi 2154:doi 2119:doi 1112:is 1092:if 1088:or 1004:exp 987:): 2270:: 2244:27 2242:. 2238:. 2213:. 2209:. 2197:^ 2179:. 2175:. 2152:. 2142:10 2140:. 2117:. 2107:10 2105:. 1460:: 144:, 111:. 49:. 2256:. 2250:: 2223:. 2191:. 2187:: 2181:1 2160:. 2156:: 2148:: 2125:. 2121:: 2113:: 2053:3 2049:/ 2045:1 2041:) 2034:i 2030:m 2024:/ 2017:e 2013:m 2008:. 2003:i 1999:Z 1995:( 1990:p 1980:3 1975:= 1946:0 1943:= 1938:) 1933:2 1929:) 1923:0 1919:v 1915:. 1912:k 1903:( 1899:/ 1893:2 1888:p 1880:( 1872:) 1867:2 1858:/ 1852:2 1847:p 1839:( 1833:1 1813:. 1796:0 1788:+ 1785:1 1778:2 1773:i 1769:c 1763:2 1759:k 1750:2 1745:r 1730:n 1727:i 1717:0 1707:= 1678:0 1670:+ 1667:1 1660:E 1656:v 1652:k 1646:= 1641:r 1601:, 1586:i 1583:+ 1578:r 1570:= 1547:. 1530:e 1520:i 1508:n 1505:e 1495:n 1492:i 1481:= 1476:0 1446:e 1419:i 1389:0 1358:i 1354:c 1330:B 1324:E 1302:E 1298:v 1285:, 1269:n 1266:i 1255:2 1250:i 1246:c 1240:2 1236:k 1227:0 1219:i 1216:+ 1211:E 1207:v 1203:k 1200:= 1196:) 1188:n 1185:i 1174:n 1171:i 1163:i 1149:0 1141:i 1138:+ 1135:1 1131:( 1049:. 1037:) 1034:x 1031:k 1028:i 1025:+ 1022:t 1016:i 1010:( 998:f 971:k 951:x 931:t 911:f 888:n 885:i 858:n 855:e 826:n 823:= 818:e 814:n 810:= 805:i 801:n 771:B 767:k 744:n 722:e 694:n 691:s 665:s 643:s 639:T 617:s 595:s 591:v 569:s 547:s 543:m 514:i 504:v 495:n 492:i 484:n 479:i 475:m 468:n 460:i 456:T 450:B 446:k 439:) 430:B 419:i 409:v 402:+ 393:E 387:( 384:n 381:e 378:= 372:t 369:d 362:i 358:v 354:d 348:n 343:i 339:m 314:e 304:v 295:n 292:e 284:n 279:e 275:m 268:n 260:e 256:T 250:B 246:k 239:) 230:B 219:e 209:v 202:+ 193:E 187:( 184:n 181:e 175:= 172:0 140:(

Index

microscopic
plasma instability
Donald T. Farley
Oscar Buneman
ionospheric
Rayleigh-Taylor instability
plasma
drift currents
two-stream instability
electrons
ions
equatorial
polar
ionospheric
E-regions
scatter
electromagnetic waves
instability
ionosphere
electromagnetic pulses
neutral particles
cyclotron frequency
fluid equations
equation of motion
equation of continuity
electrons
ions
Lorentz force
frequency
Boltzmann constant

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.